1
|
Gao C, Chen Y, Zhang Z, Xu D, Liu X, Wang D, Shi L, Wang X, Chen H, Hao E. LAYING RATE WAS CORRELATED WITH MICROBIAL Fecal microbiota transplantation improves the laying performance by changing the gut microbiota composition in late laying period. Poult Sci 2025; 104:105064. [PMID: 40120240 PMCID: PMC11981753 DOI: 10.1016/j.psj.2025.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
This research investigated the differences and succession patterns of microbes in different ages, the performance of laying hens, and the effect of Fecal Microbiota Transplantation (FMT) on aged laying hens. First, based on the different laying rates and age, we divided the laying hens into four groups: 75-week-old high-yield (OH, laying rate (LR) > 90%), 75-week-old low-yield (OL, LR < 60%), 75-week-old non-laying hens (OZ, LR = 0%) and 35-week-old high-yield (YH, LR > 90%) with 5 replicates in each group and 6 chickens in each replicate. The microbial metabolic patterns between different ages and laying rates were determined using 16S rDNA technology. Then, to verify the results of microbiome research, we utilized FMT technology to transplant the gut microbiota from OH to OZ (OZFMT-OH), thereby revealing the connection between gut microbes and production performance. The results showed that high-yielding hens (YH and OH groups) had higher levels of Superoxide dismutase (SOD) and Immunoglobulin A (IgA) compared to OL and OZ groups. The Villus height to Crypt depth ratio(V/C) was significantly higher in the YH group than in 75-week-old hens (P < 0.05). Alpha diversity indicated higher microbial diversity in the YH group compared to older hens (P < 0.05), with YH hens harboring more Megamonas, OH hens more Bacteroides, and OL and OZ groups showing higher levels of harmful bacteria. The villus height, V/C, mucosal layer thickness, cup cell number acetic acid level, and LR in the OZFMT-OH group were significantly higher than those in the OZ group (P < 0.05), while the IL-2 level, crypt depth and cecal intestinal wall thickness were significantly lower than those in OZ group (P < 0.05). FMT also changed the morphological structure of grade follicles and small yellow follicles, improved the microbe composition of cecum and increased Bacteroides abundance. In the late laying period, if the intestinal flora cannot maintain the dynamic balance and carry out timely replacement, the production performance may be decreased, and the increase of Bacteroides abundance in the intestinal tract can improve the intestinal health and production performance of laying hens in the late laying period.
Collapse
Affiliation(s)
- Chong Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yifan Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhenhong Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dahai Xu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xuelu Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Dehe Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lei Shi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuechang Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Erying Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
2
|
Liu F, Pu X, Wu J, Ren F, Fang B, Wang R, Zhang M. Enhancing neonatal immune maturity: The impact of Bifidobacterium animalis A6 and its postbiotics on NEC outcomes. FOOD BIOSCI 2025; 65:106129. [DOI: 10.1016/j.fbio.2025.106129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
|
3
|
Song Y, Cui Y, Zhong Y, Wang Y, Zheng X. Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks. J Biotechnol 2025; 399:81-90. [PMID: 39826698 DOI: 10.1016/j.jbiotec.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Modern management of chicks hinders the vertical transmission of intestinal microbiota, which is closely related to immunity. Inulin is a substrate that can be utilized by the microbiota. This study aimed to determine whether fecal microbiota transplantation (FMT) combined with inulin played a "1 + 1 > 2" role in enhancing the development and function of immune organs. Chicks were treated with 1 % inulin and/or fecal microbiota suspension on days 1-6. The growth performance, immune organ development, and immune indicators were evaluated on days 7, 14, and 21. Results showed that the combination of FMT and inulin significantly increased the immune organ index on day 7 and promoted the morphological structure and the expression of proliferating cell nuclear antigen (PCNA) in immune organs on days 7, 14, and 21. Each treatment increased the gene expression of interferon-gamma (IFN-γ), interleukin-4 (IL-4), interleukin-2 (IL-2), B cell-activating factor receptor (BAFFR), B cell linker (BLNK), C-X-C Motif Chemokine Ligand 12 (CXCL12), C-X-C Motif Chemokine Receptor 4 (CXCR4), and Biotin (Bu-1) to varying degrees. FMT combined with inulin significantly increased the expression of IgA-positive cells on days 7 and 14. In conclusion, the synergistic effect of FMT and inulin had beneficial impacts on the development and function of immune organs.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, Jilin 130118, China.
