1
|
Wang Y, He F, Liu B, Wu X, Han Z, Wang X, Liao Y, Duan J, Ren W. Interaction between intestinal mycobiota and microbiota shapes lung inflammation. IMETA 2024; 3:e241. [PMID: 39429884 PMCID: PMC11487552 DOI: 10.1002/imt2.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/10/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Gut microbiota is an intricate microbial community containing bacteria, fungi, viruses, archaea, and protozoa, and each of them contributes to diverse aspects of host health. Nevertheless, the influence of interaction among gut microbiota on host health remains uncovered. Here, we showed that the interaction between intestinal fungi and bacteria shaped lung inflammation during infection. Specifically, antifungal drug-induced dysbiosis of gut mycobiota enhanced lung inflammation during infection. Dysbiosis of gut mycobiota led to gut Escherichia coli (E. coli) overgrowth and translocation to the lung during infection, which induced lung accumulation of the CD45+F4/80+Ly6G-Ly6C-CD11b+CD11c+ macrophages. Clearance of macrophages or deletion of TLR4 (Toll-like receptor 4, recognition of LPS) rather than Dectin-1 (recognition of beta-1,3/1,6 glucans on fungi) blocked the antifungal drug-induced aggravation of lung inflammation during infection. These findings suggest that the interaction between intestinal mycobiota and commensal bacteria affects host health through the gut-lung axis, offering a potential therapeutic target for ameliorating lung inflammation during infection.
Collapse
Affiliation(s)
- Youxia Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Fang He
- College of Veterinary MedicineSouthwest UniversityChongqingChina
| | - Bingnan Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoyan Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Ziyi Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Xuefei Wang
- School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Yuexia Liao
- School of Nursing & School of Public HealthYangzhou UniversityYangzhouChina
| | - Jielin Duan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Wenkai Ren
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Yao R, Li F, Dong X, Xu Y, Hu R, Wang L, Cai K, Liu X, Ni W, Zhou P, Hu S. Microbial Community Structure and Metabolism of Xinjiang Fine-Wool Sheep based on High-Throughput Sequencing Technology. Curr Microbiol 2024; 81:324. [PMID: 39180522 DOI: 10.1007/s00284-024-03837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 08/26/2024]
Abstract
It turns out that the more than trillion microorganisms living in the host's digestive tract are crucial for maintaining nutrient intake, environmental suitability, and physiological mechanism. Xinjiang fine-wool sheep is an exclusive breed for wool in China, which has excellent stress tolerance. In this study, we collected feces and blood samples of 20 Xinjiang fine-wool sheep under the same genetic characteristics, the Fine-Wool Sheep (FWS) group and the Control Fine-Wool Sheep (CFWS) group were set up according to the differs in phenotypic characteristics of their wool. By 16S rRNA amplicon sequence, ITS1 region amplicons and Targeted Metabolomics, we analyzed the microbial community structure of fecal microorganisms and Short Chain Fatty Acids (SCFAs) in serum of the Xinjiang fine-wool sheep. Fecal microbial sequencing showed that the bacterial composition and structure were similar between the two groups, whereas there were significant differences in the composition and structure of the fungal community. It was also found that the abundant of Neocallimastigomycota in the intestinal fungal community of FWS was higher. In addition, the results of the serum SCFAs content analysis showed that butyric acid was significantly differences than those two groups. Correlation analysis between SCFAs and bacteria found that butyric acid metabolism had positively correlated (P < 0.05) with Ruminococcus and UCG-005. Overall, our data provide more supplement about the gut microbes community composition and structure of the Xinjiang fine-wool sheep. These results might be useful for improving gut health of sheep and taking nutritional control measure to improve production traits of animals in future.
Collapse
Affiliation(s)
- Rui Yao
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, Xinjiang, China
| | - Fulin Li
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Xuyang Dong
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Yueren Xu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Ruirui Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Limin Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agriculture University, Urumqi, 830052, Xinjiang, China
| | - Xiaogang Liu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China
| | - Wei Ni
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| | - Ping Zhou
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, Xinjiang, China.
| | - Shengwei Hu
- College of Life Sciences, Shihezi University, Shihezi, 832003, Xinjiang, China.
| |
Collapse
|
3
|
Wei G. Insights into gut fungi in pigs: A comprehensive review. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39154229 DOI: 10.1111/jpn.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Fungi in the gut microbiota of mammals play a crucial role in host physiological regulation, including intestinal homeostasis and host immune regulation. However, our understanding of gut fungi in mammals remains limited, especially in economically valuable animals, such as pigs. Therefore, this review first describes the classification and characterisation of fungi, provides insights into the methods used to study gut fungi, and summarises the recent progress on pig gut fungi. Additionally, it discusses the challenges in the study of pig gut fungi and highlights potential perspectives. The aim of this review is to serve as a valuable reference for advancing our knowledge of gut fungi in animals.
