1
|
Zhang M, Tang M, Yan K, Zhang Y, Li Y, Tang J, Xu S, Yan X, Hu J, Wang Y. Effects of supplemental medusa (Rhopilema esculentum) on intestinal microbiota and metabolites in silver pomfret (Pampus argenteus). JOURNAL OF FISH BIOLOGY 2024. [PMID: 39360517 DOI: 10.1111/jfb.15926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024]
Abstract
Pampus argenteus demonstrates a preference for Rhopilema esculentum as prey, yet the ramifications of consuming supplemental medusa on fish microbiota and metabolism remain elusive. To elucidate these effects, 300 juvenile fish were divided into two groups: control group (C, given commercial food only) and supplemental medusa (SM) group (given supplemental medusa + commercial feed). After 15 days, fish in the SM group exhibited a significant increase in fatness, the amylase activity in the intestine significantly increased, and the intestinal microvilli were arranged more neatly. The comprehensive approach involving 16S rRNA amplicon sequencing and metabolomics was employed, leading to the identification of five genera within the SM group, namely Lactococcus, Cohaesibacter, Maritalea, Sulfitobacter, and Carnobacterium. Functional prediction analysis of the microbiota indicated that the consumption of supplemental medusa facilitated processes such as glycolysis/gluconeogenesis and amino acid absorption. Metabolomics analysis revealed significant enrichment of 85 differential metabolites, most of them belonging to fatty acids and conjugates. These differential metabolites primarily participated in processes such as amino acid metabolism, fatty acid synthesis, and disease. Notably, the consumption of medusa resulted in a significant reduction in nine lysophospholipids associated with cardiovascular disease and inflammation. Pearson's correlation coefficient analysis revealed associations between specific microorganisms and metabolites, indicating that Cobetia, Weissella, and Macrococcus exhibited an increased abundance in the SM group, positively correlating with apocynin, 12-Hete, and delta 9-THC-d3. The indicator bacteria Psychrobacter reduced in the SM group, exhibiting a negative correlation with cystathionine (a compound involved in glutathione synthesis). Overall, the supplementation of medusa may confer a beneficial effect on the immunity of the fish. This study contributes to the theoretical framework for fish feed development.
Collapse
Affiliation(s)
- Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Mengke Tang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Kaiheng Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jie Tang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Liu Z, Guo Y, Qin C, Mu X, Zhang J. High-Throughput Sequencing Analysis Revealed a Preference for Animal-Based Food in Purple Sea Urchins. BIOLOGY 2024; 13:623. [PMID: 39194561 DOI: 10.3390/biology13080623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
Sea urchins play an important role in marine ecosystems. Owing to limitations in previous research methods, there has been insufficient understanding of the food sources and ecological functional value of purple sea urchins, leading to considerable controversy regarding their functional positioning. We focused on Daya Bay as the research area, utilizing stable isotope technology and high-throughput sequencing of 16S rDNA and 18S rDNA to analyze sea urchins and their potential food sources in stone and algae areas. The results showed that the δ13C range of purple sea urchins in the stone area is -11.42~-8.17‱, and the δ15N range is 9.15~10.31‱. However, in the algal area, the δ13C range is -13.97~-12.44‱, and the δ15N range is 8.75~10.14‱. There was a significant difference in δ13C between the two areas (p < 0.05), but there was no significant difference in δ15N (p > 0.05). The main food source for purple sea urchins in both areas is sediment. The sequencing results of 18S rDNA revealed that, in the algal area, the highest proportion in the sea urchin gut was Molluska (57.37%). In the stone area, the highest proportion was Arthropoda (76.71%). The sequencing results of 16S rDNA revealed that, in the algal area, Bacteroidetes was the dominant group in the sea urchin gut (28.87%), whereas, in the stone area, Proteobacteria was the dominant group (37.83%). Diversity detection revealed a significant difference in the number of gut microbes and eukaryotes between the stone and algal areas (p < 0.05). The results revealed that the main food source of purple sea urchins in both areas is sediment, but the organic nutritional value is greater in the algal area, and the richness of microbiota and eukaryotes in the gut of purple sea urchins in the stone area is greater. These results indicated that purple sea urchins are likely omnivores and that the area where they occur impacts their growth and development. The results of this study provide a theoretical basis for the restoration of wild purple sea urchin resources and the selection of areas for restocking and release.
