1
|
Abstract
Sirtuin 7 (SIRT7) is a member of the sirtuin family and has emerged as a key player in numerous cellular processes. It exhibits various enzymatic activities and is predominantly localized in the nucleolus, playing a role in ribosomal RNA expression, DNA damage repair, stress response and chromatin compaction. Recent studies have revealed its involvement in diseases such as cancer, cardiovascular and bone diseases, and obesity. In cancer, SIRT7 has been found to be overexpressed in multiple types of cancer, including breast cancer, clear cell renal cell carcinoma, lung adenocarcinoma, prostate adenocarcinoma, hepatocellular carcinoma, and gastric cancer, among others. In general, cancer cells exploit SIRT7 to enhance cell growth and metabolism through ribosome biogenesis, adapt to stress conditions and exert epigenetic control over cancer-related genes. The aim of this review is to provide an in-depth understanding of the role of SIRT7 in cancer carcinogenesis, evolution and progression by elucidating the underlying molecular mechanisms. Emphasis is placed on unveiling the intricate molecular pathways through which SIRT7 exerts its effects on cancer cells. In addition, this review discusses the feasibility and challenges associated with the development of drugs that can modulate SIRT7 activity.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Genetics and Molecular Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, San Pedro Zacatenco, Gustavo A. Madero, 07480, Mexico City, Mexico.
| |
Collapse
|
2
|
Hofmann S, Dombrowsky C, Happel D, Dessin C, Cermjani E, Cica M, Avrutina O, Sewald N, Neumann H, Kolmar H. Conditional Cell Penetration of Masked CPPs by an ADEPT-like Approach. ACS Chem Biol 2024; 19:1320-1329. [PMID: 38733564 DOI: 10.1021/acschembio.4c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The intracellular delivery of cargos via cell penetrating peptides (CPPs) holds significant promise as a drug delivery vehicle, but a major issue is their lack of cell type specificity, which can lead to detrimental off-target effects. We use an ADEPT-like concept to introduce conditional and selective activation of cellular uptake by using the lysine-rich, cationic, and amphiphilic L17E peptide as a model CPP. By masking the lysine residues of the L17E peptide with enzyme-cleavable acetyl protecting groups, the delivery of the covalently conjugated fluorophore TAMRA to HeLa cells was diminished. Recovery of cellular uptake could be achieved by deacetylation of the masked acetylated L17E peptide using the NAD-dependent sirtuin 2 (SirT2) deacetylase in vitro. Finally, trastuzumab-SirT2 and anti-B7H3-SirT2 antibody-enzyme conjugates were generated for the conditional and selective delivery of a cryptophycin cytotoxin by the L17E peptide. While the masked peptide still demonstrated some cytotoxicity, selective cell killing mediated by the antibody-enzyme conjugates was observed.
Collapse
Affiliation(s)
- Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Dominic Happel
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Cedric Dessin
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Egzon Cermjani
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Matijas Cica
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| | - Norbert Sewald
- Department of Chemistry/Organic Chemistry, Bielefeld University, Centrum für Biotechnologie - CeBiTec, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Heinz Neumann
- Department of Chemical Technology and Biotechnology, Darmstadt University of Applied Sciences, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, TU Darmstadt, Peter-Grünberg-Straße 4, 64283 Darmstadt, Germany
| |
Collapse
|
3
|
Mogol AN, Kaminsky AZ, Dutton DJ, Madak Erdogan Z. Targeting NAD+ Metabolism: Preclinical Insights into Potential Cancer Therapy Strategies. Endocrinology 2024; 165:bqae043. [PMID: 38565429 DOI: 10.1210/endocr/bqae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
NAD+ is one of the most important metabolites for cellular activities, and its biosynthesis mainly occurs through the salvage pathway using the nicotinamide phosphoribosyl transferase (NAMPT) enzyme. The main nicotinamide adenine dinucleotide (NAD) consumers, poly-ADP-ribose-polymerases and sirtuins enzymes, are heavily involved in DNA repair and chromatin remodeling. Since cancer cells shift their energy production pathway, NAD levels are significantly affected. NAD's roles in cell survival led to the use of NAD depletion in cancer therapies. NAMPT inhibition (alone or in combination with other cancer therapies, including endocrine therapy and chemotherapy) results in decreased cell viability and tumor burden for many cancer types. Many NAMPT inhibitors (NAMPTi) tested before were discontinued due to toxicity; however, a novel NAMPTi, KPT-9274, is a promising, low-toxicity option currently in clinical trials.
Collapse
Affiliation(s)
- Ayça N Mogol
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Alanna Z Kaminsky
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
| | - David J Dutton
- Molecular Cell Biology Department, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| | - Zeynep Madak Erdogan
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
- Food Science and Human Nutrition Department, University of Illinois Urbana-Champaign, Champaign, IL 6180161801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61801, USA
| |
Collapse
|
4
|
Pugel AD, Schoenfeld AM, Alsaifi SZ, Holmes JR, Morrison BE. The Role of NAD + and NAD +-Boosting Therapies in Inflammatory Response by IL-13. Pharmaceuticals (Basel) 2024; 17:226. [PMID: 38399441 PMCID: PMC10893221 DOI: 10.3390/ph17020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The essential role of nicotinamide adenine dinucleotide+ (NAD+) in redox reactions during oxidative respiration is well known, yet the coenzyme and regulator functions of NAD+ in diverse and important processes are still being discovered. Maintaining NAD+ levels through diet is essential for health. In fact, the United States requires supplementation of the NAD+ precursor niacin into the food chain for these reasons. A large body of research also indicates that elevating NAD+ levels is beneficial for numerous conditions, including cancer, cardiovascular health, inflammatory response, and longevity. Consequently, strategies have been created to elevate NAD+ levels through dietary supplementation with NAD+ precursor compounds. This paper explores current research regarding these therapeutic compounds. It then focuses on the NAD+ regulation of IL-13 signaling, which is a research area garnering little attention. IL-13 is a critical regulator of allergic response and is associated with Parkinson's disease and cancer. Evidence supporting the notion that increasing NAD+ levels might reduce IL-13 signal-induced inflammatory response is presented. The assessment is concluded with an examination of reports involving popular precursor compounds that boost NAD+ and their associations with IL-13 signaling in the context of offering a means for safely and effectively reducing inflammatory response by IL-13.
