1
|
Brettell LE, Hoque AF, Joseph TS, Dhokiya V, Hornett EA, Hughes GL, Heinz E. Mosquitoes reared in distinct insectaries within an institution in close spatial proximity possess significantly divergent microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610121. [PMID: 39257775 PMCID: PMC11383675 DOI: 10.1101/2024.08.28.610121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The microbiome affects important aspects of mosquito biology and differences in microbial composition can affect the outcomes of laboratory studies. To determine how the biotic and abiotic conditions in an insectary affect the composition of the bacterial microbiome of mosquitoes we reared mosquitoes from a single cohort of eggs from one genetically homogeneous inbred Aedes aegypti colony, which were split into three batches, and transferred to each of three different insectaries located within the Liverpool School of Tropical Medicine. Using three replicate trays per insectary, we assessed and compared the bacterial microbiome composition as mosquitoes developed from these eggs. We also characterised the microbiome of the mosquitoes' food sources, measured environmental conditions over time in each climate-controlled insectary, and recorded development and survival of mosquitoes. While mosquito development was overall similar between all three insectaries, we saw differences in microbiome composition between mosquitoes from each insectary. Furthermore, bacterial input via food sources, potentially followed by selective pressure of temperature stability and range, did affect the microbiome composition. At both adult and larval stages, specific members of the mosquito microbiome were associated with particular insectaries; and the insectary with less stable and cooler conditions resulted in slower pupation rate and higher diversity of the larval microbiome. Tray and cage effects were also seen in all insectaries, with different bacterial taxa implicated between insectaries. These results highlight the necessity of considering the variability and effects of different microbiome composition even in experiments carried out in a laboratory environment starting with eggs from one batch; and highlights the impact of even minor inconsistencies in rearing conditions due to variation of temperature and humidity.
Collapse
Affiliation(s)
- Laura E. Brettell
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4WT, UK
| | - Ananya F. Hoque
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tara S. Joseph
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Vishaal Dhokiya
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Emily A. Hornett
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Grant L. Hughes
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Department of Vector biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, G4 0RE, Glasgow, UK
| |
Collapse
|
2
|
Horváthová T, Lafuente E, Bartels J, Wallisch J, Vorburger C. Tolerance to environmental pollution in the freshwater crustacean Asellus aquaticus: A role for the microbiome. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13252. [PMID: 38783543 PMCID: PMC11116767 DOI: 10.1111/1758-2229.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/13/2024] [Indexed: 05/25/2024]
Abstract
Freshwater habitats are frequently contaminated by diverse chemicals of anthropogenic origin, collectively referred to as micropollutants, that can have detrimental effects on aquatic life. The animals' tolerance to micropollutants may be mediated by their microbiome. If polluted aquatic environments select for contaminant-degrading microbes, the acquisition of such microbes by the host may increase its tolerance to pollution. Here we tested for the potential effects of the host microbiome on the growth and survival of juvenile Asellus aquaticus, a widespread freshwater crustacean. Using faecal microbiome transplants, we provided newly hatched juveniles with the microbiome isolated from donor adults reared in either clean or micropollutant-contaminated water and, after transplantation, recipient juveniles were reared in water with and without micropollutants. The experiment revealed a significant negative effect of the micropollutants on the survival of juvenile isopods regardless of the received faecal microbiome. The micropollutants had altered the composition of the bacterial component of the donors' microbiome, which in turn influenced the microbiome of juvenile recipients. Hence, we show that relatively high environmental concentrations of micropollutants reduce survival and alter the microbiome composition of juvenile A. aquaticus, but we have no evidence that tolerance to micropollutants is modulated by their microbiome.