| |
Collapse
|
4
|
Liu Q, Akhtar M, Kong N, Zhang R, Liang Y, Gu Y, Yang D, Nafady AA, Shi D, Ansari AR, Abdel-Kafy ESM, Naqvi SUAS, Liu H. Early fecal microbiota transplantation continuously improves chicken growth performance by inhibiting age-related Lactobacillus decline in jejunum. MICROBIOME 2025; 13:49. [PMID: 39930537 PMCID: PMC11808950 DOI: 10.1186/s40168-024-02021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND At an early age, chickens commonly exhibit a rise in the average daily gain, which declines as they age. Further studies indicated that the decrease in chicken growth performance at a later age is closely associated with an age-related decline in Lactobacillus abundance in the small intestines. Whether inhibiting the age-related decline in Lactobacillus in the small intestine by early fecal microbiota transplantation (FMT) could improve chicken growth performance is an interesting question. RESULTS 16S rRNA gene sequencing revealed a higher jejunal Lactobacillus abundance in high body weight chickens in both two different chicken breeds (yellow feather chickens, H vs L, 85.96% vs 55.58%; white feather chickens, H vs L, 76.21% vs 31.47%), which is significantly and positively associated with body and breast/leg muscle weights (P < 0.05). Moreover, the jejunal Lactobacillus abundance declined with age (30 days, 74.04%; 60 days, 50.80%; 120 days, 34.03%) and the average daily gain rose in early age and declined in later age (1 to 30 days, 5.78 g; 30 to 60 days, 9.86 g; 60 to 90 days, 7.70 g; 90 to 120 days, 3.20 g), indicating the age-related decline in jejunal Lactobacillus abundance is closely related to chicken growth performance. Transplanting fecal microbiota from healthy donor chickens with better growth performance and higher Lactobacillus abundance to 1-day-old chicks continuously improved chicken growth performance (Con vs FMT; 30 days, 288.45 g vs 314.15 g, P < 0.05; 60 days, 672.77 g vs 758.15 g, P < 0.01; 90 days, 1146.08 g vs 1404.43 g, P < 0.0001) even after stopping fecal microbiota transplantation at 4th week. Four-week FMT significantly inhibited age-related decline in jejunal Lactobacillus abundance (Con vs FMT, 30 days, 65.07% vs 85.68%, P < 0.01; 60 days, 38.87% vs 82.71%, P < 0.0001 and 90 days, 34.23% vs 60.86%, P < 0.01). Moreover, the numbers of goblet and Paneth cells were also found significantly higher in FMT groups at three time points (P < 0.05). Besides, FMT triggered GH/IGF-1 underlying signaling by significantly increasing the expressions of GH, GHR, and IGF-1 in the liver and IGF-1 and IGF-1R in muscles along age (P < 0.05). CONCLUSION These findings revealed that age-related decline in jejunal Lactobacillus abundance compromised chicken growth performance, while early fecal microbiota transplantation continuously improved chicken growth performance by inhibiting age-related jejunal Lactobacillus decline, promoting the integrity of jejunal mucosal barrier and up-regulating the expression level of genes related to growth axis. Video Abstract.