Collapse
Affiliation(s)
- Anton D. Pugel
- Biomolecular Ph.D. Program, Boise State University, Boise, ID 83725, USA;
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Alyssa M. Schoenfeld
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Sara Z. Alsaifi
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Jocelyn R. Holmes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| | - Brad E. Morrison
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (A.M.S.); (S.Z.A.); (J.R.H.)
| |
Collapse
|
5
|
Che B, Zhang W, Li W, Tang K, Yin J, Liu M, Xu S, Huang T, Yu Y, Huang K, Peng Z, Zha C. Bacterial lipopolysaccharide-related genes are involved in the invasion and recurrence of prostate cancer and are related to immune escape based on bioinformatics analysis. Front Oncol 2023; 13:1141191. [PMID: 37188204 PMCID: PMC10175693 DOI: 10.3389/fonc.2023.1141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background The composition of the tumor microbial microenvironment participates in the whole process of tumor disease. However, due to the limitations of the current technical level, the depth and breadth of the impact of microorganisms on tumors have not been fully recognized, especially in prostate cancer (PCa). Therefore, the purpose of this study is to explore the role and mechanism of the prostate microbiome in PCa based on bacterial lipopolysaccharide (LPS)-related genes by means of bioinformatics. Methods The Comparative Toxicogenomics Database (CTD) was used to find bacterial LPS- related genes. PCa expression profile data and clinical data were acquired from TCGA, GTEx, and GEO. The differentially expressed LPS-related hub genes (LRHG) were obtained by Venn diagram, and gene set enrichment analysis (GSEA) was used to investigate the putative molecular mechanism of LRHG. The immune infiltration score of malignancies was investigated using single-sample gene set enrichment analysis (ssGSEA). Using univariate and multivariate Cox regression analysis, a prognostic risk score model and nomogram were developed. Results 6 LRHG were screened. LRHG were involved in functional phenotypes such as tumor invasion, fat metabolism, sex hormone response, DNA repair, apoptosis, and immunoregulation. And it can regulate the immune microenvironment in the tumor by influencing the antigen presentation of immune cells in the tumor. And a prognostic risk score and the nomogram, which were based on LRHG, showed that the low-risk score has a protective effect on patients. Conclusion Microorganisms in the PCa microenvironment may use complex mechanism and networks to regulate the occurrence and development of PCa. Bacterial lipopolysaccharide-related genes can help build a reliable prognostic model and predict progression-free survival in patients with prostate cancer.
Collapse
Affiliation(s)
- Bangwei Che
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
- Department of Urology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jingju Yin
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Miao Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Tao Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Ying Yu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Cheng Zha
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| |
Collapse
|
6
|
Rodems TS, Heninger E, Stahlfeld CN, Gilsdorf CS, Carlson KN, Kircher MR, Singh A, Krueger TEG, Beebe DJ, Jarrard DF, McNeel DG, Haffner MC, Lang JM. Reversible epigenetic alterations regulate class I HLA loss in prostate cancer. Commun Biol 2022; 5:897. [PMID: 36050516 PMCID: PMC9437063 DOI: 10.1038/s42003-022-03843-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/15/2022] [Indexed: 11/09/2022] Open
Abstract
Downregulation of HLA class I (HLA-I) impairs immune recognition and surveillance in prostate cancer and may underlie the ineffectiveness of checkpoint blockade. However, the molecular mechanisms regulating HLA-I loss in prostate cancer have not been fully explored. Here, we conducted a comprehensive analysis of HLA-I genomic, epigenomic and gene expression alterations in primary and metastatic human prostate cancer. Loss of HLA-I gene expression was associated with repressive chromatin states including DNA methylation, histone H3 tri-methylation at lysine 27, and reduced chromatin accessibility. Pharmacological DNA methyltransferase (DNMT) and histone deacetylase (HDAC) inhibition decreased DNA methylation and increased H3 lysine 27 acetylation and resulted in re-expression of HLA-I on the surface of tumor cells. Re-expression of HLA-I on LNCaP cells by DNMT and HDAC inhibition increased activation of co-cultured prostate specific membrane antigen (PSMA)27-38-specific CD8+ T-cells. HLA-I expression is epigenetically regulated by functionally reversible DNA methylation and chromatin modifications in human prostate cancer. Methylated HLA-I was detected in HLA-Ilow circulating tumor cells (CTCs), which may serve as a minimally invasive biomarker for identifying patients who would benefit from epigenetic targeted therapies.
Collapse
Affiliation(s)
- Tamara S Rodems
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Charlotte N Stahlfeld
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Cole S Gilsdorf
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Kristin N Carlson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Anupama Singh
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - David J Beebe
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Pathology, University of Wisconsin, Madison, 3170 UW Medical Foundation Centennial Building, 1685 Highland Ave., Madison, WI, 53705, USA
| | - David F Jarrard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.,Department of Urology, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA
| | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N., Seattle, WA, 98109, USA.,Department of Pathology, University of Washington, 1959 NE Pacific St., Seattle, WA, 98195, USA.,Department of Pathology, Johns Hopkins School of Medicine, 600N Wolfe St., Baltimore, MD, 21287, USA
| | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA. .,Department of Medicine, University of Wisconsin, Madison, 1111 Highland Ave., Madison, WI, 53705, USA.
| |
Collapse
|
7
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022; 15:111. [PMID: 35978433 PMCID: PMC9386972 DOI: 10.1186/s13045-022-01325-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/01/2022] [Indexed: 12/13/2022] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.,Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
8
|
Wang Y, Zhang H, Liu C, Wang Z, Wu W, Zhang N, Zhang L, Hu J, Luo P, Zhang J, Liu Z, Peng Y, Liu Z, Tang L, Cheng Q. Immune checkpoint modulators in cancer immunotherapy: recent advances and emerging concepts. J Hematol Oncol 2022. [PMID: 35978433 DOI: 10.1186/s13045-022-01325-0.pmid:35978433;pmcid:pmc9386972.[125]robertc.adecadeofimmune-checkpointinhibitorsincancertherapy.natcommun.2020jul30;11(1):3801.doi:10.1038/s41467-020-17670-y.pmid:32732879;pmcid:pmc7393098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The discovery of immune checkpoint inhibitors (ICIs) has now been universally acknowledged as a significant breakthrough in tumor therapy after the targeted treatment of checkpoint molecules: anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) on several cancer types achieved satisfying results. However, there are still quite a lot of patients suffering from severe side effects and ineffective treatment outcomes. Although the current ICI therapy is far from satisfying, a series of novel immune checkpoint molecules with remarkable preclinical and clinical benefits are being widely investigated, like the V-domain Ig suppressor of T cell activation (VISTA), which can also be called PD-1 homolog (PD-1H), and ectonucleotidases: CD39, CD73, and CD38, which belong to the ribosyl cyclase family, etc. In this review, we systematically summarized and discussed these molecules' biological structures, molecular features, and the corresponding targeted drugs, aiming to help the in-depth understanding of immune checkpoint molecules and promote the clinical practice of ICI therapy.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, People's Republic of China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, People's Republic of China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neurosurgery, and Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, USA
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Jason Hu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Neonatology, Yale University School of Medicine, New Haven, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, People's Republic of China
| | - Yun Peng
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Lanhua Tang
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Center South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China.