Collapse
Affiliation(s)
- Terézia Horváthová
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Institute of Soil Biology and BiochemistryBiology Centre CASČeské BudějoviceCzechia
| | - Elvira Lafuente
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | | | | | - Christoph Vorburger
- Department of Aquatic EcologyEawagDübendorfSwitzerland
- D‐USYS, Department of Environmental Systems ScienceETH ZürichZürichSwitzerland
| |
Collapse
|
3
|
Hegde S, Khanipov K, Hornett EA, Nilyanimit P, Pimenova M, Saldaña MA, de Bekker C, Golovko G, Hughes GL. Interkingdom interactions shape the fungal microbiome of mosquitoes. Anim Microbiome 2024; 6:11. [PMID: 38454530 PMCID: PMC10921588 DOI: 10.1186/s42523-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mosquito microbiome is an important modulator of vector competence and vectoral capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the mosquito microbiome (the mycobiome) remain largely unexplored. To work towards getting an improved understanding of the fungi associated with mosquitoes, we sequenced the mycobiome of three field-collected and laboratory-reared mosquito species (Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus). RESULTS Our analysis showed both environment and host species were contributing to the diversity of the fungal microbiome of mosquitoes. When comparing species, Ae. albopictus possessed a higher number of diverse fungal taxa than Cx. quinquefasciatus, while strikingly less than 1% of reads from Ae. aegypti samples were fungal. Fungal reads from Ae. aegypti were < 1% even after inhibiting host amplification using a PNA blocker, indicating that this species lacked a significant fungal microbiome that was amplified using this sequencing approach. Using a mono-association mosquito infection model, we confirmed that mosquito-derived fungal isolates colonize Aedes mosquitoes and support growth and development at comparable rates to their bacterial counterparts. Strikingly, native bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in Ae. aegypti suggesting interkingdom interactions shape fungal microbiome communities. CONCLUSION Collectively, this study adds to our understanding of the fungal microbiome of different mosquito species, that these fungal microbes support growth and development, and highlights that microbial interactions underpin fungal colonization of these medically relevent species.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Life Sciences, Keele University, Newcastle, UK.
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine , Chulalongkorn University, Bangkok, Thailand
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charissa de Bekker
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
4
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. Environ Microbiol 2024; 26:e16576. [PMID: 38192175 PMCID: PMC11022138 DOI: 10.1111/1462-2920.16576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or the field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, many more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities is associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique for investigating host-microbe interactions in mosquitoes.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Life Sciences, Keele University, Keele ST5 5BG, UK
| | - Laura E. Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- School of Science, Engineering and Environment, University of Salford, Manchester M4 4WT, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
5
|
Kriefall NG, Seabourn PS, Yoneishi NM, Davis K, Nakayama KK, Weber DE, Hynson NA, Medeiros MCI. Abiotic factors shape mosquito microbiomes that enhance host development. THE ISME JOURNAL 2024; 18:wrae181. [PMID: 39315733 PMCID: PMC11481732 DOI: 10.1093/ismejo/wrae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metazoans rely on interactions with microorganisms through multiple life stages. For example, developmental trajectories of mosquitoes can vary depending on the microorganisms available during their aquatic larval phase. However, the role that the local environment plays in shaping such host-microbe dynamics and the consequences for the host organism remain inadequately understood. Here, we examine the influence of abiotic factors, locally available bacteria, and their interactions on the development and associated microbiota of the mosquito Aedes albopictus. Our findings reveal that leaf detritus infused into the larval habitat water, sourced from native Hawaiian tree 'ōhi'a lehua Metrosideros polymorpha, invasive strawberry guava Psidium cattleianum, or a pure water control, displayed a more substantial influence than either temperature variations or simulated microbial dispersal regimes on bacterial community composition in adult mosquitoes. However, specific bacteria exhibited divergent patterns within mosquitoes across detrital infusions that did not align with their abundance in the larval habitat. Specifically, we observed a higher relative abundance of a Chryseobacterium sp. strain in mosquitoes from the strawberry guava infusion than the pure water control, whereas the opposite trend was observed for a Pseudomonas sp. strain. In a follow-up experiment, we manipulated the presence of these two bacterial strains and found larval developmental success was enhanced by including the Chryseobacterium sp. strain in the strawberry guava infusion and the Pseudomonas sp. strain in the pure water control. Collectively, these data suggest that interactions between abiotic factors and microbes of the larval environment can help shape mosquito populations' success.