Collapse
Affiliation(s)
- Guanyue Wei
- National Key Laboratory of Pig Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Glendinning L, Jia X, Kebede A, Oyola SO, Park JE, Park W, Assiri A, Holm JB, Kristiansen K, Han J, Hanotte O. Altitude-dependent agro-ecologies impact the microbiome diversity of scavenging indigenous chicken in Ethiopia. MICROBIOME 2024; 12:138. [PMID: 39044244 PMCID: PMC11267795 DOI: 10.1186/s40168-024-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/28/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Scavenging indigenous village chickens play a vital role in sub-Saharan Africa, sustaining the livelihood of millions of farmers. These chickens are exposed to vastly different environments and feeds compared to commercial chickens. In this study, we analysed the caecal microbiota of 243 Ethiopian village chickens living in different altitude-dependent agro-ecologies. RESULTS Differences in bacterial diversity were significantly correlated with differences in specific climate factors, topsoil characteristics, and supplemental diets provided by farmers. Microbiota clustered into three enterotypes, with one particularly enriched at high altitudes. We assembled 9977 taxonomically and functionally diverse metagenome-assembled genomes. The vast majority of these were not found in a dataset of previously published chicken microbes or in the Genome Taxonomy Database. CONCLUSIONS The wide functional and taxonomic diversity of these microbes highlights their importance in the local adaptation of indigenous poultry, and the significant impacts of environmental factors on the microbiota argue for further discoveries in other agro-ecologies. Video Abstract.
Collapse
Affiliation(s)
- Laura Glendinning
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, UK.
| | - Xinzheng Jia
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, People's Republic of China.
| | - Adebabay Kebede
- CTLGH - LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
- Amhara Regional Agricultural Research Institute, Bahir Dar, Ethiopia
| | - Samuel O Oyola
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jong-Eun Park
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 63243, Jeju, Republic of Korea
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 55365, Wanju, Republic of Korea
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, 55365, Wanju, Republic of Korea
| | - Abdulwahab Assiri
- School of Life Sciences, the University of Nottingham, University Park, Nottingham, UK
- Department of Animal and Fisheries Production, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Jacob Bak Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Clinical Microbiomics, Copenhagen, Denmark
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao, People's Republic of China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, People's Republic of China
| | - Olivier Hanotte
- CTLGH - LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia.
- School of Life Sciences, the University of Nottingham, University Park, Nottingham, UK.
| |
Collapse
|
5
|
Lozano J, Cunha E, Almeida C, Nunes M, Dias R, Vicente E, Sebastião D, Henriques S, Madeira de Carvalho L, Paz-Silva A, Oliveira M. Analyzing the safety of the parasiticide fungus Mucor circinelloides: first insights on its virulence profile and interactions with the avian gut microbial community. Microbiol Spectr 2024; 12:e0407823. [PMID: 38534121 PMCID: PMC11064519 DOI: 10.1128/spectrum.04078-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Parasiticide fungi are considered an accurate, sustainable, and safe solution for the biocontrol of animal gastrointestinal (GI) parasites. This research provides an initial characterization of the virulence of the native parasiticide fungus Mucor circinelloides (FMV-FR1) and an assessment of its impact on birds' gut microbes. The genome of this fungus was sequenced to identify the genes coding for virulence factors. Also, this fungus was checked for the phenotypic expression of proteinase, lecithinase, DNase, gelatinase, hemolysin, and biofilm production. Finally, an in vivo trial was developed based on feeding M. circinelloides spores to laying hens and peacocks three times a week. Bird feces were collected for 3 months, with total genomic DNA being extracted and subjected to long-read 16S and 25S-28S sequencing. Genes coding for an iron permease (FTR1), iron receptors (FOB1 and FOB2), ADP-ribosylation factors (ARFs) (ARF2 and ARF6), and a GTPase (CDC42) were identified in this M. circinelloides genome. Also, this fungus was positive only for lecithinase activity. The field trial revealed a fecal microbiome dominated by Firmicutes and Proteobacteria in laying hens, and Firmicutes and Bacteroidetes in peacocks, whereas the fecal mycobiome of both bird species was mainly composed of Ascomycetes and