| |
Collapse
|
9
|
Kanayama M, Luo J. CD38-Induced Apoptosis and Mitochondrial Damage is Restored by Nicotinamide in Prostate Cancer. Front Mol Biosci 2022; 9:890402. [PMID: 35677882 PMCID: PMC9168365 DOI: 10.3389/fmolb.2022.890402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential molecule for living organisms. CD38 is a key NAD+-dependent enzyme which breaks down NAD+ to cyclic ADP-ribose (ADPR) and nicotinamide (NAM, vitamin B3), and NAM can be recycled to synthesize NAD+. CD38 expression is consistently silenced by methylation in prostate cancer and progressively downregulated in advanced castration-resistant prostate cancer, suggesting a connection between NAD+ and prostate carcinogenesis as well as prostate cancer progression. However, the functional interplay between NAD+, CD38, and NAM remains largely uncharacterized in prostate cancer cells. In this study, we generated stable LNCaP95 cell clones expressing varying levels of CD38 upon induction by doxycycline. We demonstrate that CD38 overexpression resulted in growth suppression and apoptosis accompanied by cleavage of poly (ADP-ribose) polymerase 1 (PARP1). CD38 overexpression also dramatically reduced intracellular NAD+ levels and decreased mitochondrial respiration as measured by oxygen consumption rate. We further show that some but not all of these CD38-induced phenotypes could be rescued by exogenous NAM. Treatment of cells with NAM rescued CD38-induced apoptosis and mitochondrial stress but did not restore intracellular NAD+ levels. We also found that NAM demonstrated biphasic effect on mitochondria function, a finding that can be explained by the dual role of NAM as both a precursor of NAD+ and also as a suppressor of a number of NAD+-dependent enzymes. Collectively, these findings provide additional insight supporting the functional relevance of CD38 loss in prostate cancer by linking cell-autonomous regulation of mitochondrial function and prostate cancer.
Collapse
|
10
|
Quantitative Analysis of Daporinad (FK866) and Its In Vitro and In Vivo Metabolite Identification Using Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. Molecules 2022; 27:molecules27062011. [PMID: 35335372 PMCID: PMC8954816 DOI: 10.3390/molecules27062011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
Daporinad (FK866) is one of the highly specific inhibitors of nicotinamide phosphoribosyl transferase (NAMPT) and known to have its unique mechanism of action that induces the tumor cell apoptosis. In this study, a simple and sensitive liquid chromatography–quadrupole-time-of-flight–mass spectrometric (LC-qTOF-MS) assay has been developed for the evaluation of drug metabolism and pharmacokinetics (DMPK) properties of Daporinad in mice. A simple protein precipitation method using acetonitrile (ACN) was used for the sample preparation and the pre-treated samples were separated by a C18 column. The calibration curve was evaluated in the range of 1.02~2220 ng/mL and the quadratic regression (weighted 1/concentration2) was used for the best fit of the curve with a correlation coefficient ≥ 0.99. The qualification run met the acceptance criteria of ±25% accuracy and precision values for QC samples. The dilution integrity was verified for 5, 10 and 30-fold dilution and the accuracy and precision of the dilution QC samples were also satisfactory within ±25% of the nominal values. The stability results indicated that Daporinad was stable for the following conditions: short-term (4 h), long-term (2 weeks), freeze/thaw (three cycles). This qualified method was successfully applied to intravenous (IV) pharmacokinetic (PK) studies of Daporinad in mice at doses of 5, 10 and 30 mg/kg. As a result, it showed a linear PK tendency in the dose range from 5 to 10 mg/kg, but a non-linear PK tendency in the dose of 30 mg/kg. In addition, in vitro and in vivo metabolite identification (Met ID) studies were conducted to understand the PK properties of Daporinad and the results showed that a total of 25 metabolites were identified as ten different types of metabolism in our experimental conditions. In conclusion, the LC-qTOF-MS assay was successfully developed for the quantification of Daporinad in mouse plasma as well as for its in vitro and in vivo metabolite identification.
Collapse
|
11
|
Zeidler JD, Hogan KA, Agorrody G, Peclat TR, Kashyap S, Kanamori KS, Gomez LS, Mazdeh DZ, Warner GM, Thompson KL, Chini CCS, Chini EN. The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. Am J Physiol Cell Physiol 2022; 322:C521-C545. [PMID: 35138178 PMCID: PMC8917930 DOI: 10.1152/ajpcell.00451.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD) acts as a cofactor in several oxidation-reduction (redox) reactions and is a substrate for a number of nonredox enzymes. NAD is fundamental to a variety of cellular processes including energy metabolism, cell signaling, and epigenetics. NAD homeostasis appears to be of paramount importance to health span and longevity, and its dysregulation is associated with multiple diseases. NAD metabolism is dynamic and maintained by synthesis and degradation. The enzyme CD38, one of the main NAD-consuming enzymes, is a key component of NAD homeostasis. The majority of CD38 is localized in the plasma membrane with its catalytic domain facing the extracellular environment, likely for the purpose of controlling systemic levels of NAD. Several cell types express CD38, but its expression predominates on endothelial cells and immune cells capable of infiltrating organs and tissues. Here we review potential roles of CD38 in health and disease and postulate ways in which CD38 dysregulation causes changes in NAD homeostasis and contributes to the pathophysiology of multiple conditions. Indeed, in animal models the development of infectious diseases, autoimmune disorders, fibrosis, metabolic diseases, and age-associated diseases including cancer, heart disease, and neurodegeneration are associated with altered CD38 enzymatic activity. Many of these conditions are modified in CD38-deficient mice or by blocking CD38 NADase activity. In diseases in which CD38 appears to play a role, CD38-dependent NAD decline is often a common denominator of pathophysiology. Thus, understanding dysregulation of NAD homeostasis by CD38 may open new avenues for the treatment of human diseases.