Collapse
Affiliation(s)
- Nicola G Kriefall
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Priscilla S Seabourn
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole M Yoneishi
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kahiwahiwa Davis
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Kirsten K Nakayama
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Danya E Weber
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Nicole A Hynson
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| | - Matthew C I Medeiros
- Pacific Biosciences Research Center, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
- Center for Microbiome Analysis through Island Knowledge and Investigation, University of Hawai‘i at Mānoa, 1993 East-West Road, Honolulu, HI 96822, United States
| |
Collapse
|
6
|
LaReau JC, Hyde J, Brackney DE, Steven B. Introducing an environmental microbiome to axenic Aedes aegypti mosquitoes documents bacterial responses to a blood meal. Appl Environ Microbiol 2023; 89:e0095923. [PMID: 38014951 PMCID: PMC10734439 DOI: 10.1128/aem.00959-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE The blood meal of the female mosquito serves as a nutrition source to support egg development, so is an important aspect of its biology. Yet, the roles the microbiome may play in blood digestion are poorly characterized. We employed axenic mosquitoes to investigate how the microbiome differs between mosquitoes reared in the insectary versus mosquitoes that acquire their microbiome from the environment. Environmental microbiomes were more diverse and showed larger temporal shifts over the course of blood digestion. Importantly, only bacteria from the environmental microbiome performed hemolysis in culture, pointing to functional differences between bacterial populations. These data highlight that taxonomic differences between the microbiomes of insectary-reared and wild mosquitoes are potentially also related to their functional ecology. Thus, axenic mosquitoes colonized with environmental bacteria offer a way to investigate the role of bacteria from the wild in mosquito processes such as blood digestion, under controlled laboratory conditions.
Collapse
Affiliation(s)
- Jacquelyn C. LaReau
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Josephine Hyde
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| | - Doug E. Brackney
- Department of Entomology, Center for Vector Biology and Zoonotic Diseases, New Haven, Connecticut, USA
| | - Blaire Steven
- Department of Environmental Science and Forestry, Connecticut Agricultural Experiment Station, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DY, Khanipov K, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype-dependent. PLoS Pathog 2023; 19:e1011727. [PMID: 37903174 PMCID: PMC10635568 DOI: 10.1371/journal.ppat.1011727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/09/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can have carry-over effects on adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we showed that the bacterial community structure differs between the two genotypes of Ae. aegypti when given identical microbiomes, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific larval microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti. We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Laura C. Multini
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Babakar Diouf
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
| | - Margaret Becker
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques Sine Saloum University El Hadji Ibrahima NIASS (USSEIN), Kaffrine, Senegal
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Mawlouth Diallo
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Alioune Gaye
- Medical Zoology Unit, Institute Pasteur Dakar, Dakar, Senegal
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- West African Center for Emerging Infectious Diseases, Centers for Research in Emerging Infectious Diseases, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Vector-borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
8
|
Accoti A, Quek S, Vulcan J, Cansado-Utrilla C, Anderson ER, Abu AEI, Alsing J, Narra HP, Khanipov K, Hughes GL, Dickson LB. Variable microbiomes between mosquito lines are maintained across different environments. PLoS Negl Trop Dis 2023; 17:e0011306. [PMID: 37747880 PMCID: PMC10553814 DOI: 10.1371/journal.pntd.0011306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The composition of the microbiome is shaped by both environment and host in most organisms, but in the mosquito Aedes aegypti the role of the host in shaping the microbiome is poorly understood. Previously, we had shown that four lines of Ae. aegypti harbored different microbiomes when reared in the same insectary under identical conditions. To determine whether these lines differed from each other across time and in different environments, we characterized the microbiome of the same four lines of Ae. aegypti reared in the original insectary and at another institution. While it was clear that the environment influenced the microbiomes of these lines, we did still observe distinct differences in the microbiome between lines within each insectary. Clear differences were observed in alpha diversity, beta diversity, and abundance of specific bacterial taxa. To determine if the line specific differences in the microbiome were maintained across environments, pair-wise differential abundances of taxa was compared between insectaries. Lines were most similar to other lines from the same insectary than to the same line reared in a different insectary. Additionally, relatively few differentially abundant taxa identified between pairs of lines were shared across insectaries, indicating that line specific properties of the microbiome are not conserved across environments, or that there were distinct microbiota within each insectary. Overall, these results demonstrate that mosquito lines under the same environmental conditions have different microbiomes across microbially- diverse environments and host by microbe interactions affecting microbiome composition and abundance is dependent on environmentally available bacteria.