Collapse
Affiliation(s)
- Zerui Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Yu Guo
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Chuanxin Qin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xiaohui Mu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jia Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Härer A, Frazier CJ, Rennison DJ. Host ecotype and rearing environment are the main drivers of threespine stickleback gut microbiota diversity in a naturalistic experiment. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240649. [PMID: 39100190 PMCID: PMC11296155 DOI: 10.1098/rsos.240649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 08/06/2024]
Abstract
Host-microbiota interactions play a critical role in the hosts' biology, and thus, it is crucial to elucidate the mechanisms that shape gut microbial communities. We leveraged threespine stickleback fish (Gasterosteus aculeatus) as a model system to investigate the contribution of host and environmental factors to gut microbiota variation. These fish offer a unique opportunity for experiments in naturalistic conditions; we reared benthic and limnetic ecotypes from three different lakes in experimental ponds, allowing us to assess the relative effects of shared environment (pond), geographic origin (lake-of-origin), trophic ecology and genetics (ecotype) and biological sex on gut microbiota α- and β-diversity. Host ecotype had the strongest influence on α-diversity, with benthic fish exhibiting higher diversity than limnetic fish, followed by the rearing environment. β-diversity was primarily shaped by rearing environment, followed by host ecotype, indicating that environmental factors play a crucial role in determining gut microbiota composition. Furthermore, numerous bacterial orders were differentially abundant across ponds, underlining the substantial contribution of environmental factors to gut microbiota variation. Our study illustrates the complex interplay between environmental and host ecological or genetic factors in shaping the stickleback gut microbiota and highlights the value of experiments conducted under naturalistic conditions for understanding gut microbiota dynamics.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Christine J. Frazier
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior & Evolution, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Härer A, Rennison DJ. Gut Microbiota Uniqueness Is Associated with Lake Size, a Proxy for Diet Diversity, in Stickleback Fish. Am Nat 2024; 203:284-291. [PMID: 38306277 DOI: 10.1086/727703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
AbstractOrganismal divergence can be driven by differential resource use and adaptation to different trophic niches. Variation in diet is a major factor shaping the gut microbiota, which is crucial for many aspects of their hosts' biology. However, it remains largely unknown how host diet diversity affects the gut microbiota, and it could be hypothesized that trophic niche width is positively associated with gut microbiota diversity. To test this idea, we sequenced the 16S ribosomal RNA gene from intestinal tissue of 14 threespine stickleback populations from lakes of varying size on Vancouver Island, Canada, that have been shown to differ in trophic niche width. Using lake size as a proxy for trophic ecology, we found evidence for higher gut microbiota uniqueness among individuals from populations with broader trophic niches. While these results suggest that diet diversity might promote gut microbiota diversity, additional work investigating diet and gut microbiota variation of the same host organisms will be necessary. Yet our results motivate the question of how host population diversity (e.g., ecological, morphological, genetic) might interact with the gut microbiota during the adaptation to ecological niches.
Collapse
|
5
|
Härer A, Rennison DJ. The effects of host ecology and phylogeny on gut microbiota (non)parallelism across birds and mammals. mSphere 2023; 8:e0044223. [PMID: 38038446 PMCID: PMC10732045 DOI: 10.1128/msphere.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE What are the roles of determinism and contingency in evolution? The paleontologist and evolutionary biologist Stephen J. Gould raised this question in his famous thought experiment of "replaying life's tape." Settings where independent lineages have repeatedly adapted to similar ecological niches (i.e., parallel evolution) are well suited to address this question. Here, we quantified whether repeated ecological shifts across 53 mammalian and 50 avian host species are associated with parallel gut microbiota changes. Our results indicate that parallel shifts in host diet are associated with greater gut microbiota parallelism (i.e., more deterministic). While further research will be necessary to obtain a comprehensive picture of the circumstances under which deterministic gut microbiota changes might be expected, our study can be instrumental in motivating the use of more quantitative methods in microbiota research. This, in turn, can help us better understand microbiota dynamics during adaptive evolution of their hosts.