Collapse
Affiliation(s)
- Julianna D Zeidler
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Guillermo Agorrody
- Departamento de Fisiopatología, Hospital de Clínicas, Montevideo, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonu Kashyap
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Lilian Sales Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Delaram Z Mazdeh
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Claudia C S Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| | - Eduardo Nunes Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, Florida
| |
Collapse
|
12
|
Barrientos-Robledo SG, Cebada-Ruiz JA, Rodríguez-Alba JC, Baltierra-Uribe SL, Díaz Y Orea MA, Romero-Ramírez H. CD38 a biomarker and therapeutic target in non-hematopoietic tumors. Biomark Med 2022; 16:387-400. [PMID: 35195042 DOI: 10.2217/bmm-2021-0575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The type II transmembrane glycoprotein CD38 has recently been implicated in regulating metabolism and the pathogenesis of multiple conditions, including aging, inflammation and cancer. CD38 is overexpressed in several tumor cells and microenvironment tumoral cells, associated to migration, angiogenesis, cell invasion and progression of the disease. Thus, CD38 has been used as a progression marker for different cancer types as well as in immunotherapy. This review focuses on describing the involvement of CD38 in various non-hematopoietic cancers.
Collapse
Affiliation(s)
- Susana G Barrientos-Robledo
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Jorge A Cebada-Ruiz
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Juan C Rodríguez-Alba
- Unidad de Citometría de Flujo, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Shantal L Baltierra-Uribe
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria A Díaz Y Orea
- Laboratorio de Inmunología Experimental, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Puebla, Mexico
| | - Héctor Romero-Ramírez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados, Mexico City, Mexico
| |
Collapse
|
13
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
14
|
Ugamraj HS, Dang K, Ouisse LH, Buelow B, Chini EN, Castello G, Allison J, Clarke SC, Davison LM, Buelow R, Deng R, Iyer S, Schellenberger U, Manika SN, Bijpuria S, Musnier A, Poupon A, Cuturi MC, van Schooten W, Dalvi P. TNB-738, a biparatopic antibody, boosts intracellular NAD+ by inhibiting CD38 ecto-enzyme activity. MAbs 2022; 14:2095949. [PMID: 35867844 PMCID: PMC9311320 DOI: 10.1080/19420862.2022.2095949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cluster of differentiation 38 (CD38) is an ecto-enzyme expressed primarily on immune cells that metabolize nicotinamide adenine dinucleotide (NAD+) to adenosine diphosphate ribose or cyclic ADP-ribose and nicotinamide. Other substrates of CD38 include nicotinamide adenine dinucleotide phosphate and nicotinamide mononucleotide, a critical NAD+ precursor in the salvage pathway. NAD+ is an important coenzyme involved in several metabolic pathways and is a required cofactor for the function of sirtuins (SIRTs) and poly (adenosine diphosphate-ribose) polymerases. Declines in NAD+ levels are associated with metabolic and inflammatory diseases, aging, and neurodegenerative disorders. To inhibit CD38 enzyme activity and boost NAD+ levels, we developed TNB-738, an anti-CD38 biparatopic antibody that pairs two non-competing heavy chain-only antibodies in a bispecific format. By simultaneously binding two distinct epitopes on CD38, TNB-738 potently inhibited its enzymatic activity, which in turn boosted intracellular NAD+ levels and SIRT activities. Due to its silenced IgG4 Fc, TNB-738 did not deplete CD38-expressing cells, in contrast to the clinically available anti-CD38 antibodies, daratumumab, and isatuximab. TNB-738 offers numerous advantages compared to other NAD-boosting therapeutics, including small molecules, and supplements, due to its long half-life, specificity, safety profile, and activity. Overall, TNB-738 represents a novel treatment with broad therapeutic potential for metabolic and inflammatory diseases associated with NAD+ deficiencies.Abbreviations: 7-AAD: 7-aminoactinomycin D; ADCC: antibody dependent cell-mediated cytotoxicity; ADCP: antibody dependent cell-mediated phagocytosis; ADPR: adenosine diphosphate ribose; APC: allophycocyanin; cADPR: cyclic ADP-ribose; cDNA: complementary DNA; BSA: bovine serum albumin; CD38: cluster of differentiation 38; CDC: complement dependent cytotoxicity; CFA: Freund's complete adjuvant; CHO: Chinese hamster ovary; CCP4: collaborative computational project, number 4; COOT: crystallographic object-oriented toolkit; DAPI: 4',6-diamidino-2-phenylindole; DNA: deoxyribonucleic acid; DSC: differential scanning calorimetry; 3D: three dimensional; εNAD+: nicotinamide 1,N6-ethenoadenine dinucleotide; ECD: extracellular domain; EGF: epidermal growth factor; FACS: fluorescence activated cell sorting; FcγR: Fc gamma receptors; FITC: fluorescein isothiocyanate; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; IgG: immunoglobulin; IFA: incomplete Freund's adjuvant; IFNγ: Interferon gamma; KB: kinetic buffer; kDa: kilodalton; KEGG: kyoto encyclopedia of genes and genomes; LDH: lactate dehydrogenase; M: molar; mM: millimolar; MFI: mean fluorescent intensity; NA: nicotinic acid; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide phosphate; NAM: nicotinamide; NGS: next-generation sequencing; NHS/EDC: N-Hydroxysuccinimide/ ethyl (dimethylamino propyl) carbodiimide; Ni-NTA: nickel-nitrilotriacetic acid; nL: nanoliter; NK: natural killer; NMN: nicotinamide mononucleotide; OD: optical density; PARP: poly (adenosine diphosphate-ribose) polymerase; PBS: phosphate-buffered saline; PBMC: peripheral blood mononuclear cell; PDB: protein data bank; PE: phycoerythrin; PISA: protein interfaces, surfaces, and assemblies: PK: pharmacokinetics; mol: picomolar; RNA: ribonucleic acid; RLU: relative luminescence units; rpm: rotations per minute; RU: resonance unit; SEC: size exclusion chromatography; SEM: standard error of the mean; SIRT: sirtuins; SPR: surface plasmon resonance; µg: microgram; µM: micromolar; µL: microliter.
