1
|
Farag MA, Baky MH, Kühnhold H, Kriege EA, Kunzmann A, Alseekh S, Al-Hammady MA, Ezz S, Fernie AR, Westphal H, Stuhr M. Effects of thermal and UV stress on the polar and non-polar metabolome of photosymbiotic jellyfish and sea anemones. MARINE POLLUTION BULLETIN 2024; 208:116983. [PMID: 39357368 DOI: 10.1016/j.marpolbul.2024.116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
Recently, the impacts of climate change, notably ocean warming and solar ultraviolet radiation, have led to significant stress and mortality in cnidarians. The objective of this study is to decode the metabolic responses of sea anemones Entacmaea quadricolor and upside-down jellyfish Cassiopea andromeda upon exposure to thermal and ultraviolet stress. Gas chromatography-mass spectrometry and ultraperformance liquid chromatography coupled with high-resolution mass spectrometry targeting polar and non-polar metabolites were applied. In total, 72 polar and 242 lipophilic metabolites were detected in jellyfish and sea anemones, respectively. Amino acids are the major metabolite class in jellyfish, and triacylglycerides are the predominant lipids in jellyfish and anemones. Exposure to stressors led to metabolic alterations, marked by elevated amino acids in jellyfish and increased amino acids and sugar alcohols in sea anemones at 34 °C and after four days of ultraviolet radiation. Non-polar metabolome analysis indicated distinct responses to ultraviolet radiation and thermal stress in both species.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Kasr El Aini St., P.B. 11562, Egypt.
| | - Mostafa H Baky
- Pharmacognosy Department, College of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Holger Kühnhold
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Elisa A Kriege
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | | | - Sara Ezz
- Pharmacuetical Biology Department, German University in Cairo, GUC, New Cairo, Egypt
| | | | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Department of Geosciences, University of Bremen, 28359 Bremen, Germany
| | - Marleen Stuhr
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany
| |
Collapse
|
2
|
Nagata RM, D'Ambra I, Lauritano C, von Montfort GM, Djeghri N, Jordano MA, Colin SP, Costello JH, Leoni V. Physiology and functional biology of Rhizostomeae jellyfish. ADVANCES IN MARINE BIOLOGY 2024; 98:255-360. [PMID: 39547751 DOI: 10.1016/bs.amb.2024.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Rhizostomeae species attract our attention because of their distinctive body shape, their large size and because of blooms of some species in coastal areas around the world. The impacts of these blooms on human activities, and the interest in consumable species and those of biotechnological value have led to a significant expansion of research into the physiology and functional biology of Rhizostomeae jellyfish over the last years. This review brings together information generated over these last decades on rhizostome body composition, locomotion, toxins, nutrition, respiration, growth, among other functional parameters. Rhizostomes have more than double the carbon content per unit of biomass than jellyfish of Semaeostomeae. They swim about twice as fast, and consume more oxygen than other scyphozoans of the same size. Rhizostomes also have faster initial growth in laboratory and the highest body growth rates measured in nature, when compared to other medusae groups. Parameters such as body composition, nutrition and excretion are highly influenced by the presence of symbiotic zooxanthellae in species of the Kolpophorae suborder. These physiological and functional characteristics may reveal a wide range of adaptive responses, but our conclusions are still based on studies of a limited number of species. Available data indicates that Rhizosotomeae jellyfish have a higher energy demand and higher body productivity when compared to other jellyfish groups. The information gathered here can help ecologists better understand and make more assertive predictions on the role of these jellyfish in their ecosystems.
Collapse
Affiliation(s)
- Renato M Nagata
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanografia Biológica (PPGOB), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil.
| | - Isabella D'Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy; National Center for Future Biodiversity (NFBC), Palermo, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Guilherme M von Montfort
- Laboratório de Zooplâncton, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil; Programa de Pós-graduação em Oceanografia Biológica (PPGOB), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Mayara A Jordano
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sean P Colin
- Marine Biology and Environmental Science, Roger Williams University, Bristol, RI, United States; Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - John H Costello
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA, United States; Biology Department, Providence College, Providence, RI, United States
| | - Valentina Leoni
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
3
|
Holst S, Tiseo GR, Djeghri N, Sötje I. Approaches and findings in histological and micromorphological research on Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:99-192. [PMID: 39547756 DOI: 10.1016/bs.amb.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The substantial development of microscopic techniques and histological examination methods during the past five decades allowed for many new insights into the histology and microanatomy of Rhizostomeae. The present review focuses on new findings about histologically important structures: nerves, senses, muscles, gonads, zooxanthellae and nematocysts. Different ontogenetic stages of rhizostome species were included in the literature research, supplemented with the authors' unpublished data and figures. The overview of the research results reveals that the application of chemo- and immunohistochemical techniques have provided deeper insights into neuronal and sensory structures and their interconnections. Modern microscopic methods led to new findings on the histological gonadal organization and details of the processes of gametogenesis, fertilization, cleavage, gastrulation, and brooding. Advanced optical methods also allowed for a better understanding of Rhizostomeae-zooxanthellae associations and the morphology and function of nematocysts. Improvements in molecular biology allowed for more precise identification of zooxanthellae associated with rhizostome species. Although there has been significant progress in all of the research subjects covered here, we identify several knowledge gaps and conclude with some recommendations for future research.