Collapse
Affiliation(s)
- Andreas Härer
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| | - Diana J. Rennison
- Department of Ecology, Behavior & Evolution, School of Biological Sciences , University of California San Diego, La Jolla, California, USA
| |
Collapse
|
6
|
Härer A, Rennison DJ. Assessing the validity of fecal sampling for characterizing variation in threespine stickleback's gut microbiota. PLoS One 2023; 18:e0290875. [PMID: 37733779 PMCID: PMC10513271 DOI: 10.1371/journal.pone.0290875] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
The gut microbiota is crucial for many aspects of their hosts' biology, and it has been characterized for many species across the animal kingdom. Yet, we still don't have a good understanding of whether non-lethal sampling can accurately capture the diversity of gut-associated bacterial communities, as estimated from lethal sampling of intestinal tissue. We further lack knowledge on whether non-lethal sampling methods are suitable for detecting gut microbiota shifts associated with changes in environmental factors (e.g., diet). We addressed these questions in threespine stickleback fish, a model system for evolutionary ecology, by comparing bacterial communities from intestinal tissue and feces. Despite some differences in community composition between the two sample types and considerable temporal variation among fecal samples, bacterial communities appear to largely overlap. Further, we detected consistent and significant changes of fecal bacterial communities associated with an experimental diet manipulation. This suggests that fecal sampling can represent an adequate non-lethal method to characterize the gut microbiota of threespine stickleback, but additional studies will be necessary before drawing general conclusions regarding the validity of fecal sampling for gut microbiota studies. To this end, we give recommendations to improve the characterization of the gut microbiota via fecal sampling. Fecal sampling allows studying temporal gut microbiota shifts associated with environmental change at the individual level, which increases opportunities for future experimental gut microbiota research.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & Evolution, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
7
|
Brandon AA, Almeida D, Powder KE. Neural crest cells as a source of microevolutionary variation. Semin Cell Dev Biol 2023; 145:42-51. [PMID: 35718684 PMCID: PMC10482117 DOI: 10.1016/j.semcdb.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 05/03/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022]
Abstract
Vertebrates have some of the most complex and diverse features in animals, from varied craniofacial morphologies to colorful pigmentation patterns and elaborate social behaviors. All of these traits have their developmental origins in a multipotent embryonic lineage of neural crest cells. This "fourth germ layer" is a vertebrate innovation and the source of a wide range of adult cell types. While others have discussed the role of neural crest cells in human disease and animal domestication, less is known about their role in contributing to adaptive changes in wild populations. Here, we review how variation in the development of neural crest cells and their derivatives generates considerable phenotypic diversity in nature. We focus on the broad span of traits under natural and sexual selection whose variation may originate in the neural crest, with emphasis on behavioral factors such as intraspecies communication that are often overlooked. In all, we encourage the integration of evolutionary ecology with developmental biology and molecular genetics to gain a more complete understanding of the role of this single cell type in trait covariation, evolutionary trajectories, and vertebrate diversity.