Basidiomycetes fungi. Bacterial and fungal alpha-diversities did not differ between sampling time points after M. circinelloides administrations (P = 0.62 and P = 0.15, respectively). Although findings from this research suggest the lack of virulence of this M. circinelloides parasiticide isolate, more complementary in vitro and in vivo research is needed to conclude about the safety of its administration to birds, aiming at controlling their GI parasites.IMPORTANCEA previous study revealed that the native Mucor circinelloides isolate (FMV-FR1) can develop parasiticide activity toward coccidia oocysts, one of the most pathogenic GI parasites in birds. However, ensuring its safety for birds is of utmost importance, namely by studying its virulence profile and potential effect on commensal gut microbes. This initial study revealed that although this M. circinelloides isolate had genes coding for four types of virulence factors-iron permease, iron receptors, ADP-ribosylation factors, and GTPase-and only expressed phenotypically the enzyme lecithinase, the administration of its spores to laying hens and peacocks did not interfere with the abundances and diversities of their gut commensal bacteria and fungi. Although overall results suggest the lack of virulence of this M. circinelloides isolate, more complementary research is needed to conclude about the safety of its administration to birds in the scope of parasite biocontrol programs.
Collapse
Affiliation(s)
- João Lozano
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Eva Cunha
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Cristina Almeida
- Exoclinic – Clínica Veterinária de Aves e Exóticos, Miraflores, Portugal
| | - Mónica Nunes
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Eduardo Vicente
- Castelo de São Jorge, EGEAC – Empresa de Gestão de Equipamentos e Animação Cultural, Lisbon, Portugal
| | - Daniela Sebastião
- Castelo de São Jorge, EGEAC – Empresa de Gestão de Equipamentos e Animação Cultural, Lisbon, Portugal
| | | | - Luís Madeira de Carvalho
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Adolfo Paz-Silva
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Manuela Oliveira
- CIISA – Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
- CHANGE – Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
6
|
Harlow K, Summers KL, Oliver WT, Wells JE, Crouse M, Neville BW, Rempel LA, Rivera I, Ramsay TG, Davies CP. Weaning transition, but not the administration of probiotic candidate Kazachstania slooffiae, shaped the gastrointestinal bacterial and fungal communities in nursery piglets. Front Vet Sci 2024; 10:1303984. [PMID: 38274656 PMCID: PMC10808496 DOI: 10.3389/fvets.2023.1303984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
As in-feed antibiotics are phased out of swine production, producers are seeking alternatives to facilitate improvements in growth typically seen from this previously common feed additive. Kazachstania slooffiae is a prominent commensal fungus in the swine gut that peaks in relative abundance shortly after weaning and has beneficial interactions with other bacteriome members important for piglet health. In this study, piglets were supplemented with K. slooffiae to characterize responses in piglet health as well as fungal and bacterial components of the microbiome both spatially (along the entire gastrointestinal tract and feces) and temporally (before, during, and after weaning). Litters were assigned to one of four treatments: no K. slooffiae (CONT); one dose of K. slooffiae 7 days before weaning (day 14; PRE); one dose of K. slooffiae at weaning (day 21; POST); or one dose of K. slooffiae 7 days before weaning and one dose at weaning (PREPOST). The bacteriome and mycobiome were analyzed from fecal samples collected from all piglets at day 14, day 21, and day 49, and from organ samples along the gastrointestinal (GI) tract at day 21 and day 49. Blood samples were taken at day 14 and day 49 for cytokine analysis, and fecal samples were assayed for antimicrobial resistance. While some regional shifts were seen in response to K. slooffiae administration in the mycobiome of the GI tract, no remarkable changes in weight gain or health of the animals were observed, and changes were more likely due to sow and the environment. Ultimately, the combined microbiome changed most considerably following the transition from suckling to nursery diets. This work describes the mycobiome along the piglet GI tract through the weaning transition for the first time. Based on these findings, K. slooffiae administered at this concentration may not be an effective tool to hasten colonization of K. slooffiae in the piglet GI tract around the weaning transition nor support piglet growth, microbial gut health, or immunity. However, diet and environment greatly influence microbial community development.