Collapse
Affiliation(s)
- Anastasia Accoti
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Julia Vulcan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Enyia R. Anderson
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Angel Elma I. Abu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
| | - Jessica Alsing
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hema P. Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Laura B. Dickson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston Texas, United States of America
- Center of Vector Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
9
|
Foo A, Cerdeira L, Hughes GL, Heinz E. Recovery of metagenomic data from the Aedes aegypti microbiome using a reproducible snakemake pipeline: MINUUR. Wellcome Open Res 2023; 8:131. [PMID: 37577055 PMCID: PMC10412942 DOI: 10.12688/wellcomeopenres.19155.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Ongoing research of the mosquito microbiome aims to uncover novel strategies to reduce pathogen transmission. Sequencing costs, especially for metagenomics, are however still significant. A resource that is increasingly used to gain insights into host-associated microbiomes is the large amount of publicly available genomic data based on whole organisms like mosquitoes, which includes sequencing reads of the host-associated microbes and provides the opportunity to gain additional value from these initially host-focused sequencing projects. Methods: To analyse non-host reads from existing genomic data, we developed a snakemake workflow called MINUUR (Microbial INsights Using Unmapped Reads). Within MINUUR, reads derived from the host-associated microbiome were extracted and characterised using taxonomic classifications and metagenome assembly followed by binning and quality assessment. We applied this pipeline to five publicly available Aedes aegypti genomic datasets, consisting of 62 samples with a broad range of sequencing depths. Results: We demonstrate that MINUUR recovers previously identified phyla and genera and is able to extract bacterial metagenome assembled genomes (MAGs) associated to the microbiome. Of these MAGS, 42 are high-quality representatives with >90% completeness and <5% contamination. These MAGs improve the genomic representation of the mosquito microbiome and can be used to facilitate genomic investigation of key genes of interest. Furthermore, we show that samples with a high number of KRAKEN2 assigned reads produce more MAGs. Conclusions: Our metagenomics workflow, MINUUR, was applied to a range of Aedes aegypti genomic samples to characterise microbiome-associated reads. We confirm the presence of key mosquito-associated symbionts that have previously been identified in other studies and recovered high-quality bacterial MAGs. In addition, MINUUR and its associated documentation are freely available on GitHub and provide researchers with a convenient workflow to investigate microbiome data included in the sequencing data for any applicable host genome of interest.
Collapse
Affiliation(s)
- Aidan Foo
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Louise Cerdeira
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Grant L. Hughes
- Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Eva Heinz
- Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
10
|
Accoti A, Multini LC, Diouf B, Becker M, Vulcan J, Sylla M, Yap DAY, Khanipov K, Weaver SC, Diallo M, Gaye A, Dickson LB. The influence of the larval microbiome on susceptibility to Zika virus is mosquito genotype dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540191. [PMID: 37215022 PMCID: PMC10197687 DOI: 10.1101/2023.05.10.540191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The microbiome of the mosquito Aedes aegypti is largely determined by the environment and influences mosquito susceptibility for arthropod-borne viruses (arboviruses). Larval interactions with different bacteria can influence adult Ae. aegypti replication of arboviruses, but little is known about the role that mosquito host genetics play in determining how larval-bacterial interactions shape Ae aegypti susceptibility to arboviruses. To address this question, we isolated single bacterial isolates and complex microbiomes from Ae. aegypti larvae from various field sites in Senegal. Either single bacterial isolates or complex microbiomes were added to two different genetic backgrounds of Ae. aegypti in a gnotobiotic larval system. Using 16S amplicon sequencing we show that similarities in bacterial community structures when given identical microbiomes between different genetic backgrounds of Ae. aegypti was dependent on the source microbiome, and the abundance of single bacterial taxa differed between Ae. aegypti genotypes. Using single bacterial isolates or the entire preserved complex microbiome, we tested the ability of specific microbiomes to drive differences in infection rates for Zika virus in different genetic backgrounds of Ae. aegypti . We observed that the proportion of Zika virus-infected adults was dependent on the interaction between the larval microbiome and Ae. aegypti host genetics. By using the larval microbiome as a component of the environment, these results demonstrate that interactions between the Ae. aegypti genotype and its environment can influence Zika virus infection. As Ae. aegypti expands and adapts to new environments under climate change, an understanding of how different genotypes interact with the same environment will be crucial for implementing arbovirus transmission control strategies.