Collapse
Affiliation(s)
- A Allyson Brandon
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Daniela Almeida
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
8
|
Härer A, Rennison DJ. Quantifying (non)parallelism of gut microbial community change using multivariate vector analysis. Ecol Evol 2022; 12:e9674. [PMID: 36590339 PMCID: PMC9797641 DOI: 10.1002/ece3.9674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/26/2022] [Accepted: 12/09/2022] [Indexed: 12/30/2022] Open
Abstract
Parallel evolution of phenotypic traits is regarded as strong evidence for natural selection and has been studied extensively in a variety of taxa. However, we have limited knowledge of whether parallel evolution of host organisms is accompanied by parallel changes of their associated microbial communities (i.e., microbiotas), which are crucial for their hosts' ecology and evolution. Determining the extent of microbiota parallelism in nature can improve our ability to identify the factors that are associated with (putatively adaptive) shifts in microbial communities. While it has been emphasized that (non)parallel evolution is better considered as a quantitative continuum rather than a binary phenomenon, quantitative approaches have rarely been used to study microbiota parallelism. We advocate using multivariate vector analysis (i.e., phenotypic change vector analysis) to quantify direction and magnitude of microbiota changes and discuss the applicability of this approach for studying parallelism, and we compiled an R package for multivariate vector analysis of microbial communities ('multivarvector'). We exemplify its use by reanalyzing gut microbiota data from multiple fish species that exhibit parallel shifts in trophic ecology. We found that multivariate vector analysis results were largely consistent with other statistical methods, parallelism estimates were not affected by the taxonomic level at which the microbiota is studied, and parallelism might be stronger for gut microbiota function compared to taxonomic composition. This approach provides an analytical framework for quantitative comparisons across host lineages, thereby providing the potential to advance our capacity to predict microbiota changes. Hence, we emphasize that the development and application of quantitative measures, such as multivariate vector analysis, should be further explored in microbiota research in order to better understand the role of microbiota dynamics during their hosts' adaptive evolution, particularly in settings of parallel evolution.
Collapse
Affiliation(s)
- Andreas Härer
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Diana J. Rennison
- School of Biological Sciences, Department of Ecology, Behavior, & EvolutionUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
9
|
Mejía O, Sánchez-Quinto A, Gómez-Acata ES, Pérez-Miranda F, Falcón LI. "Unraveling the Gut Microbiome of the Genus Herichthys (Pisces: Cichlidae): What Can We Learn from Museum Specimens?". Curr Microbiol 2022; 79:346. [PMID: 36209241 DOI: 10.1007/s00284-022-03047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/19/2022] [Indexed: 11/30/2022]
Abstract
The use of museum preserved specimens to know microbiome in extinct and threatened species has been explored recently. The fishes of the genus Herichthys are distributed mainly in the Pánuco-Tamesí system in Northeastern Mexico, one of the most polluted basins in the country leading to near half of the species be considering as threatened. In this paper we used the hypervariable V4 region of the 16S rRNA gene from the 11 species of the genus Herichthys obtained from museum collections to evaluate the potential use of fixed preserved vouchers in the knowledge of gut microbiota diversity and the potential role of sympatric and allopatric speciation of the hosts in the gut microbiome evolution. The 100% of the samples were successfully amplified where the number of amplicons ranged from 4500 from a formaldehyde fixed specimen up to 55,000 in ethanol preserved specimens. Differences in gut microbiota were found between sympatric species and among the comparison of some trophic guilds. A non-random association between the gut host and their microbiome was found allow to suggest a potential phylosymbiosis relationship. In conclusion, the most abundant phyla recovered from the gut microbiota in this study were similar to those previously reported in other cichlids supporting the idea that a gut microbial core is conserved in this group of fishes despite millions of years of evolution and leading to support the potential use of museum specimens in microbiome studies.