Collapse
Affiliation(s)
- KaLynn Harlow
- Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - William T. Oliver
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - James E. Wells
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Matthew Crouse
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Bryan W. Neville
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Lea A. Rempel
- Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE, United States
| | - Israel Rivera
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Timothy G. Ramsay
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
7
|
Tang X, Zhang L, Ren S, Zhao Y, Zhang Y. Temporal and geographic distribution of gut microbial enterotypes associated with host thermogenesis characteristics in plateau pikas. Microbiol Spectr 2023; 11:e0002023. [PMID: 37815332 PMCID: PMC10715161 DOI: 10.1128/spectrum.00020-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
IMPORTANCE The gut microbiotas of small mammals play an important role in host energy homeostasis. However, it is still unknown whether small mammals with different enterotypes show differences in thermogenesis characteristics. Our study confirmed that plateau pikas with different bacterial enterotypes harbored distinct thermogenesis capabilities and employed various strategies against cold environments. Additionally, we also found that pikas with different fungal enterotypes may display differences in coprophagy.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Shi'en Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
- University of Chinese Academy of Sciences, College of Life Sciences, Beijing, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, China
| |
Collapse
|
8
|
Bloemen B, Gand M, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Development of a portable on-site applicable metagenomic data generation workflow for enhanced pathogen and antimicrobial resistance surveillance. Sci Rep 2023; 13:19656. [PMID: 37952062 PMCID: PMC10640560 DOI: 10.1038/s41598-023-46771-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023] Open
Abstract
Rapid, accurate and comprehensive diagnostics are essential for outbreak prevention and pathogen surveillance. Real-time, on-site metagenomics on miniaturized devices, such as Oxford Nanopore Technologies MinION sequencing, could provide a promising approach. However, current sample preparation protocols often require substantial equipment and dedicated laboratories, limiting their use. In this study, we developed a rapid on-site applicable DNA extraction and library preparation approach for nanopore sequencing, using portable devices. The optimized method consists of a portable mechanical lysis approach followed by magnetic bead-based DNA purification and automated sequencing library preparation, and resulted in a throughput comparable to a current optimal, laboratory-based protocol using enzymatic digestion to lyse cells. By using spike-in reference communities, we compared the on-site method with other workflows, and demonstrated reliable taxonomic profiling, despite method-specific biases. We also demonstrated the added value of long-read sequencing by recovering reads containing full-length antimicrobial resistance genes, and attributing them to a host species based on the additional genomic information they contain. Our method may provide a rapid, widely-applicable approach for microbial detection and surveillance in a variety of on-site settings.
Collapse
Affiliation(s)
- Bram Bloemen
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
| | - Mathieu Gand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Kathleen Marchal
- Department of Information Technology, IDLab, Ghent University, IMEC, 9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
| | - Nancy H C Roosens
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium
| | - Sigrid C J De Keersmaecker
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsman 14, 1050, Brussels, Belgium.
| |
Collapse
|
9
|
Tang X, Zhang L, Ren S, Zhao Y, Liu K, Zhang Y. Stochastic Processes Derive Gut Fungi Community Assembly of Plateau Pikas ( Ochotona curzoniae) along Altitudinal Gradients across Warm and Cold Seasons. J Fungi (Basel) 2023; 9:1032. [PMID: 37888290 PMCID: PMC10607853 DOI: 10.3390/jof9101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Although fungi occupy only a small proportion of the microbial community in the intestinal tract of mammals, they play important roles in host fat accumulation, nutrition metabolism, metabolic health, and immune development. Here, we investigated the dynamics and assembly of gut fungal communities in plateau pikas inhabiting six altitudinal gradients across warm and cold seasons. We found that the relative abundances of Podospora and Sporormiella significantly decreased with altitudinal gradients in the warm season, whereas the relative abundance of Sarocladium significantly increased. Alpha diversity significantly decreased with increasing altitudinal gradient in the warm and cold seasons. Distance-decay analysis showed that fungal community similarities were significantly and negatively correlated with elevation. The co-occurrence network complexity significantly decreased along the altitudinal gradients as the total number of nodes, number of edges, and degree of nodes significantly decreased. Both the null and neutral model analyses showed that stochastic or neutral processes dominated the gut fungal community assembly in both seasons and that ecological drift was the main ecological process explaining the variation in the gut fungal community across different plateau pikas. Homogeneous selection played a weak role in structuring gut fungal community assembly during the warm season. Collectively, these results expand our understanding of the distribution patterns of gut fungal communities and elucidate the mechanisms that maintain fungal diversity in the gut ecosystems of small mammals.