Collapse
Affiliation(s)
- Sabine Holst
- Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB), Hamburg, Germany.
| | - Gisele R Tiseo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Nicolas Djeghri
- The Marine Biological Association, Continuous Plankton Recorder Survey, Plymouth, United Kingdom; University of Brest (UBO), Institut Universitaire Européen de la Mer (IUEM), Laboratoire des sciences de l'environnement marin (LEMAR, UMR 6539), Plouzané, France
| | - Ilka Sötje
- University of Hamburg, Institute for Cell and Systems Biology of Animals (IZS), Hamburg, Germany
| |
Collapse
|
4
|
Emery MA, Beavers KM, Van Buren EW, Batiste R, Dimos B, Pellegrino MW, Mydlarz LD. Trade-off between photosymbiosis and innate immunity influences cnidarian's response to pathogenic bacteria. Proc Biol Sci 2024; 291:20240428. [PMID: 39353557 PMCID: PMC11444771 DOI: 10.1098/rspb.2024.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Mutualistic relationships with photosynthetic organisms are common in cnidarians, which form an intracellular symbiosis with dinoflagellates in the family Symbiodiniaceae. The establishment and maintenance of these symbionts are associated with the suppression of key host immune factors. Because of this, there are potential trade-offs between the nutrition that cnidarian hosts gain from their symbionts and their ability to successfully defend themselves from pathogens. To investigate these potential trade-offs, we utilized the facultatively symbiotic polyps of the upside-down jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower probability of survival following S. marcescens exposure. Gene expression analyses 24 hours following pathogen exposure indicate that symbiotic animals mounted a more damaging immune response, with higher levels of inflammation and oxidative stress likely resulting in more severe disruptions to cellular homeostasis. Underlying this more damaging immune response may be differences in constitutive and pathogen-induced expression of immune transcription factors between aposymbiotic and symbiotic polyps rather than broadscale immune suppression during symbiosis. Our findings indicate that in facultatively symbiotic polyps, hosting symbionts limits C. xamachana's ability to survive pathogen exposure, indicating a trade-off between symbiosis and immunity that has potential implications for coral disease research.
Collapse
Affiliation(s)
- Madison A. Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824, USA
| | - Kelsey M. Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX78758, USA
| | - Emily W. Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Renee Batiste
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Bradford Dimos
- Department of Animal Sciences, Washington State University, Pullman, WA99163, USA
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Laura D. Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| |
Collapse
|
5
|
Thibault D, Kuplik Z, Prieto L, Enrique-Navarro A, Brown M, Uye S, Doyle T, Pitt K, Fitt W, Gibbons M. Ecology of Rhizostomeae. ADVANCES IN MARINE BIOLOGY 2024; 98:397-509. [PMID: 39547753 DOI: 10.1016/bs.amb.2024.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Max Egon Thiel's chapter on the ecology of rhizostomes in his review up to 1970 covered a bewildering variety of topics, many of which are the focus of other chapters in this volume: their interactions with humans; their associations with other organisms; their venoms. Although he also discussed their habitats and habits, the effects of environmental conditions on distribution, and patterns in seasonality, he paid scant attention to blooms, he did not write about their role in the wider ecosystem, and he ignored alien introductions. It is clearly impossible to comprehensively update Thiel's review in a similar vein - we don't have the space - and so we have decided to focus our efforts here on either those topics that particularly fascinated him (seasonality), or those that he did not write about (alien introductions, their role in the ecosystem). Our narrative is based on case studies of well known taxa, from which we attempt to draw patterns of commonality, where appropriate. We conclude our account with a discussion of rhizostomes as Discomedusae, and whether we should be considering them separately from semaeostomes in terms of ecology.