Collapse
Affiliation(s)
| | | | - Laure-Hélène Ouisse
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | - Eduardo N Chini
- Department of Anesthesiology and Perioperative Medicine, Kogod Center on Aging, Mitochondrial Care Center, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | | | | | | | - Rong Deng
- R&D Q-Pharm consulting LLC, Pleasanton, California, USA
| | | | | | | | | | | | | | - Maria Cristina Cuturi
- INSERM, Centre de Recherche en Transplantation et Immunologie UMR1064, Université, Nantes, France
| | | | | |
Collapse
|
15
|
Asrani K, Torres AFC, Woo J, Vidotto T, Tsai HK, Luo J, Corey E, Hanratty B, Coleman I, Yegnasubramanian S, De Marzo AM, Nelson PS, Haffner MC, Lotan TL. Reciprocal YAP1 loss and INSM1 expression in neuroendocrine prostate cancer. J Pathol 2021; 255:425-437. [PMID: 34431104 PMCID: PMC8599638 DOI: 10.1002/path.5781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022]
Abstract
Neuroendocrine prostate cancer (NEPC) is a rare but aggressive histologic variant of prostate cancer that responds poorly to androgen deprivation therapy. Hybrid NEPC-adenocarcinoma (AdCa) tumors are common, often eluding accurate pathologic diagnosis and requiring ancillary markers for classification. We recently performed an outlier-based meta-analysis across a number of independent gene expression microarray datasets to identify novel markers that differentiate NEPC from AdCa, including up-regulation of insulinoma-associated protein 1 (INSM1) and loss of Yes-associated protein 1 (YAP1). Here, using diverse cancer gene expression datasets, we show that Hippo pathway-related genes, including YAP1, are among the top down-regulated gene sets with expression of the neuroendocrine transcription factors, including INSM1. In prostate cancer cell lines, transgenic mouse models, and human prostate tumor cohorts, we confirm that YAP1 RNA and YAP1 protein expression are silenced in NEPC and demonstrate that the inverse correlation of INSM1 and YAP1 expression helps to distinguish AdCa from NEPC. Mechanistically, we find that YAP1 loss in NEPC may help to maintain INSM1 expression in prostate cancer cell lines and we further demonstrate that YAP1 silencing likely occurs epigenetically, via CpG hypermethylation near its transcriptional start site. Taken together, these data nominate two additional markers to distinguish NEPC from AdCa and add to data from other tumor types suggesting that Hippo signaling is tightly reciprocally regulated with neuroendocrine transcription factor expression. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kaushal Asrani
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Alba F. C. Torres
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Juhyung Woo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Harrison K. Tsai
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Current address: Boston Children’s Hospital, Boston, MA
| | - Jun Luo
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Ilsa Coleman
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Angelo M. De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Michael C. Haffner
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA
| | - Tamara L. Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
16
|
PI3K Pathway Inhibition with NVP-BEZ235 Hinders Glycolytic Metabolism in Glioblastoma Multiforme Cells. Cells 2021; 10:cells10113065. [PMID: 34831287 PMCID: PMC8616488 DOI: 10.3390/cells10113065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma multiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism, we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially regulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines. FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2. Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes was associated with poor prognosis in GBM based on Kaplan-Meier survival analyses. Our results suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR dual inhibition.
Collapse
|
17
|
Leutert M, Duan Y, Winzer R, Menzel S, Tolosa E, Magnus T, Hottiger MO, Koch-Nolte F, Rissiek B. Identification of the Mouse T Cell ADP-Ribosylome Uncovers ARTC2.2 Mediated Regulation of CD73 by ADP-Ribosylation. Front Immunol 2021; 12:703719. [PMID: 34504490 PMCID: PMC8421852 DOI: 10.3389/fimmu.2021.703719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD+) to arginine residues of various cell surface proteins thereby influencing their function. Several targets of ARTC2.2, such as P2X7, CD8a and CD25 have been identified, however a comprehensive mouse T cell surface ADP-ribosylome analysis is currently missing. Using the Af1521 macrodomain-based enrichment of ADP-ribosylated peptides and mass spectrometry, we identified 93 ADP-ribsoylated peptides corresponding to 67 distinct T cell proteins, including known targets such as CD8a and CD25 but also previously unknown targets such as CD73. We evaluated the impact of ADP-ribosylation on the capability of CD73 to generate adenosine from adenosine monophosphate. Our results show that extracellular NAD+ reduces the enzymatic activity of CD73 HEK cells co-transfected with CD73/ARTC2.2. Importantly, NAD+ significantly reduced CD73 activity on WT CD8 T cells compared to ARTC2ko CD8 T cells or WT CD8 T cells treated with an ARTC2.2-blocking nanobody. Our study provides a comprehensive list of T cell membrane proteins that serve as targets for ADP-ribosylation by ARTC2.2 and whose function may be therefore affected by ADP-ribosylation.
Collapse
Affiliation(s)
- Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Yinghui Duan
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Riekje Winzer
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Menzel
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Audrito V, Messana VG, Brandimarte L, Deaglio S. The Extracellular NADome Modulates Immune Responses. Front Immunol 2021; 12:704779. [PMID: 34421911 PMCID: PMC8371318 DOI: 10.3389/fimmu.2021.704779] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/21/2021] [Indexed: 12/30/2022] Open
Abstract
The term NADome refers to the intricate network of intracellular and extracellular enzymes that regulate the synthesis or degradation of nicotinamide adenine dinucleotide (NAD) and to the receptors that engage it. Traditionally, NAD was linked to intracellular energy production through shuffling electrons between oxidized and reduced forms. However, recent data indicate that NAD, along with its biosynthetic and degrading enzymes, has a life outside of cells, possibly linked to immuno-modulating non-enzymatic activities. Extracellular NAD can engage puriginergic receptors triggering an inflammatory response, similar - to a certain extent - to what described for adenosine triphosphate (ATP). Likewise, NAD biosynthetic and degrading enzymes have been amply reported in the extracellular space, where they possess both enzymatic and non-enzymatic functions. Modulation of these enzymes has been described in several acute and chronic conditions, including obesity, cancer, inflammatory bowel diseases and sepsis. In this review, the role of the extracellular NADome will be discussed, focusing on its proposed role in immunomodulation, together with the different strategies for its targeting and their potential therapeutic impact.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Lorenzo Brandimarte
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
20
|
Saidova AA, Potashnikova DM, Tvorogova AV, Paklina OV, Veliev EI, Knyshinsky GV, Setdikova GR, Rotin DL, Maly IV, Hofmann WA, Vorobjev IA. Myosin 1C isoform A is a novel candidate diagnostic marker for prostate cancer. PLoS One 2021; 16:e0251961. [PMID: 34019593 PMCID: PMC8139512 DOI: 10.1371/journal.pone.0251961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/06/2021] [Indexed: 12/26/2022] Open
Abstract
Early diagnosis of prostate cancer is a challenging issue due to the lack of specific markers. Therefore, a sensitive diagnostic marker that is expressed or upregulated exclusively in prostate cancer cells would facilitate diagnostic procedures and ensure a better outcome. We evaluated the expression of myosin 1C isoform A in 5 prostate cell lines, 41 prostate cancer cases, and 11 benign hyperplasias. We analyzed the expression of 12 surface molecules on prostate cancer cells by flow cytometry and analyzed whether high or low myosin 1C isoform A expression could be attributed to a distinct phenotype of prostate cancer cells. Median myosin 1C isoform A expression in prostate cancer samples and cancer cell lines was 2 orders of magnitude higher than in benign prostate hyperplasia. Based on isoform A expression, we could also distinguish clinical stage 2 from clinical stage 3. Among cell lines, PC-3 cells with the highest myosin 1C isoform A level had diminished numbers of CD10/CD13-positive cells and increased numbers of CD29 (integrin β1), CD38, CD54 (ICAM1) positive cells. The surface phenotype of clinical samples was similar to prostate cancer cell lines with high isoform A expression and could be described as CD10-/CD13- with heterogeneous expression of other markers. Both for cell lines and cancer specimens we observed the strong correlation of high myosin 1C isoform A mRNA expression and elevated levels of CD29 and CD54, suggesting a more adhesive phenotype for cells with high isoform A expression. Compared to normal tissue, prostate cancer samples had also reduced numbers of CD24- and CD38-positive cells. Our data suggest that a high level of myosin 1C isoform A is a specific marker both for prostate cancer cells and prostate cancer cell lines. High expression of isoform A is associated with less activated (CD24/CD38 low) and more adhesive (CD29/CD54 high) surface phenotype compared to benign prostate tissue.