Collapse
Affiliation(s)
- Xianjiang Tang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhi Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| | - Shien Ren
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaqi Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Liu
- Qinghai Provincial Grassland Station, Xining 810008, China
| | - Yanming Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810008, China
| |
Collapse
|
10
|
Gao M, Wang J, Lv Z. Supplementing Genistein for Breeder Hens Alters the Growth Performance and Intestinal Health of Offspring. Life (Basel) 2023; 13:1468. [PMID: 37511844 PMCID: PMC10381885 DOI: 10.3390/life13071468] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Recent research revealed that dietary genistein supplementation for breeder hens can improve the immune function of offspring chicks. However, it remains unknown whether this maternal effect could improve the intestinal health of offspring. This study was conducted to explore the mechanism involved in the maternal effect of genistein on the intestinal mucosa and microbial homeostasis of chicken offspring. A total of 120 Qiling breeder hens were fed a basal diet, a 20 mg/kg genistein-supplemented diet, or a 40 mg/kg genistein-supplemented diet for 4 weeks before collecting their eggs. After hatching, 180 male offspring (60 chickens from each group) were randomly selected and divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the offspring of hens fed a low-dose genistein-supplemented diet (LGE); (3) the offspring of hens fed a high-dose genistein-supplemented diet (HGE). At 17 d, 72 male offspring (48 chickens from CON and 24 chickens from LGE) were divided into three groups: (1) the offspring of hens fed a basal diet (CON); (2) the CON group challenged with LPS (LPS); (3) the LGE group challenged with LPS (LPS + LGE). The results showed that maternal genistein supplementation increased the birth weight and serum level of total protein (TP), followed by improved intestinal villus morphology. Continuously, the maternal effect on the body weight of chicks lasted until 21 d. Additionally, it was observed that maternal genistein supplementation exhibited protective effects against LPS-induced morphological damage and intestinal mucosal barrier dysfunction by upregulating the expression of tight junction proteins, specifically ZO-1, Claudin1, E-cadherin, and Occludin, at 21 d. Using 16S rRNA gene sequencing, we demonstrated that maternal supplementation of genistein has the potential to facilitate the maturation of newly hatched chicken offspring by enhancing the abundance of Escherichia coli. Additionally, maternal genistein supplementation can effectively reduce the abundance of Gammaproteobacteria, thus mitigating the risk of bacterial diversity impairment of LPS. In light of these findings, maternal genistein supplementation holds promise as a potential strategy for ameliorating intestinal mucosal damage and modulating the microbiome in chicken offspring.
Collapse
Affiliation(s)
- Mingkun Gao
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Lozano J, Louro M, Almeida C, Victório AC, Melo P, Rodrigues JP, Oliveira M, Paz-Silva A, Madeira de Carvalho L. Isolation of saprophytic filamentous fungi from avian fecal samples and assessment of its predatory activity on coccidian oocysts. Sci Rep 2023; 13:8965. [PMID: 37268693 DOI: 10.1038/s41598-023-36120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Fungal strains used in the biocontrol of animal gastrointestinal parasites have been mainly isolated from pasture soil, decaying organic matter, and feces from herbivores and carnivores. However, their isolation from birds and assessment of predatory activity against avian GI parasites has been scarce thus far. This research aimed to isolate filamentous fungi from avian fecal samples and evaluate their predatory activity against coccidia. A pool of 58 fecal samples from chickens, laying hens, and peacocks, previously collected between July 2020-April 2021, were used for isolation of filamentous fungi and assessment of their in vitro predatory activity against coccidian oocysts, using Water-Agar medium and coprocultures. The Willis-flotation technique was also performed to obtain concentrated suspensions of oocysts. A total of seven Mucor isolates was obtained, being the only fungal taxa identified, and all presented lytic activity against coccidia. Isolates FR3, QP2 and SJ1 had significant coccidiostatic efficacies (inhibition of sporulation) higher than 70%, while isolates FR1, QP2 and QP1 had coccidicidal efficacies (destruction of the oocysts) of 22%, 14% and 8%, respectively, after 14 days of incubation, being a gradual and time-dependent process. To our knowledge, this is the first report regarding the isolation of native predatory fungi from avian feces and demonstration of their lytic activity against coccidia.