Collapse
Affiliation(s)
- Omar Mejía
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| | - Andrés Sánchez-Quinto
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| | - Elizabeth S Gómez-Acata
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| | - Fabian Pérez-Miranda
- Laboratorio de Variación Biológica y Evolución, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.,Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, 04510, Mexico City, Mexico.,Instituto de Ecología, Campus Yucatán, Parque Científico y Tecnológico de Yucatán, 97302, Mérida, Mexico
| |
Collapse
|
10
|
Gallet A, Yao EK, Foucault P, Bernard C, Quiblier C, Humbert JF, Coulibaly JK, Troussellier M, Marie B, Duperron S. Fish gut-associated bacterial communities in a tropical lagoon (Aghien lagoon, Ivory Coast). Front Microbiol 2022; 13:963456. [PMID: 36246274 PMCID: PMC9556852 DOI: 10.3389/fmicb.2022.963456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Aghien lagoon (Ivory Coast) is a eutrophic freshwater lagoon that harbors high biomasses of phytoplankton. Despite Increasing interest in fish gut microbiomes diversity and functions, little data is currently available regarding wild species from tropical west African lakes. Here, gut-associated bacterial communities are investigated in four fish species that are consumed by locale populations, namely the Cichlidae Hemichromis fasciatus, Tilapia guineensis and Sarotherodon melanotheron, and the Claroteidae Chrysichthys nigrodigitatus. Species-related differences are identified, that can be attributed to host phylogeny and diet. Important variations throughout the year are observed in T. guineensis and C. nigrodigitatus. This result emphasized the importance of time-series sampling and comparison with environmental variables even in tropical regions, that are not often conducted in wild populations. Effects of environmental factors (anthropogenic or not) on the microbiota and potential outcomes for fish health and populations sustainability need to be further explored. Interestingly, fish appear as major reservoirs of bacterial diversity, suggesting that they could contribute to the overall stability and resilience of bacterial communities present in the Aghien lagoon.
Collapse
Affiliation(s)
- Alison Gallet
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Eric Kouamé Yao
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Institut Pasteur de Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Pierre Foucault
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Cécile Bernard
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Catherine Quiblier
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
- Université Paris Cité, UFR Sciences du Vivant, Paris, France
| | | | | | - Marc Troussellier
- MARBEC, Centre National de la Recherche Scientifique, Université Montpellier, IFREMER, IRD, Montpellier, France
| | - Benjamin Marie
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| | - Sébastien Duperron
- UMR 7245 Molécules de Communication et Adaptation des Micro-Organismes, Muséum National d’Histoire Naturelle, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
11
|
Zhou S, Rajput AP, Mao T, Liu Y, Ellepola G, Herath J, Yang J, Meegaskumbura M. Adapting to Novel Environments Together: Evolutionary and Ecological Correlates of the Bacterial Microbiome of the World's Largest Cavefish Diversification (Cyprinidae, Sinocyclocheilus). Front Microbiol 2022; 13:823254. [PMID: 35359710 PMCID: PMC8964274 DOI: 10.3389/fmicb.2022.823254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
The symbiosis between a host and its microbiome is essential for host fitness, and this association is a consequence of the host’s physiology and habitat. Sinocyclocheilus, the largest cavefish diversification of the world, an emerging multi-species model system for evolutionary novelty, provides an excellent opportunity for examining correlates of host evolutionary history, habitat, and gut-microbial community diversity. From the diversification-scale patterns of habitat occupation, major phylogenetic clades (A–D), geographic distribution, and knowledge from captive-maintained Sinocyclocheilus populations, we hypothesize habitat to be the major determinant of microbiome diversity, with phylogeny playing a lesser role. For this, we subject environmental water samples and fecal samples (representative of gut-microbiome) from 24 Sinocyclocheilus species, both from the wild and after being in captivity for 6 months, to bacterial 16S rRNA gene profiling using Illumina sequencing. We see significant differences in the gut microbiota structure of Sinocyclocheilus, reflective of the three habitat types; gut microbiomes too, were influenced by host-related factors. There is no significant association between the gut microbiomes and host phylogeny. However, there is some microbiome related structure at the clade level, with the most geographically distant clades (A and D) being the most distinct, and the two overlapping clades (B and C) showing similarities. Microbes inhabiting water were not a cause for significant differences in fish-gut microbiota, but water quality parameters were. Transferring from wild to captivity, the fish microbiomes changed significantly and became homogenized, signifying plastic changes and highlighting the importance of environmental factors (habitat) in microbiome community assembly. The core microbiome of this group, at higher taxonomic scale, resembled that of other teleost fishes. Our results suggest that divergent natural environments giving rise to evolutionary novelties underlying host adaptations, also includes the microbiome of these fishes.
Collapse
Affiliation(s)
- Shipeng Zhou
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Amrapali P Rajput
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Tingru Mao
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Yewei Liu
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Gajaba Ellepola
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jayampathi Herath
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jian Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Madhava Meegaskumbura
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|