Collapse
Affiliation(s)
- Delphine Thibault
- Aix Marseille University, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Zafrir Kuplik
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, Israel
| | - Laura Prieto
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Angelica Enrique-Navarro
- Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN), Consejo Superior de Investigaciones Científicas (CSIC), Puerto Real, Cádiz, Spain
| | - Michael Brown
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, Republic of South Africa
| | - Shin Uye
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Tom Doyle
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Science Foundation Ireland Research Centre for Energy, Climate and Marine, Environmental Research Centre, University College Cork, Cork, Ireland
| | - Kylie Pitt
- School of Environment and Science, Coastal and Marine Research Centre, Australian Rivers Institute, Griffith University, Australia
| | - William Fitt
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| | - Mark Gibbons
- Department of Biodiversity and Conservation Biology, University of the Western Cape, Bellville, Republic of South Africa.
| |
Collapse
|
6
|
MacVittie S, Doroodian S, Alberto A, Sogin M. Microbiome depletion and recovery in the sea anemone, Exaiptasia diaphana, following antibiotic exposure. mSystems 2024; 9:e0134223. [PMID: 38757963 PMCID: PMC11237641 DOI: 10.1128/msystems.01342-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Microbial species that comprise host-associated microbiomes play an essential role in maintaining and mediating the health of plants and animals. While defining the role of individual or even complex communities is important toward quantifying the effect of the microbiome on host health, it is often challenging to develop causal studies that link microbial populations to changes in host fitness. Here, we investigated the impacts of reduced microbial load following antibiotic exposure on the fitness of the anemone, Exaiptasia diaphana and subsequent recovery of the host's microbiome. Anemones were exposed to two different types of antibiotic solutions for 3 weeks and subsequently held in sterilized seawater for a 3-week recovery period. Our results revealed that both antibiotic treatments reduced the overall microbial load during and up to 1 week post-treatment. The observed reduction in microbial load was coupled with reduced anemone biomass, halted asexual reproduction rates, and for one of the antibiotic treatments, the partial removal of the anemone's algal symbiont. Finally, our amplicon sequencing results of the 16S rRNA gene revealed that anemone bacterial composition only shifted in treated individuals during the recovery phase of the experiment, where we also observed a significant reduction in the overall diversity of the microbial community. Our work implies that the E. diaphana's microbiome contributes to host fitness and that the recovery of the host's microbiome following disturbance with antibiotics leads to a reduced, but stable microbial state.IMPORTANCEExaiptasia diaphana is an emerging model used to define the cellular and molecular mechanisms of coral-algal symbioses. E. diaphana also houses a diverse microbiome, consisting of hundreds of microbial partners with undefined function. Here, we applied antibiotics to quantify the impact of microbiome removal on host fitness as well as define trajectories in microbiome recovery following disturbance. We showed that reduction of the microbiome leads to negative impacts on host fitness, and that the microbiome does not recover to its original composition while held under aseptic conditions. Rather the microbiome becomes less diverse, but more consistent across individuals. Our work is important because it suggests that anemone microbiomes play a role in maintaining host fitness, that they are susceptible to disturbance events, and that it is possible to generate gnotobiotic individuals that can be leveraged in microbiome manipulation studies to investigate the role of individual species on host health.
Collapse
Affiliation(s)
- Sophie MacVittie
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Saam Doroodian
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Aaron Alberto
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| | - Maggie Sogin
- Department of Molecular Cell Biology, University of California, Merced, California, USA
| |
Collapse
|
7
|
Nanes Sarfati D, Xue Y, Song ES, Byrne A, Le D, Darmanis S, Quake SR, Burlacot A, Sikes J, Wang B. Coordinated wound responses in a regenerative animal-algal holobiont. Nat Commun 2024; 15:4032. [PMID: 38740753 DOI: 10.1038/s41467-024-48366-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
Animal regeneration involves coordinated responses across cell types throughout the animal body. In endosymbiotic animals, whether and how symbionts react to host injury and how cellular responses are integrated across species remain unexplored. Here, we study the acoel Convolutriloba longifissura, which hosts symbiotic Tetraselmis sp. green algae and can regenerate entire bodies from tissue fragments. We show that animal injury causes a decline in the photosynthetic efficiency of the symbiotic algae, alongside two distinct, sequential waves of transcriptional responses in acoel and algal cells. The initial algal response is characterized by the upregulation of a cohort of photosynthesis-related genes, though photosynthesis is not necessary for regeneration. A conserved animal transcription factor, runt, is induced after injury and required for acoel regeneration. Knockdown of Cl-runt dampens transcriptional responses in both species and further reduces algal photosynthetic efficiency post-injury. Our results suggest that the holobiont functions as an integrated unit of biological organization by coordinating molecular networks across species through the runt-dependent animal regeneration program.