Collapse
Affiliation(s)
- João Lozano
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| | - Mariana Louro
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Cristina Almeida
- Exoclinic - Clínica Veterinária de Aves e Exóticos, Quinta de Santo António, 1495-049, Miraflores, Portugal
| | - Ana Cláudia Victório
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Pedro Melo
- Vetnatura - Serviços Veterinários, Lda., Calçada de Palma de Baixo, 1600-176, Lisbon, Portugal
| | | | - Manuela Oliveira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Adolfo Paz-Silva
- Control of Parasites Research Group (COPAR, GI-2120), Department of Animal Pathology, Faculty of Veterinary, University of Santiago de Compostela, 27142, Lugo, Spain
| | - Luís Madeira de Carvalho
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| |
Collapse
|
12
|
Feng Y, Zhang M, Liu Y, Yang X, Wei F, Jin X, Liu D, Guo Y, Hu Y. Quantitative microbiome profiling reveals the developmental trajectory of the chicken gut microbiota and its connection to host metabolism. IMETA 2023; 2:e105. [PMID: 38868437 PMCID: PMC10989779 DOI: 10.1002/imt2.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/15/2023] [Indexed: 06/14/2024]
Abstract
Revealing the assembly and succession of the chicken gut microbiota is critical for a better understanding of its role in chicken physiology and metabolism. However, few studies have examined dynamic changes of absolute chicken gut microbes using the quantitative microbiome profiling (QMP) method. Here, we revealed the developmental trajectory of the broiler chicken gut bacteriome and mycobiome by combining high-throughput sequencing with a microbial load quantification assay. We showed that chicken gut microbiota abundance and diversity reached a plateau at 7 days posthatch (DPH), forming segment-specific community types after 1 DPH. The bacteriome was more impacted by deterministic processes, and the mycobiome was more affected by stochastic processes. We also observed stage-specific microbes in different gut segments, and three microbial occurrence patterns including "colonization," "disappearance," and "core" were defined. The microbial co-occurrence networks were very different among gut segments, with more positive associations than negative associations. Furthermore, we provided links between the absolute changes in chicken gut microbiota and their serum metabolite variations. Time-course untargeted metabolomics revealed six metabolite clusters with different changing patterns of abundance. The foregut microbiota had more connections with chicken serum metabolites, and the gut microbes were closely related to chicken lipid and amino acid metabolism. The present study provided a full landscape of chicken gut microbiota development in a quantitative manner, and the associations between gut microbes and chicken serum metabolites further highlight the impact of gut microbiota in chicken growth and development.
Collapse
Affiliation(s)
- Yuqing Feng
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Meihong Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xinyue Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Fuxiao Wei
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and TechnologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
13
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
14
|
Lv QB, Meng JX, Ma H, Liu R, Qin Y, Qin YF, Geng HL, Ni HB, Zhang XX. Description of Gut Mycobiota Composition and Diversity of Caprinae Animals. Microbiol Spectr 2023; 11:e0242422. [PMID: 36625628 PMCID: PMC9927506 DOI: 10.1128/spectrum.02424-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The fungal community, also known as mycobiota, plays pivotal roles in host nutrition and metabolism and has potential to cause disease. However, knowledge of the gut fungal structure in Caprinae is quite limited. In this study, the composition and diversity of the gut mycobiota of Caprinae animals from different geographical locations (Anhui, Jilin, Guangxi, Shandong, Shanxi, and Tibet) were comprehensively characterized by analyzing the internal transcribed spacer 2 (ITS-2) sequences of the fungal community. The results showed that Ascomycota and Basidiomycota were the dominant phyla, which, respectively, accounted for 90.86 to 95.27% and 2.58 to 7.62% of sequences in samples from each region. Nonetheless, the structure of the gut mycobiota was largely different in Caprinae animals in the different provinces. Therein, Sporormiaceae and Thelebolaceae were the dominant fungal families in the samples from Tibet, whereas their abundance was generally low in other regions. The intestinal diversity of individuals from Guangxi was higher than that in other regions. In addition, there were 114 differential genera among all regions. Finally, the co-occurrence network revealed 285 significant correlations in cross-family pairs in the guts of Caprinae animals, which contained 149 positive and 136 negative relationships, with 96 bacterial and 86 fungal participants at the family level. This study has improved the understanding of the mycobiota of ruminants and provided support for the improvement in animal health and productivity. IMPORTANCE In this study, we elucidated and analyzed the structure of the gut mycobiota of Caprinae animals from different regions. This study revealed differences in the structure of the gut mycobiota among Caprinae animals from different geographical environments. Based on previous findings, correlations between fungal and bacterial communities were analyzed. This study adds to previous research that has expanded the present understanding of the gut microbiome of Caprinae animals.