Collapse
|
11
|
Zhao SY, Hughes GL, Coon KL. A cryopreservation method to recover laboratory- and field-derived bacterial communities from mosquito larval habitats. PLoS Negl Trop Dis 2023; 17:e0011234. [PMID: 37018374 PMCID: PMC10109488 DOI: 10.1371/journal.pntd.0011234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/17/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
Mosquitoes develop in a wide range of aquatic habitats containing highly diverse and variable bacterial communities that shape both larval and adult traits, including the capacity of adult females of some mosquito species to transmit disease-causing organisms to humans. However, while most mosquito studies control for host genotype and environmental conditions, the impact of microbiota variation on phenotypic outcomes of mosquitoes is often unaccounted for. The inability to conduct reproducible intra- and inter-laboratory studies of mosquito-microbiota interactions has also greatly limited our ability to identify microbial targets for mosquito-borne disease control. Here, we developed an approach to isolate and cryopreserve bacterial communities derived from lab and field-based larval rearing environments of the yellow fever mosquito Aedes aegypti-a primary vector of dengue, Zika, and chikungunya viruses. We then validated the use of our approach to generate experimental microcosms colonized by standardized lab- and field-derived bacterial communities. Our results overall reveal minimal effects of cryopreservation on the recovery of both lab- and field-derived bacteria when directly compared with isolation from non-cryopreserved fresh material. Our results also reveal improved reproducibility of bacterial communities in replicate microcosms generated using cryopreserved stocks over fresh material. Communities in replicate microcosms further captured the majority of total bacterial diversity present in both lab- and field-based larval environments, although the relative richness of recovered taxa as compared to non-recovered taxa was substantially lower in microcosms containing field-derived bacteria. Altogether, these results provide a critical next step toward the standardization of mosquito studies to include larval rearing environments colonized by defined microbial communities. They also lay the foundation for long-term studies of mosquito-microbe interactions and the identification and manipulation of taxa with potential to reduce mosquito vectorial capacity.
Collapse
Affiliation(s)
- Serena Y. Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Grant L. Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Topical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Kerri L. Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
12
|
Hegde S, Brettell LE, Quek S, Etebari K, Saldaña MA, Asgari S, Coon KL, Heinz E, Hughes GL. Aedes aegypti gut transcriptomes respond differently to microbiome transplants from field-caught or laboratory-reared mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532926. [PMID: 36993663 PMCID: PMC10055144 DOI: 10.1101/2023.03.16.532926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The mosquito microbiome is critical for host development and plays a major role in many aspects of mosquito biology. While the microbiome is commonly dominated by a small number of genera, there is considerable variation in composition among mosquito species, life stages, and geography. How the host controls and is affected by this variation is unclear. Using microbiome transplant experiments, we asked whether there were differences in transcriptional responses when mosquitoes of different species were used as microbiome donors. We used microbiomes from four different donor species spanning the phylogenetic breadth of the Culicidae, collected either from the laboratory or field. We found that when recipients received a microbiome from a donor reared in the laboratory, the response was remarkably similar regardless of donor species. However, when the donor had been collected from the field, far more genes were differentially expressed. We also found that while the transplant procedure did have some effect on the host transcriptome, this is likely to have had a limited effect on mosquito fitness. Overall, our results highlight the possibility that variation in mosquito microbiome communities are associated with variability in host-microbiome interactions and further demonstrate the utility of the microbiome transplantation technique.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Laura E Brettell
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Shannon Quek
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kayvan Etebari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
13
|
Axenic and gnotobiotic insect technologies in research on host-microbiota interactions. Trends Microbiol 2023:S0966-842X(23)00055-0. [PMID: 36906503 DOI: 10.1016/j.tim.2023.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Insects are one of the most important animal life forms on earth. Symbiotic microbes are closely related to the growth and development of the host insects and can affect pathogen transmission. For decades, various axenic insect-rearing systems have been developed, allowing further manipulation of symbiotic microbiota composition. Here we review the historical development of axenic rearing systems and the latest progress in using axenic and gnotobiotic approaches to study insect-microbe interactions. We also discuss the challenges of these emerging technologies, possible solutions to address these challenges, and future research directions that can contribute to a more comprehensive understanding of insect-microbe interactions.