Collapse
Affiliation(s)
- Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Na Kong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Rumeng Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Liang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yaqian Gu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Danyi Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdallah A Nafady
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Abdur Rahman Ansari
- Section of Anatomy and Histology, Department of Basic Sciences, College of Veterinary and Animal Sciences (CVAS) Jhang, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
| | - El-Sayed M Abdel-Kafy
- Animal Production Research Institute (APRI), Agricultural Research Center (ARC), Ministry of Agriculture, Giza, Egypt
| | | | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Qiao Y, Feng Q, Wang Q, Zhao Q, Zhu S, Zhao F, Wang Z, Zhang R, Wang J, Yu Y, Han H, Dong H. Alteration in the Gut Microbiota of Chickens Resistant to Eimeria tenella Infection. Microorganisms 2024; 12:2218. [PMID: 39597606 PMCID: PMC11596190 DOI: 10.3390/microorganisms12112218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Avian coccidiosis, caused by several species of Eimeria, is a widespread and economically important poultry disease that inflicts severe losses in the poultry industry. Understanding the interplay between Eimeria and gut microbiota is critical for controlling coccidiosis and developing innovative treatments to ensure good poultry health. In the present study, chickens were immunized six times with a low dose of Eimeria tenella, resulting in complete immunity against Eimeria infection. The results of fecal microbiota transplantation showed that the gut microbiota of immunized chickens induced a certain degree of resistance to coccidial infection. To investigate the types of intestinal microbiota involved in the development of resistance to Eimeria, the intestinal contents and fecal samples from both immunized and unimmunized groups were collected for 16S rRNA gene sequencing. The results showed that, at the genus level, the abundance of the Eubacterium coprostanoligenes group, Erysipelatoclostridium, Shuttleworthia, and Colidextribacter was significantly increased in the intestinal content of immunized chickens, whereas the abundance of Eisenbergiella was significantly decreased. In fecal samples, the abundance of Clostridiaceae and Muribaculaceae significantly increased, whereas that of Bacillales significantly decreased. These findings will help to elucidate the interactions between E. tenella and the gut microbiota of chickens, providing a basis for isolating E. tenella-resistant strains from the gut microbiome and developing new vaccines against coccidiosis.
Collapse
Affiliation(s)
- Yu Qiao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qian Feng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qingjie Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Qiping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Shunhai Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Fanghe Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Zhongchuang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Ruiting Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jinwen Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Yu Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Hongyu Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| | - Hui Dong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology of Ministry of Agriculture, Minhang, Shanghai 200241, China; (Y.Q.); (Q.F.); (Q.W.); (Q.Z.); (S.Z.); (F.Z.); (Z.W.); (R.Z.); (J.W.); (Y.Y.); (H.H.)
| |
Collapse
|
6
|
Zhao M, Cui Y, Wang F, Wu F, Li C, Liu S, Chen B. Ursolic Acid Regulates Immune Balance, Modulates Gut Microbial Metabolism, and Improves Liver Health in Mice. Int J Mol Sci 2024; 25:10623. [PMID: 39408951 PMCID: PMC11477038 DOI: 10.3390/ijms251910623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Ursolic acid (UA) has demonstrated significant immunomodulatory and hepatoprotective effects; however, the underlying mechanisms remain unclear. This study aims to analyze the impact of UA on the gut microbiome, metabolome, and liver transcriptome, investigate UA's role in maintaining gut immune homeostasis and liver health, and evaluate the potential contributions of gut microbes and their metabolites to these beneficial effects. Our findings indicate that UA enhances immune balance in the jejunum, fortifies intestinal barrier function, and promotes overall gut health. UA modulates the intestinal microbiota and its metabolic processes, notably increasing the abundance of beneficial bacteria such as Odoribacter and Parabacteroides, along with their metabolites, including ornithine and lactucin. Additionally, UA inhibits the expression of interleukin-1 receptor 1 (IL1R1) and calcium (Ca2+) voltage-gated channel auxiliary subunit beta 2 (CACNB2) while enhancing the synthesis pathways of retinol and ascorbic acid, thereby exerting a protective influence on liver function. In summary, UA enhances intestinal immune homeostasis and promotes liver health, with these advantageous effects potentially mediated by beneficial bacteria (Odoribacter and Parabacteroides) and their metabolites (ornithine and lactucin).