Collapse
Affiliation(s)
- Qing-Bo Lv
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ya Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Yi-Feng Qin
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, People’s Republic of China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
- Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural affairs of the People's Republic of China, Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province, People’s Republic of China
| |
Collapse
|
15
|
Yeasts and Yeast-based Products in Poultry Nutrition. J APPL POULTRY RES 2023. [DOI: 10.1016/j.japr.2023.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
|
16
|
Davies CP, Summers KL, Arfken AM, Darwish N, Chaudhari A, Frey JF, Schreier L, Proszkowiec-Weglarz M. Temporal dynamics of the chicken mycobiome. Front Physiol 2022; 13:1057810. [PMID: 36589448 PMCID: PMC9799259 DOI: 10.3389/fphys.2022.1057810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The microbiome is an integral part of chicken health and can affect immunity, nutrient utilization, and performance. The role of bacterial microbiota members in host health is relatively well established, but less attention has been paid to fungal members of the gastrointestinal tract (GIT) community. However, human studies indicate that fungi play a critical role in health. Here, we described fungal communities, or mycobiomes, in both the lumen and mucosa of the chicken ileum and cecum from hatch through 14 days of age. We also assessed the effects of delayed access to feed immediately post-hatch (PH) on mycobiome composition, as PH feed delay is commonly associated with poor health performance. Chicken mycobiomes in each of the populations were distinct and changed over time. All mycobiomes were dominated by Gibberella, but Aspergillus, Cladosporium, Sarocladium, Meyerozyma, and Penicillium were also abundant. Relative abundances of some taxa differed significantly over time. In the cecal and ileal lumens, Penicillium was present in extremely low quantities or absent during days one and two and then increased over time. Meyerozyma and Wickerhamomyces also increased over time in luminal sites. In contrast, several highly abundant unclassified fungi decreased after days one and two, highlighting the need for improved understanding of fungal gut biology. Mycobiomes from chicks fed during the first 2 days PH versus those not fed during the first 2 days did not significantly differ, except during days one and two. Similarities observed among mycobiomes of fed and unfed chicks at later timepoints suggest that delays in PH feeding do not have long lasting effects on mycobiome composition. Together, these results provide a foundation for future mycobiome studies, and suggest that negative health and production impacts of delayed feeding are not likely related to the development of fungal populations in the GIT.
Collapse
Affiliation(s)
- Cary Pirone Davies
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,*Correspondence: Cary Pirone Davies,
| | - Katie Lynn Summers
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Ann M. Arfken
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Oak Ridge Institute for Science and Education, Center for Disease Control, Atlanta, GA, United States
| | - Nadia Darwish
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,University of Arkansas for Medical Sciences, Little Rock, AK, United States
| | - Atul Chaudhari
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Oak Ridge Institute for Science and Education through an interagency Agreement between the U.S., Department of Energy and the USDA, Atlanta, GA, United States,Pharmaceuticals Product Development, Wilmington, NC, United States
| | - Juli Foster Frey
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States,Northeast Area, United States Department of Agriculture, Beltsville, MD, United States
| | - Lori Schreier
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| |
Collapse
|
17
|
Lorenzo-Rebenaque L, Casto-Rebollo C, Diretto G, Frusciante S, Rodríguez JC, Ventero MP, Molina-Pardines C, Vega S, Marin C, Marco-Jiménez F. Examining the effects of Salmonella phage on the caecal microbiota and metabolome features in Salmonella-free broilers. Front Genet 2022; 13:1060713. [PMID: 36437955 PMCID: PMC9691336 DOI: 10.3389/fgene.2022.1060713] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/26/2022] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages selectively infect and kill their target bacterial host, being a promising approach to controlling zoonotic bacteria in poultry production. To ensure confidence in its use, fundamental questions of safety and toxicity monitoring of phage therapy should be raised. Due to its high specificity, a minimal impact on the gut ecology is expected; however, more in-depth research into key parameters that influence the success of phage interventions has been needed to reach a consensus on the impact of bacteriophage therapy in the gut. In this context, this study aimed to investigate the interaction of phages with animals; more specifically, we compared the caecum microbiome and metabolome after a Salmonella phage challenge in Salmonella-free broilers, evaluating the role of the phage administration route. To this end, we employed 45 caecum content samples from a previous study where Salmonella phages were administered via drinking water or feed for 24 h from 4, 5 to 6-weeks-old broilers. High-throughput 16S rRNA gene sequencing showed a high level of similarity (beta diversity) but revealed a significant change in alpha diversity between broilers with Salmonella-phage administered in the drinking water and control. Our results showed that the phages affected only a few genera of the microbiota's structure, regardless of the administration route. Among these, we found a significant increase in Streptococcus and Sellimonas in the drinking water and Lactobacillus, Anaeroplasma and Clostridia_vadinBB60_group in the feed. Nevertheless, the LC-HRMS-based metabolomics analyses revealed that despite few genera were significantly affected, a substantial number of metabolites, especially in the phage administered in the drinking water were significantly altered (64 and 14 in the drinking water and feed groups, respectively). Overall, our study shows that preventive therapy with bacteriophages minimally alters the caecal microbiota but significantly impacts their metabolites, regardless of the route of administration.
