1
|
Martín-del-Campo F, Vega-Magaña N, Salazar-Félix NA, Cueto-Manzano AM, Peña-Rodríguez M, Cortés-Sanabria L, Romo-Flores ML, Rojas-Campos E. Gut Microbiome Is Related to Cognitive Impairment in Peritoneal Dialysis Patients. Nutrients 2024; 16:2659. [PMID: 39203796 PMCID: PMC11357212 DOI: 10.3390/nu16162659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 09/03/2024] Open
Abstract
Gut microbiota disturbances may influence cognitive function, increasing uremic toxins and inflammation in dialysis patients; therefore, we aimed to evaluate the association of the gut microbiota profile with cognitive impairment (CI) in patients on automated peritoneal dialysis (APD). In a cross-sectional study, cognitive function was evaluated using the Montreal Cognitive Assessment in 39 APD patients and classified as normal cognitive function and CI. The gut microbiota was analyzed using the 16S rRNA gene sequencing approach. All patients had clinical, biochemical and urea clearance evaluations. Eighty-two percent of patients were men, with a mean age of 47 ± 24 years and 11 (7-48) months on PD therapy; 64% had mild CI. Patients with CI were older (53 ± 16 vs. 38 ± 14, p = 0.006) and had a higher frequency of diabetes mellitus (56% vs. 21%, p = 0.04) and constipation (7% vs. 48%, p = 0.04) and lower creatinine concentrations (11.3 ± 3.7 vs. 14.9 ± 5.4, p = 0.02) compared to normal cognitive function patients. Patients with CI showed a preponderance of S24_7, Rikenellaceae, Odoribacteraceae, Odoribacter and Anaerotruncus, while patients without CI had a greater abundance of Dorea, Ruminococcus, Sutterella and Fusobacteria (LDA score (Log10) > 2.5; p < 0.05). After glucose and age adjustment, Odoribacter was still associated with CI. In conclusion, patients with CI had a different gut microbiota characterized by the higher abundance of indole-producing and mucin-fermenting bacteria compared to normal cognitive function patients.
Collapse
Affiliation(s)
- Fabiola Martín-del-Campo
- Biomedical Research Unit 02, Specialties Hospital, Western National Medical Center, Mexican Institute of Social Security, Belisario Dominguez #1000, Guadalajara 44320, Mexico; (F.M.-d.-C.); (N.A.S.-F.); (L.C.-S.); (E.R.-C.)
| | - Natali Vega-Magaña
- Laboratory of Pathology, Department of Microbiology and Pathology, Health Sciences University Center, University of Guadalajara, Sierra Mojada #950, Guadalajara 44350, Mexico;
| | - Noé A. Salazar-Félix
- Biomedical Research Unit 02, Specialties Hospital, Western National Medical Center, Mexican Institute of Social Security, Belisario Dominguez #1000, Guadalajara 44320, Mexico; (F.M.-d.-C.); (N.A.S.-F.); (L.C.-S.); (E.R.-C.)
| | - Alfonso M. Cueto-Manzano
- Biomedical Research Unit 02, Specialties Hospital, Western National Medical Center, Mexican Institute of Social Security, Belisario Dominguez #1000, Guadalajara 44320, Mexico; (F.M.-d.-C.); (N.A.S.-F.); (L.C.-S.); (E.R.-C.)
| | - Marcela Peña-Rodríguez
- Research Institute on Chronic and Degenerative Diseases, Department of Molecular Biology and Genomics, Health Sciences University Center, University of Guadalajara, Sierra Mojada #950, Guadalajara 44350, Mexico;
| | - Laura Cortés-Sanabria
- Biomedical Research Unit 02, Specialties Hospital, Western National Medical Center, Mexican Institute of Social Security, Belisario Dominguez #1000, Guadalajara 44320, Mexico; (F.M.-d.-C.); (N.A.S.-F.); (L.C.-S.); (E.R.-C.)
| | - María L. Romo-Flores
- Department of Nephrology, Regional General Hospital 46, Mexican Institute of Social Security, Lázaro Cárdenas Av. 1060, Guadalajara 44910, Mexico;
| | - Enrique Rojas-Campos
- Biomedical Research Unit 02, Specialties Hospital, Western National Medical Center, Mexican Institute of Social Security, Belisario Dominguez #1000, Guadalajara 44320, Mexico; (F.M.-d.-C.); (N.A.S.-F.); (L.C.-S.); (E.R.-C.)
| |
Collapse
|
2
|
Paulay A, Grimaud GM, Caballero R, Laroche B, Leclerc M, Labarthe S, Maguin E. Design of a proteolytic module for improved metabolic modeling of Bacteroides caccae. mSystems 2024; 9:e0015324. [PMID: 38517169 PMCID: PMC11019848 DOI: 10.1128/msystems.00153-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The gut microbiota plays a crucial role in health and is significantly modulated by human diets. In addition to Western diets which are rich in proteins, high-protein diets are used for specific populations or indications, mainly weight loss. In this study, we investigated the effect of protein supplementation on Bacteroides caccae, a Gram-negative gut symbiont. The supplementation with whey proteins led to a significant increase in growth rate, final biomass, and short-chain fatty acids production. A comprehensive genomic analysis revealed that B. caccae possesses a set of 156 proteases with putative intracellular and extracellular localization and allowed to identify amino acid transporters and metabolic pathways. We developed a fully curated genome-scale metabolic model of B. caccae that incorporated its proteolytic activity and simulated its growth and production of fermentation-related metabolites in response to the different growth media. We validated the model by comparing the predicted phenotype to experimental data. The model accurately predicted B. caccae's growth and metabolite production (R2 = 0.92 for the training set and R2 = 0.89 for the validation set). We found that accounting for both ATP consumption related to proteolysis, and whey protein accessibility is necessary for accurate predictions of metabolites production. These results provide insights into B. caccae's adaptation to a high-protein diet and its ability to utilize proteins as a source of nutrition. The proposed model provides a useful tool for understanding the feeding mechanism of B. caccae in the gut microbiome.IMPORTANCEMicrobial proteolysis is understudied despite the availability of dietary proteins for the gut microbiota. Here, the proteolytic potential of the gut symbiont Bacteroides caccae was analyzed for the first time using pan-genomics. This sketches a well-equipped bacteria for protein breakdown, capable of producing 156 different proteases with a broad spectrum of cleavage targets. This functional potential was confirmed by the enhancement of growth and metabolic activities at high protein levels. Proteolysis was included in a B. caccae metabolic model which was fitted with the experiments and validated on external data. This model pinpoints the links between protein availability and short-chain fatty acids production, and the importance for B. caccae to gain access to glutamate and asparagine to promote growth. This integrated approach can be generalized to other symbionts and upscaled to complex microbiota to get insights into the ecological impact of proteins on the gut microbiota.
Collapse
Affiliation(s)
- Amandine Paulay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1319 Micalis Institute, Jouy-en-Josas, France
- Biomathematica, Ajaccio, France
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
| | | | - Raphaël Caballero
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1319 Micalis Institute, Jouy-en-Josas, France
| | - Béatrice Laroche
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, Inria, Centre Inria de Saclay, Palaiseau, France
| | - Marion Leclerc
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1319 Micalis Institute, Jouy-en-Josas, France
- Pendulum Therapeutics, San Francisco, California, USA
| | - Simon Labarthe
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- University of Bordeaux, INRAE, BIOGECO, Cestas, France
- Inria, Univ. Bordeaux, INRAE, Talence, France
| | - Emmanuelle Maguin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR1319 Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|