Collapse
Affiliation(s)
| | - Yuan Xue
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Eun Sun Song
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Daniel Le
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | | | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Adrien Burlacot
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - James Sikes
- Department of Biology, University of San Francisco, San Francisco, CA, USA.
| | - Bo Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Adomako MO, Wu J, Lu Y, Adu D, Seshie VI, Yu FH. Potential synergy of microplastics and nitrogen enrichment on plant holobionts in wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170160. [PMID: 38244627 DOI: 10.1016/j.scitotenv.2024.170160] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
Wetland ecosystems are global hotspots for environmental contaminants, including microplastics (MPs) and nutrients such as nitrogen (N) and phosphorus (P). While MP and nutrient effects on host plants and their associated microbial communities at the individual level have been studied, their synergistic effects on a plant holobiont (i.e., a plant host plus its microbiota, such as bacteria and fungi) in wetland ecosystems are nearly unknown. As an ecological entity, plant holobionts play pivotal roles in biological nitrogen fixation, promote plant resilience and defense chemistry against pathogens, and enhance biogeochemical processes. We summarize evidence based on recent literature to elaborate on the potential synergy of MPs and nutrient enrichment on plant holobionts in wetland ecosystems. We provide a conceptual framework to explain the interplay of MPs, nutrients, and plant holobionts and discuss major pathways of MPs and nutrients into the wetland milieu. Moreover, we highlight the ecological consequences of loss of plant holobionts in wetland ecosystems and conclude with recommendations for pending questions that warrant urgent research. We found that nutrient enrichment promotes the recruitment of MPs-degraded microorganisms and accelerates microbially mediated degradation of MPs, modifying their distribution and toxicity impacts on plant holobionts in wetland ecosystems. Moreover, a loss of wetland plant holobionts via long-term MP-nutrient interactions may likely exacerbate the disruption of wetland ecosystems' capacity to offer nature-based solutions for climate change mitigation through soil organic C sequestration. In conclusion, MP and nutrient enrichment interactions represent a severe ecological risk that can disorganize plant holobionts and their taxonomic roles, leading to dysbiosis (i.e., the disintegration of a stable plant microbiome) and diminishing wetland ecosystems' integrity and multifunctionality.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Jing Wu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China
| | - Ying Lu
- School of Life Science, Taizhou University, Taizhou 318000, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, Zhejiang, China; School of Life Science, Taizhou University, Taizhou 318000, China.
| |
Collapse
|
9
|
Kou L, Huang T, Zhang H, Li K, Hua F, Huang C, Liu X, Si F. Water-lifting and aeration system improves water quality of drinking water reservoirs: Biological mechanism and field application. J Environ Sci (China) 2023; 129:174-188. [PMID: 36804234 DOI: 10.1016/j.jes.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/18/2023]
Abstract
Reservoirs have been served as the major source of drinking water for dozens of years. The water quality safety of large and medium reservoirs increasingly becomes the focus of public concern. Field test has proved that water-lifting and aeration system (WLAS) is a piece of effective equipment for in situ control and improvement of water quality. However, its intrinsic bioremediation mechanism, especially for nitrogen removal, still lacks in-depth investigation. Hence, the dynamic changes in water quality parameters, carbon source metabolism, species compositions and co-occurrence patterns of microbial communities were systematically studied in Jinpen Reservoir within a whole WLAS running cycle. The WLAS operation could efficiently reduce organic carbon (19.77%), nitrogen (21.55%) and phosphorus (65.60%), respectively. Biolog analysis revealed that the microbial metabolic capacities were enhanced via WLAS operation, especially in bottom water. High-throughput sequencing demonstrated that WLAS operation altered the diversity and distributions of microbial communities in the source water. The most dominant genus accountable for aerobic denitrification was identified as Dechloromonas. Furthermore, network analysis revealed that microorganisms interacted more closely through WLAS operation. Oxidation-reduction potential (ORP) and total nitrogen (TN) were regarded as the two main physicochemical parameters influencing microbial community structures, as confirmed by redundancy analysis (RDA) and Mantel test. Overall, the results will provide a scientific basis and an effective way for strengthening the in-situ bioremediation of micro-polluted source water.