Collapse
Affiliation(s)
- Laura Lorenzo-Rebenaque
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Cristina Casto-Rebollo
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Sarah Frusciante
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Biotechnology Laboratory, Centro Ricerche Casaccia, Santa Maria di Galeria, Rome, Italy
| | - Juan Carlos Rodríguez
- Microbiology Department, Balmis General University Hospital, Microbiology Division, Miguel Hernández University, ISABIAL, Alicante, Spain
| | - María-Paz Ventero
- Microbiology Department, Balmis General University Hospital, ISABIAL, Alicante, Spain
| | | | - Santiago Vega
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Valencia, Spain
| | - Francisco Marco-Jiménez
- Institute of Science and Animal Technology, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
18
|
Peng X, Ed-Dra A, Song Y, Elbediwi M, Nambiar RB, Zhou X, Yue M. Lacticaseibacillus rhamnosus alleviates intestinal inflammation and promotes microbiota-mediated protection against Salmonella fatal infections. Front Immunol 2022; 13:973224. [PMID: 36032095 PMCID: PMC9411107 DOI: 10.3389/fimmu.2022.973224] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/21/2022] [Indexed: 01/17/2023] Open
Abstract
The fatal impairment of the intestinal mucosal barrier of chicks caused by Salmonella significantly resulting economic losses in the modern poultry industry. Probiotics are recognized for beneficially influencing host immune responses, promoting maintenance of intestinal epithelial integrity, antagonistic activity against pathogenic microorganisms and health-promoting properties. Some basic studies attest to probiotic capabilities and show that Lacticaseibacillus rhamnosus could protect intestinal mucosa from injury in animals infected with Salmonella Typhimurium. However, the mechanisms underlying its protective effects in chicks are still not fully understood. Here, we used the chick infection model combined with histological, immunological, and molecular approaches to address this question. The results indicated that L. rhamnosus significantly reduced the diarrhea rate and increased the daily weight gain and survival rate of chicks infected with S. Typhimurium. Furthermore, we found that L. rhamnosus markedly improved the immunity of gut mucosa by reducing apoptotic cells, hence effectively inhibiting intestinal inflammation. Notably, pre-treatment chicks with L. rhamnosus balanced the expression of interleukin-1β and interleukin-18, moderated endotoxin and D-lactic acid levels, and expanded tight junction protein levels (Zonula occluden-1 and Claudin-1), enhanced the function of the intestinal mucosal epithelial cells. Additionally, investigations using full-length 16S rRNA sequencing also demonstrated that L. rhamnosus greatly weakened the adhesion of Salmonella, the mainly manifestation is the improvement of the diversity of intestinal microbiota in infected chicks. Collectively, these results showed the application of L. rhamnosus against Salmonella fatal infection by enhancing barrier integrity and the stability of the gut microbiota and reducing inflammation in new hatch chicks, offering new antibiotic alternatives for farming animals.
Collapse
Affiliation(s)
- Xianqi Peng
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | | | - Yan Song
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mohammed Elbediwi
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Reshma B. Nambiar
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Min Yue
- Department of Veterinary Medicine and Institute of Preventive Veterinary Sciences, College of Animal Science, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
- Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Min Yue,
| |
Collapse
|