Collapse
Affiliation(s)
- Man Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Yali Cui
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071051, China
| | - Fengxia Wang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Fengyang Wu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Chong Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Shudong Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| | - Baojiang Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071051, China
| |
Collapse
|
7
|
Bhowmick S, Gupta S, Mondal S, Mallick AI. Activation of Antiviral Host Responses against Avian Influenza Virus and Remodeling of Gut Microbiota by rLAB Vector Expressing rIL-17A in Chickens. ACS Infect Dis 2024; 10:3026-3041. [PMID: 38970488 DOI: 10.1021/acsinfecdis.4c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Low-pathogenic avian influenza virus (LPAIV) remains the most common subtype of type-A influenza virus that causes moderate to severe infection in poultry with significant zoonotic and pandemic potential. Due to high mutability, increasing drug resistance, and limited vaccine availability, the conventional means to prevent intra- or interspecies transmission of AIV is highly challenging. As an alternative to control AIV infections, cytokine-based approaches to augment antiviral host defense have gained significant attention. However, the selective application of cytokines is critical since unregulated expression of cytokines, particularly proinflammatory ones, can cause substantial tissue damage during acute phases of immune responses. Moreover, depending on the type of cytokine and its impact on intestinal microbiota, outcomes of cytokine-gut microflora interaction can have a critical effect on overall host defense against AIV infections. Our recent study demonstrated some prominent roles of chicken IL-17A (ChIL-17A) in regulating antiviral host responses against AIV infection, however, in an in vitro model. For more detailed insights into ChIL-17A function, in the present study, we investigated whether ChIL-17A-meditated elevated antiviral host responses can translate into effective immune protection against AIV infection in an in vivo system. Moreover, considering the role of gut health in fostering innate or local host responses, we further studied the contributory relationships between gut microbiota and host immunity against AIV infection in chickens. For this, we employed a recombinant lactic acid-producing bacterial (LAB) vector, Lactococcus lactis, expressing ChIL-17A and analyzed the in vivo functionality in chickens against an LPAIV (A/H9N2) infection. Our study delineates that mucosal delivery of rL. lactis expressing ChIL-17A triggers proinflammatory signaling cascades and can drive a positive shift in phylum Firmicutes, along with a marked decline in phylum Actinobacteriota and Proteobacteria, favoring effective antiviral host responses against AIV infection in chickens. We propose that ChIL-17A-mediated selective expansion of beneficial gut microbiota might form a healthy microbial community that augments the effective immune protection against AIV infections in chickens.
Collapse
Affiliation(s)
- Sucharita Bhowmick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Subhadeep Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Samiran Mondal
- Department of Veterinary Pathology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Amirul Islam Mallick
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
8
|
Xiong X, Lan Y, Wang Z, Xu J, Gong J, Chai X. Bacteroidales reduces growth rate through serum metabolites and cytokines in Chinese Ningdu yellow chickens. Poult Sci 2024; 103:103905. [PMID: 38870614 PMCID: PMC11225896 DOI: 10.1016/j.psj.2024.103905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/15/2024] Open
Abstract
Increasing evidence has indicated that the gut microbiome plays an important role in chicken growth traits. However, the cecal microbial taxa associated with the growth rates of the Chinese Ningdu yellow chickens are unknown. In this study, shotgun metagenomic sequencing was used to identify cecal bacterial species associated with the growth rate of the Chinese Ningdu yellow chickens. We found that nine cecal bacterial species differed significantly between high and low growth rate chickens, including three species (Succinatimonas hippei, Phocaeicola massiliensis, and Parabacteroides sp. ZJ-118) that were significantly enriched in high growth rate chickens. We identified six Bacteroidales that were significantly enriched in low growth rate chickens, including Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium which were key biomarkers in differentiating high and low growth rate chickens and were associated with alterations in the functional taxa of the cecal microbiome. Untargeted serum metabolome analysis revealed that 8 metabolites showing distinct enrichment patterns between high and low growth rate chickens, including triacetate lactone and N-acetyl-a-neuraminic acid, which were at higher concentrations in low growth rate chickens and were positively and significantly correlated with Barnesiella sp. An22, Barnesiella sp. ET7, and Bacteroidales bacterium. Furthermore, the results suggest that serum cytokines, such as IL-5, may reduce growth rate and are related to changes in serum metabolites and gut microbes (e.g., Barnesiella sp. An22 and Barnesiella sp. ET7). These results provide important insights into the effects of the cecal microbiome, serum metabolism and cytokines in Ningdu yellow chickens.