Collapse
|
14
|
Singh A, Patel NF, Allam M, Chan WY, Mohale T, Ismail A, Oliver SV. Marked Effects of Larval Salt Exposure on the Life History and Gut Microbiota of the Malaria Vector Anopheles merus (Diptera: Culicidae). INSECTS 2022; 13:1165. [PMID: 36555074 PMCID: PMC9787035 DOI: 10.3390/insects13121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Anopheles merus can breed in a range of saltwater concentrations. The consequences of this ability on the life history of adult An. merus are poorly understood. This study examined the effects of exposure to 0, 2.1875, 4.375, 8.75, and 17.5 g/L of sodium chloride on An. merus. The effects on larval development, adult longevity, fertility, and fecundity, as well as deltamethrin tolerance were examined. The effect of larval salt exposure on the expression of defensin-1 in adults was examined by quantitative Real-Time PCR. Finally, the effect of the larval salt concentration on microbial dynamics was assessed by 16S Next Generation Sequencing. High concentrations of saltwater increased larval development time and number of eggs laid, as well as deltamethrin tolerance. Larval exposure to salt also reduced the expression of defensin-1. The exposure also had a significant effect on microbial diversity in larvae and adults. The diversity of larvae decreased once adults emerged. Salt-tolerant bacterial genera predominated in larvae but were absent in adults. High salt concentrations resulted in greater abundance of Plasmodium-protective genera in adults. Although this study was conducted on a laboratory strain of An. merus, these data suggest that osmoregulation has a significant effect on the life history of the species with potential epidemiological consequences.
Collapse
Affiliation(s)
- Ashmika Singh
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Nashrin F. Patel
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
| | - Wai-Yin Chan
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Thabo Mohale
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Shüné V. Oliver
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2192, South Africa
- Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
15
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus with a global distribution that is maintained in an enzootic cycle between Culex species mosquitoes and avian hosts. Human infection, which occurs as a result of spillover from this cycle, is generally subclinical or results in a self-limiting febrile illness. Central nervous system infection occurs in a minority of infections and can lead to long-term neurological complications and, rarely, death. WNV is the most prevalent arthropod-borne virus in the United States. Climate change can influence several aspects of WNV transmission including the vector, amplifying host, and virus. Climate change is broadly predicted to increase WNV distribution and risk across the globe, yet there will likely be significant regional variability and limitations to this effect. Increases in temperature can accelerate mosquito and pathogen development, drive increases in vector competence for WNV, and also alter mosquito life history traits including longevity, blood feeding behavior and fecundity. Precipitation, humidity and drought also impact WNV transmissibility. Alteration in avian distribution, diversity and phenology resulting from climate variation add additional complexity to these relationships. Here, we review WNV epidemiology, transmission, disease and genetics in the context of laboratory studies, field investigations, and infectious disease models under climate change. We summarize how mosquito genetics, microbial interactions, host dynamics, viral strain, population size, land use and climate account for distinct relationships that drive WNV activity and discuss how these dynamic and evolving interactions could shape WNV transmission and disease under climate change.
Collapse
Affiliation(s)
- Rachel L Fay
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States
| | - Alexander C Keyel
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Atmospheric and Environmental Sciences, State University of New York at Albany, Albany, NY, United States
| | - Alexander T Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY, United States; Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Rensselaer, NY, United States.
| |
Collapse
|