Collapse
Affiliation(s)
- Aleena A. Saidova
- School of Biology, Cell Biology and Histology Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Daria M. Potashnikova
- School of Biology, Cell Biology and Histology Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Anna V. Tvorogova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Oxana V. Paklina
- Pathoanatomy Department, S.P. Botkin Clinical Hospital, Moscow, Russia
| | | | | | | | - Daniil L. Rotin
- Pathoanatomy Department, S.P. Botkin Clinical Hospital, Moscow, Russia
| | - Ivan V. Maly
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Wilma A. Hofmann
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States of America
| | - Ivan A. Vorobjev
- School of Biology, Cell Biology and Histology Department, M.V. Lomonosov Moscow State University, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
21
|
Guo C, Crespo M, Gurel B, Dolling D, Rekowski J, Sharp A, Petremolo A, Sumanasuriya S, Rodrigues DN, Ferreira A, Pereira R, Figueiredo I, Mehra N, Lambros MBK, Neeb A, Gil V, Seed G, Terstappen L, Alimonti A, Drake CG, Yuan W, de Bono JS. CD38 in Advanced Prostate Cancers. Eur Urol 2021; 79:736-746. [PMID: 33678520 PMCID: PMC8175332 DOI: 10.1016/j.eururo.2021.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/12/2021] [Indexed: 12/13/2022]
Abstract
Background CD38, a druggable ectoenzyme, is involved in the generation of adenosine, which is implicated in tumour immune evasion. Its expression and role in prostate tumour-infiltrating immune cells (TIICs) have not been elucidated. Objective To characterise CD38 expression on prostate cancer (PC) epithelial cells and TIICs, and to associate this expression with clinical outcomes. Design, setting, and participants RNAseq from 159 patients with metastatic castration-resistant prostate cancer (mCRPC) in the International Stand Up To Cancer/Prostate Cancer Foundation (SU2C/PCF) cohort and 171 mCRPC samples taken from 63 patients in the Fred Hutchinson Cancer Research Centre cohort were analysed. CD38 expression was immunohistochemically scored by a validated assay on 51 castration-resistant PC (CRPC) and matching, same-patient castration-sensitive PC (CSPC) biopsies obtained between 2016 and 2018, and was associated with retrospectively collected clinical data. Outcome measurements and statistical analysis mCRPC transcriptomes were analysed for associations between CD38 expression and gene expression signatures. Multiplex immunofluorescence determined CD38 expression in PC biopsies. Differences in CD38+ TIIC densities between CSPC and CRPC biopsies were analysed using a negative binomial mixed model. Differences in the proportions of CD38+ epithelial cells between non-matched benign prostatic epithelium and PC were compared using Fisher’s exact test. Differences in the proportions of biopsies containing CD38+ tumour epithelial cells between matched CSPC and CRPC biopsies were compared by McNemar’s test. Univariable and multivariable survival analyses were performed using Cox regression models. Results and limitations CD38 mRNA expression in mCRPC was most significantly associated with upregulated immune signalling pathways. CD38 mRNA expression was associated with interleukin (IL)-12, IL-23, and IL-27 signalling signatures as well as immunosuppressive adenosine signalling and T cell exhaustion signatures. CD38 protein was frequently expressed on phenotypically diverse TIICs including B cells and myeloid cells, but largely absent from tumour epithelial cells. CD38+ TIIC density increased with progression to CRPC and was independently associated with worse overall survival. Future studies are required to dissect TIIC CD38 function. Conclusions CD38+ prostate TIICs associate with worse survival and immunosuppressive mechanisms. The role of CD38 in PC progression warrants investigation as insights into its functions may provide rationale for CD38 targeting in lethal PC. Patient summary CD38 is expressed on the surface of white blood cells surrounding PC cells. These cells may impact PC growth and treatment resistance. Patients with PC with more CD38-expressing white blood cells are more likely to die earlier.
Collapse
Affiliation(s)
- Christina Guo
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Bora Gurel
- The Institute of Cancer Research, London, UK
| | | | | | - Adam Sharp
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | - Semini Sumanasuriya
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | - Daniel N Rodrigues
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK
| | | | | | | | - Niven Mehra
- The Institute of Cancer Research, London, UK
| | | | - Antje Neeb
- The Institute of Cancer Research, London, UK
| | | | - George Seed
- The Institute of Cancer Research, London, UK
| | | | - Andrea Alimonti
- Institute of Oncology Research, Bellinzona, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; Department of Medicine, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy
| | | | - Wei Yuan
- The Institute of Cancer Research, London, UK
| | - Johann S de Bono
- The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, Sutton, UK.