Collapse
Affiliation(s)
- Xinwei Xiong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China.
| | - Yuehang Lan
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Zhangfeng Wang
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Jishang Gong
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| | - Xuewen Chai
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang, Jiangxi 330032, China
| |
Collapse
|
9
|
Song Y, Cui Y, Wang Y, Wang T, Zhong Y, Liu J, Zheng X. The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks. Sci Rep 2024; 14:16973. [PMID: 39043769 PMCID: PMC11266578 DOI: 10.1038/s41598-024-67881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Our previous research found that fecal microbiota transplantation (FMT) and inulin synergistically affected the intestinal barrier and immune system function in chicks. However, does it promote the early immunity of the poultry gut-associated lymphoid tissue (GALT)? How does it regulate the immunity? We evaluated immune-related indicators in the serum, cecal tonsil, and intestine to determine whether FMT synergistic inulin had a stronger impact on gut health and which gene expression regulation was affected. The results showed that FMT synergistic inulin increased TGF-β secretion and intestinal goblet cell number and MUC2 expression on day 14. Expression of BAFFR, PAX5, CXCL12, and IL-2 on day 7 and expression of CXCR4 and IL-2 on day 14 in the cecal tonsils significantly increased. The transcriptome indicated that CD28 and CTLA4 were important regulatory factors in intestinal immunity. Correlation analysis showed that differential genes were related to the immunity and development of the gut and cecal tonsil. FMT synergistic inulin promoted the development of GALT, which improved the early-stage immunity of the intestine by regulating CD28 and CTLA4. This provided new measures for replacing antibiotic use and reducing the use of therapeutic drugs while laying a technical foundation for achieving anti-antibiotic production of poultry products.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yibo Cui
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yumeng Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Taiping Wang
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China
| | - Jingsheng Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, 130118, Jilin, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, No.2888 Xincheng Road, Nanguan District, Changchun, 130118, Jilin, China.
| |
Collapse
|
10
|
Liu J, Li Y, Shen D, Li X, Wang K, Nagaoka K, Li C. Gut microbiota intervention alleviates pulmonary inflammation in broilers exposed to fine particulate matter from broiler house. Appl Environ Microbiol 2024; 90:e0217423. [PMID: 38656183 PMCID: PMC11107152 DOI: 10.1128/aem.02174-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/31/2024] [Indexed: 04/26/2024] Open
Abstract
The gut microbiota of poultry is influenced by a variety of factors, including feed, drinking water, airborne dust, and footpads, among others. Gut microbiota can affect the immune reaction and inflammation in the lungs. To investigate the effect of gut microbiota variation on lung inflammation induced by PM2.5 (fine particulate matter) in broilers, 36 Arbor Acres (AA) broilers were randomly assigned to three groups: control group (CON), PM2.5 exposure group (PM), and PM2.5 exposure plus oral antibiotics group (PMA). We used non-absorbable antibiotics (ABX: neomycin and amikacin) to modify the microbiota composition in the PMA group. The intervention was conducted from the 18th to the 28th day of age. Broilers in the PM and PMA groups were exposed to PM by a systemic exposure method from 21 to 28 days old, and the concentration of PM2.5 was controlled at 2 mg/m3. At 28 days old, the lung injury score, relative mRNA expression of inflammatory factors, T-cell differentiation, and dendritic cell function were significantly increased in the PM group compared to the CON group, and those of the PMA group were significantly decreased compared to the PM group. There were significant differences in both α and β diversity of cecal microbiota among these three groups. Numerous bacterial genera showed significant differences in relative abundance among the three groups. In conclusion, gut microbiota could affect PM2.5-induced lung inflammation in broilers by adjusting the capacity of antigen-presenting cells to activate T-cell differentiation. IMPORTANCE Gut microbes can influence the development of lung inflammation, and fine particulate matter collected from broiler houses can lead to lung inflammation in broilers. In this study, we explored the effect of gut microbes modified by intestinal non-absorbable antibiotics on particulate matter-induced lung inflammation. The results showed that modification in the composition of gut microbiota could alleviate lung inflammation by attenuating the ability of dendritic cells to stimulate T-cell differentiation, which provides a new way to protect lung health in poultry farms.