Collapse
Affiliation(s)
- Liqing Kou
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China.
| | - Haihan Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Kai Li
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fengyao Hua
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Cheng Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Xiang Liu
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| | - Fan Si
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China; Collaborative Innovation Center of Water Pollution Control and Water Quality Security Assurance of Shaanxi Province, Xi'an 710055, China
| |
Collapse
|
10
|
Muffett K, Miglietta MP. Demystifying Cassiopea species identity in the Florida Keys: Cassiopea xamachana and Cassiopea andromeda coexist in shallow waters. PLoS One 2023; 18:e0283441. [PMID: 36989331 PMCID: PMC10058153 DOI: 10.1371/journal.pone.0283441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/09/2023] [Indexed: 03/30/2023] Open
Abstract
The phylogeny of the Upside-Down Jellyfish (Cassiopea spp.) has been revised multiple times in its history. This is especially true in the Florida Keys, where much of the Cassiopea stock for research and aquarium trade in the United States are collected. In August 2021, we collected 55 Cassiopea medusae at eight shallow water sites throughout the Florida Keys and sequenced COI, 16S, and 28S genes. Mitochondrial genes demonstrate that the shallow waters in Florida are inhabited by both Cassiopea xamachana and a non-native Cassiopea andromeda lineage, identified in multispecies assemblages at least thrice. While C. xamachana were present at all sites, the C. andromeda-mitotype individuals were present at only a minority of sites. While we cannot confirm hybridization or lack thereof between the C. xamanchana and C. andromeda lineages, these previously unknown multispecies assemblages are a likely root cause for the confusing and disputed COI-based species identities of Cassiopea in the Florida Keys. This also serves as a cautionary note to all Cassiopea researchers to barcode their individuals regardless of the location in which they were collected.
Collapse
Affiliation(s)
- Kaden Muffett
- Texas A&M University at Galveston, Galveston, Texas, United States of America
| | - Maria Pia Miglietta
- Texas A&M University at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
11
|
Puntin G, Sweet M, Fraune S, Medina M, Sharp K, Weis VM, Ziegler M. Harnessing the Power of Model Organisms To Unravel Microbial Functions in the Coral Holobiont. Microbiol Mol Biol Rev 2022; 86:e0005322. [PMID: 36287022 PMCID: PMC9769930 DOI: 10.1128/mmbr.00053-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stony corals build the framework of coral reefs, ecosystems of immense ecological and economic importance. The existence of these ecosystems is threatened by climate change and other anthropogenic stressors that manifest in microbial dysbiosis such as coral bleaching and disease, often leading to coral mortality. Despite a significant amount of research, the mechanisms ultimately underlying these destructive phenomena, and what could prevent or mitigate them, remain to be resolved. This is mostly due to practical challenges in experimentation on corals and the highly complex nature of the coral holobiont that also includes bacteria, archaea, protists, and viruses. While the overall importance of these partners is well recognized, their specific contributions to holobiont functioning and their interspecific dynamics remain largely unexplored. Here, we review the potential of adopting model organisms as more tractable systems to address these knowledge gaps. We draw on parallels from the broader biological and biomedical fields to guide the establishment, implementation, and integration of new and emerging model organisms with the aim of addressing the specific needs of coral research. We evaluate the cnidarian models Hydra, Aiptasia, Cassiopea, and Astrangia poculata; review the fast-evolving field of coral tissue and cell cultures; and propose a framework for the establishment of "true" tropical reef-building coral models. Based on this assessment, we also suggest future research to address key aspects limiting our ability to understand and hence improve the response of reef-building corals to future ocean conditions.
Collapse
Affiliation(s)
- Giulia Puntin
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Sebastian Fraune
- Institute for Zoology and Organismic Interactions, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Koty Sharp
- Department of Biology, Marine Biology, and Environmental Science, Roger Williams University, Bristol, Rhode Island, USA
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Marine Holobiomics Lab, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
12
|
Coral-microbe interactions: their importance to reef function and survival. Emerg Top Life Sci 2022; 6:33-44. [PMID: 35119475 DOI: 10.1042/etls20210229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
Many different microorganisms associate with the coral host in a single entity known as the holobiont, and their interactions with the host contribute to coral health, thereby making them a fundamental part of reef function, survival, and conservation. As corals continue to be susceptible to bleaching due to environmental stress, coral-associated bacteria may have a potential role in alleviating bleaching. This review provides a synthesis of the various roles bacteria have in coral physiology and development, and explores the possibility that changes in the microbiome with environmental stress could have major implications in how corals acclimatize and survive. Recent studies on the interactions between the coral's algal and bacterial symbionts elucidate how bacteria may stabilize algal health and, therefore, mitigate bleaching. A summary of the innovative tools and experiments to examine host-microbe interactions in other cnidarians (a temperate coral, a jellyfish, two anemones, and a freshwater hydroid) is offered in this review to delineate our current knowledge of mechanisms underlying microbial establishment and maintenance in the animal host. A better understanding of these mechanisms may enhance the success of maintaining probiotics long-term in corals as a conservation strategy.
Collapse
|