| | | |
Collapse
|
22
|
Navas LE, Carnero A. NAD + metabolism, stemness, the immune response, and cancer. Signal Transduct Target Ther 2021; 6:2. [PMID: 33384409 PMCID: PMC7775471 DOI: 10.1038/s41392-020-00354-w] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 09/27/2020] [Indexed: 02/07/2023] Open
Abstract
NAD+ was discovered during yeast fermentation, and since its discovery, its important roles in redox metabolism, aging, and longevity, the immune system and DNA repair have been highlighted. A deregulation of the NAD+ levels has been associated with metabolic diseases and aging-related diseases, including neurodegeneration, defective immune responses, and cancer. NAD+ acts as a cofactor through its interplay with NADH, playing an essential role in many enzymatic reactions of energy metabolism, such as glycolysis, oxidative phosphorylation, fatty acid oxidation, and the TCA cycle. NAD+ also plays a role in deacetylation by sirtuins and ADP ribosylation during DNA damage/repair by PARP proteins. Finally, different NAD hydrolase proteins also consume NAD+ while converting it into ADP-ribose or its cyclic counterpart. Some of these proteins, such as CD38, seem to be extensively involved in the immune response. Since NAD cannot be taken directly from food, NAD metabolism is essential, and NAMPT is the key enzyme recovering NAD from nicotinamide and generating most of the NAD cellular pools. Because of the complex network of pathways in which NAD+ is essential, the important role of NAD+ and its key generating enzyme, NAMPT, in cancer is understandable. In the present work, we review the role of NAD+ and NAMPT in the ways that they may influence cancer metabolism, the immune system, stemness, aging, and cancer. Finally, we review some ongoing research on therapeutic approaches.
Collapse
Affiliation(s)
- Lola E Navas
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,CIBER de Cancer, Sevilla, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Sevilla, Spain. .,CIBER de Cancer, Sevilla, Spain.
| |
Collapse
|
23
|
Chini CCS, Peclat TR, Warner GM, Kashyap S, Espindola-Netto JM, de Oliveira GC, Gomez LS, Hogan KA, Tarragó MG, Puranik AS, Agorrody G, Thompson KL, Dang K, Clarke S, Childs BG, Kanamori KS, Witte MA, Vidal P, Kirkland AL, De Cecco M, Chellappa K, McReynolds MR, Jankowski C, Tchkonia T, Kirkland JL, Sedivy JM, van Deursen JM, Baker DJ, van Schooten W, Rabinowitz JD, Baur JA, Chini EN. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD + and NMN levels. Nat Metab 2020; 2:1284-1304. [PMID: 33199925 PMCID: PMC8752031 DOI: 10.1038/s42255-020-00298-z] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/10/2020] [Indexed: 11/14/2022]
Abstract
Decreased NAD+ levels have been shown to contribute to metabolic dysfunction during aging. NAD+ decline can be partially prevented by knockout of the enzyme CD38. However, it is not known how CD38 is regulated during aging, and how its ecto-enzymatic activity impacts NAD+ homeostasis. Here we show that an increase in CD38 in white adipose tissue (WAT) and the liver during aging is mediated by accumulation of CD38+ immune cells. Inflammation increases CD38 and decreases NAD+. In addition, senescent cells and their secreted signals promote accumulation of CD38+ cells in WAT, and ablation of senescent cells or their secretory phenotype decreases CD38, partially reversing NAD+ decline. Finally, blocking the ecto-enzymatic activity of CD38 can increase NAD+ through a nicotinamide mononucleotide (NMN)-dependent process. Our findings demonstrate that senescence-induced inflammation promotes accumulation of CD38 in immune cells that, through its ecto-enzymatic activity, decreases levels of NMN and NAD+.
Collapse
Affiliation(s)
- Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Thais R Peclat
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Gina M Warner
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sonu Kashyap
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jair Machado Espindola-Netto
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Guilherme C de Oliveira
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Lilian S Gomez
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Mariana G Tarragó
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amrutesh S Puranik
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
- Division of Rheumatology, Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Guillermo Agorrody
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Katie L Thompson
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | | - Bennett G Childs
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Karina S Kanamori
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Micaela A Witte
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Paola Vidal
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anna L Kirkland
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Marco De Cecco
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Astellas Institute for Regenerative Medicine, Marlborough, MA, USA
| | - Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melanie R McReynolds
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Connor Jankowski
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - John M Sedivy
- Center on the Biology of Aging and Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | | | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
24
|
Audrito V, Messana VG, Deaglio S. NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation. Front Oncol 2020; 10:358. [PMID: 32266141 PMCID: PMC7096376 DOI: 10.3389/fonc.2020.00358] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes.
Collapse
Affiliation(s)
- Valentina Audrito
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vincenzo Gianluca Messana
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Laboratory of Tumor Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
25
|
The Good, the Bad and the Unknown of CD38 in the Metabolic Microenvironment and Immune Cell Functionality of Solid Tumors. Cells 2019; 9:cells9010052. [PMID: 31878283 PMCID: PMC7016859 DOI: 10.3390/cells9010052] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 02/08/2023] Open
Abstract
The regulation of the immune microenvironment within solid tumors has received increasing attention with the development and clinical success of immune checkpoint blockade therapies, such as those that target the PD-1/PD-L1 axis. The metabolic microenvironment within solid tumors has proven to be an important regulator of both the natural suppression of immune cell functionality and the de novo or acquired resistance to immunotherapy. Enzymatic proteins that generate immunosuppressive metabolites like adenosine are thus attractive targets to couple with immunotherapies to improve clinical efficacy. CD38 is one such enzyme. While the role of CD38 in hematological malignancies has been extensively studied, the impact of CD38 expression within solid tumors is largely unknown, though most current data indicate an immunosuppressive role for CD38. However, CD38 is far from a simple enzyme, and there are several remaining questions that require further study. To effectively treat solid tumors, we must learn as much about this multifaceted protein as possible—i.e., which infiltrating immune cell types express CD38 for functional activities, the most effective CD38 inhibitor(s) to employ, and the influence of other similarly functioning enzymes that may also contribute towards an immunosuppressive microenvironment. Gathering knowledge such as this will allow for intelligent targeting of CD38, the reinvigoration of immune functionality and, ultimately, tumor elimination.