Collapse
Affiliation(s)
- Junze Liu
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Li
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Dan Shen
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqing Li
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kai Wang
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Chunmei Li
- Research Centre for Livestock Environmental Control and Smart Production, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Sun X, Hong J, Ding T, Wu Z, Lin D. Snail microbiota and snail-schistosome interactions: axenic and gnotobiotic technologies. Trends Parasitol 2024; 40:241-256. [PMID: 38278688 DOI: 10.1016/j.pt.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/28/2024]
Abstract
The microbiota in the intermediate snail hosts of human schistosomes can significantly affect host biology. For decades, researchers have developed axenic snails to manipulate the symbiotic microbiota. This review summarizes the characteristics of symbiotic microbes in intermediate snail hosts and describes their interactions with snails, affecting snail growth, development, and parasite transmission ability. We focus on advances in axenic and gnotobiotic technologies for studying snail-microbe interactions and exploring the role of microbiota in snail susceptibility to Schistosoma infection. We discuss the challenges related to axenic and gnotobiotic snails, possible solutions to address these challenges, and future research directions to deepen our understanding of snail-microbiota interactions, with the aim to develop microbiota-based strategies for controlling snail populations and reducing their competence in transmitting parasites.
Collapse
Affiliation(s)
- Xi Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Jinni Hong
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tao Ding
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| | - Datao Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-Sen University, Guangzhou, China; Provincial Engineering Technology Research Center for Diseases-vectors Control and Chinese Atomic Energy Agency Center of Excellence on Nuclear Technology Applications for Insect Control, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
12
|
Liu Y, Li S, Huang Z, Dai H, Shi F, Lv Z. Dietary collagen peptide-chelated trace elements supplementation for breeder hens improves the intestinal health of chick offspring. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:174-183. [PMID: 37612258 DOI: 10.1002/jsfa.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dietary supplementation with trace elements zinc (Zn), iron (Fe) and manganese (Mn) could promote intestinal development and improve intestinal health. There are, however, few studies examining the possibility that maternal original Zn, Fe and Mn could regulate intestinal development and barrier function in the offspring. This study aimed to investigate how the intestinal growth and barrier function of breeder offspring were affected by collagen peptide-chelated trace elements (PTE; Zn, Fe, Mn). RESULTS PTE supplementation in the diet of breeder hens increased the concentrations of Zn, Fe and Mn in egg yolk. Maternal PTE supplementation improved morphological parameters of the intestine (villi height, crypt depth and villi height/crypt depth) and upregulated the mRNA expression level of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the ileum of chick embryos. Furthermore, maternal PTE effect improved villi height/crypt depth of offspring at 1 and 14 days of age, and upregulated Lgr5, Claudin-3 and E-cadherin mRNA expression in the broiler ileum. Additionally, PTE treatment could enhance the intestinal microbial diversity of offspring. Maternal PTE supplementation increased the relative abundance of Clostridiales at the genus level and decreased the relative abundance of Enterococcus in newborn offspring. Moreover, maternal PTE supplementation ameliorated the elevated nuclear factor kappa B, toll-like receptor 4 and interleukin 1β mRNA expression in the ileum of offspring caused by LPS challenge. CONCLUSION Maternal PTE supplementation could promote intestinal development and enhance the intestinal barrier function of chicken offspring. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Simeng Li
- Aksu Vocational and Technical College, Aksu, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Song J, Luo C, Liu Z, Liu J, Xie L, Zhang X, Xie Z, Li X, Ma Z, Ding J, Li H, Xiang H. Early fecal microbiota transplantation from high abdominal fat chickens affects recipient cecal microbiome and metabolism. Front Microbiol 2024; 14:1332230. [PMID: 38260901 PMCID: PMC10800977 DOI: 10.3389/fmicb.2023.1332230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Abdominal fat deposition (AFD) in chickens is closely related to the gut microecological balance. In this study, the gut microbiota from high-AFD chickens was transplanted into the same strain of 0-day-old chicks via fecal microbiota transplantation (FMT). The FTM from chickens with high AFD had no obvious effects on growth traits, adult body weight, carcass weight, abdominal fat weight, and abdominal fat percentage, but did reduce the coefficient of variation of AFD traits. FMT significantly decreased cecal microbiome richness, changed the microbiota structure, and regulated the biological functions associated with energy metabolism and fat synthesis. Additionally, the cecal metabolite composition and metabolic function of FMT recipient chickens were also significantly altered from those of the controls. Transplantation of high-AFD chicken gut microbiota promoted fatty acid elongation and biosynthesis and reduced the metabolism of vitamins, steroids, and carbohydrates in the cecum. These findings provide insights into the mechanisms by which chicken gut microbiota affect host metabolic profiles and fat deposition.