Collapse
|
26
|
Porter CM, Haffner MC, Kulac I, Maynard JP, Baena-Del Valle JA, Isaacs WB, Yegnasubramanian S, De Marzo AM, Sfanos KS. Lactoferrin CpG Island Hypermethylation and Decoupling of mRNA and Protein Expression in the Early Stages of Prostate Carcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:2311-2322. [PMID: 31499027 PMCID: PMC6892185 DOI: 10.1016/j.ajpath.2019.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 07/25/2019] [Indexed: 02/01/2023]
Abstract
Lactoferrin (LTF) is an iron-binding protein canonically known for its innate and adaptive immune functions. LTF may also act as a tumor suppressor with antiproliferative action. LTF is inactivated genetically or epigenetically in various cancers, and a CpG island spanning the transcriptional start site of LTF is hypermethylated in prostate cancer cell lines. We, therefore, hypothesized that LTF expression is silenced via CpG island hypermethylation in the early stages of prostate tumorigenesis carcinogenesis. Targeted methylation analysis was performed using a combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes, and laser-capture microdissection followed by bisulfite sequencing on DNA isolated from prostate tissue samples, including both primary and metastatic disease. LTF mRNA in situ hybridization and LTF protein immunohistochemistry were also performed. We report that the LTF CpG island is frequently and densely methylated in high-grade prostatic intraepithelial neoplasia, primary prostate carcinoma, and metastases. We further report a decoupling of lactoferrin mRNA and protein expression, including in lesions where LTF mRNA has presumably been silenced via CpG island methylation. We conclude that LTF mRNA expression is silenced in prostate tumorigenesis via hypermethylation, supporting a role for LTF as a prostate cancer tumor suppressor gene. Likewise, the frequency at which the LTF CpG island is methylated across samples suggests it is an important and conserved step in prostate cancer initiation.
Collapse
Affiliation(s)
- Corey M Porter
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael C Haffner
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ibrahim Kulac
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janielle P Maynard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - William B Isaacs
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Srinivasan Yegnasubramanian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Karen S Sfanos
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
27
|
Zhu Y, Liu J, Park J, Rai P, Zhai RG. Subcellular compartmentalization of NAD + and its role in cancer: A sereNADe of metabolic melodies. Pharmacol Ther 2019; 200:27-41. [PMID: 30974124 PMCID: PMC7010080 DOI: 10.1016/j.pharmthera.2019.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential biomolecule involved in many critical processes. Its role as both a driver of energy production and a signaling molecule underscores its importance in health and disease. NAD+ signaling impacts multiple processes that are dysregulated in cancer, including DNA repair, cell proliferation, differentiation, redox regulation, and oxidative stress. Distribution of NAD+ is highly compartmentalized, with each subcellular NAD+ pool differentially regulated and preferentially involved in distinct NAD+-dependent signaling or metabolic events. Emerging evidence suggests that targeting NAD+ metabolism is likely to repress many specific mechanisms underlying tumor development and progression, including proliferation, survival, metabolic adaptations, invasive capabilities, heterotypic interactions with the tumor microenvironment, and stress response including notably DNA maintenance and repair. Here we provide a comprehensive overview of how compartmentalized NAD+ metabolism in mitochondria, nucleus, cytosol, and extracellular space impacts cancer formation and progression, along with a discussion of the therapeutic potential of NAD+-targeting drugs in cancer.
Collapse
Affiliation(s)
- Yi Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jiaqi Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China
| | - Joun Park
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Priyamvada Rai
- Department of Medicine/Medical Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rong G Zhai
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong 264005, China.
| |
Collapse
|
28
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
29
|
Hogan KA, Chini CCS, Chini EN. The Multi-faceted Ecto-enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front Immunol 2019; 10:1187. [PMID: 31214171 PMCID: PMC6555258 DOI: 10.3389/fimmu.2019.01187] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/10/2019] [Indexed: 11/23/2022] Open
Abstract
CD38 (Cluster of Differentiation 38) is a multifunctional ecto-enzyme that metabolizes NAD+ and mediates nicotinamide dinucleotide (NAD+) and extracellular nucleotide homeostasis as well as intracellular calcium. CD38 is also an emerging therapeutic target under conditions in which metabolism is altered including infection, aging, and tumorigenesis. We describe multiple enzymatic activities of CD38, which may explain the breadth of biological roles observed for this enzyme. Of greatest significance is the role of CD38 as an ecto-enzyme capable of modulating extracellular NAD+ precursor availability: 1 to bacteria unable to perform de novo synthesis of NAD+; and 2 in aged parenchyma impacted by the accumulation of immune cells during the process of ‘inflammaging’. We also discuss the paradoxical role of CD38 as a modulator of intracellular NAD+, particularly in tumor immunity. Finally, we provide a summary of therapeutic approaches to CD38 inhibition and ‘NAD+ boosting’ for treatment of metabolic dysfunction observed during aging and in tumor immunity. The present review summarizes the role of CD38 in nicotinamide nucleotide homeostasis with special emphasis on the role of CD38 as an immunomodulator and druggable target.
Collapse
Affiliation(s)
- Kelly A Hogan
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Claudia C S Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| | - Eduardo N Chini
- Signal Transduction and Molecular Nutrition Laboratory, Kogod Center on Aging, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, United States
| |
Collapse
|
30
|
Yaku K, Okabe K, Hikosaka K, Nakagawa T. NAD Metabolism in Cancer Therapeutics. Front Oncol 2018; 8:622. [PMID: 30631755 PMCID: PMC6315198 DOI: 10.3389/fonc.2018.00622] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Cancer cells have a unique energy metabolism for sustaining rapid proliferation. The preference for anaerobic glycolysis under normal oxygen conditions is a unique trait of cancer metabolism and is designated as the Warburg effect. Enhanced glycolysis also supports the generation of nucleotides, amino acids, lipids, and folic acid as the building blocks for cancer cell division. Nicotinamide adenine dinucleotide (NAD) is a co-enzyme that mediates redox reactions in a number of metabolic pathways, including glycolysis. Increased NAD levels enhance glycolysis and fuel cancer cells. In fact, nicotinamide phosphoribosyltransferase (Nampt), a rate-limiting enzyme for NAD synthesis in mammalian cells, is frequently amplified in several cancer cells. In addition, Nampt-specific inhibitors significantly deplete NAD levels and subsequently suppress cancer cell proliferation through inhibition of energy production pathways, such as glycolysis, tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. NAD also serves as a substrate for poly(ADP-ribose) polymerase (PARP), sirtuin, and NAD gylycohydrolase (CD38 and CD157); thus, NAD regulates DNA repair, gene expression, and stress response through these enzymes. Thus, NAD metabolism is implicated in cancer pathogenesis beyond energy metabolism and considered a promising therapeutic target for cancer treatment. In this review, we present recent findings with respect to NAD metabolism and cancer pathogenesis. We also discuss the current and future perspectives regarding the therapeutics that target NAD metabolic pathways.
Collapse
Affiliation(s)
- Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,First Department of Internal Medicine, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Keisuke Hikosaka
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan.,Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|