Collapse
Affiliation(s)
- Jiani Song
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Chaowei Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhijie Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jingshou Liu
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Li Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xing Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zhuojun Xie
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xiangkun Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Zheng Ma
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jinlong Ding
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Tinoo’s Foods Group Co., Ltd., Guangdong, China
| | - Hai Xiang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
14
|
Song Y, Yu J, Wang B, Wen Q, Zhong Y, Wu M, Zheng X. Effect of fecal microbiota transplantation on early intestinal immune function and histomorphology of immune organs in chicks. Lett Appl Microbiol 2023; 76:ovad140. [PMID: 38111204 DOI: 10.1093/lambio/ovad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
The intestinal microbiota drives the maturation of the immune system, which is essential for maintaining lifetime homeostasis. Whether fecal microbiota transplantation can promote the development of the immune system in chicks? On days 1, 3, and 5, the post-hatch Hy-line Brown chicks were treated with fecal suspension from breeding hens. Intestinal length, blood biochemical indicators, the morphology of immune organs, and intestinal immunity-related indicators were focused on days 7 and 14. Short-chain fatty acids were determined by gas chromatography. We discovered that fecal microbial transplantation significantly increased the area of the follicles and medulla from the bursa of Fabricius, as well as the area of the medulla, cortex, and both ratios from the thymus on 14 d, the concentration of butyric acid in feces, the levels of immunologically active substances (transforming growth factor-β, interleukin 10, forkhead box protein P3, G-Protein Coupled Receptor 43, immunoglobulin A, etc.) in serum or the intestine, and the number of goblet cells. Correlation analysis indicated that short-chain fatty acids, as metabolites of the gut microbiota, were correlated with intestinal immunity. In short, fecal microbiota transplantation regulated early intestinal immunity, which provided the possibility for the processing and utilization of gut microbiota as germplasm resources. IMPACT STATEMENT Modern management of eggs causes the normal vertical transmission of microbiota from hens to be significantly reduced. The risk of environmental threats to newborn chicks is raised. The microbial community helps to mature the immune system of chicks and protect them from pathogen invasion. We still have doubts about whether transplanting the microbiota can regulate gut immunity. Using the gut microbiota of hens as an excellent resource to improve the immunity of chicks may provide new ideas for the development of the poultry industry.
Collapse
Affiliation(s)
- Yang Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Jing Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Baolin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Qiongyi Wen
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Yue Zhong
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Min Wu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| | - Xin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Changchun City, Jilin Province 130118, China
| |
Collapse
|
15
|
Hou JJ, Ma AH, Qin YH. Activation of the aryl hydrocarbon receptor in inflammatory bowel disease: insights from gut microbiota. Front Cell Infect Microbiol 2023; 13:1279172. [PMID: 37942478 PMCID: PMC10628454 DOI: 10.3389/fcimb.2023.1279172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory intestinal disease that affects more than 3.5 million people, with rising prevalence. It deeply affects patients' daily life, increasing the burden on patients, families, and society. Presently, the etiology of IBD remains incompletely clarified, while emerging evidence has demonstrated that altered gut microbiota and decreased aryl hydrocarbon receptor (AHR) activity are closely associated with IBD. Furthermore, microbial metabolites are capable of AHR activation as AHR ligands, while the AHR, in turn, affects the microbiota through various pathways. In light of the complex connection among gut microbiota, the AHR, and IBD, it is urgent to review the latest research progress in this field. In this review, we describe the role of gut microbiota and AHR activation in IBD and discussed the crosstalk between gut microbiota and the AHR in the context of IBD. Taken as a whole, we propose new therapeutic strategies targeting the AHR-microbiota axis for IBD, even for other related diseases caused by AHR-microbiota dysbiosis.
Collapse
Affiliation(s)
| | | | - Yue-Hua Qin
- Department of Gastroenterology, Shaoxing People’s Hospital, Shaoxing, China
| |
Collapse
|