1
|
Geng F, Liu Z, Chen X, Chen H, Liu Y, Yang J, Zheng M, Yang L, Teng Y. High mobility group nucleosomal binding 2 reduces integrin α5/β1-mediated adhesion of Klebsiella pneumoniae on human pulmonary epithelial cells via nuclear factor I. Microbiol Immunol 2020; 64:825-834. [PMID: 33034909 DOI: 10.1111/1348-0421.12855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 11/28/2022]
Abstract
It has been reported that high mobility group nucleosomal binding domain 2 (HMGN2) is a nucleus-related protein that regulates gene transcription and plays a critical role in bacterial clearance. An elevated level of HMGN2 reduced integrin α5/β1 expression of human pulmonary epithelial A549 cells was demonstrated during Klebsiella pneumoniae infection, thus weakening bacterial adhesion and invasion. However, the mechanism by which HMGN2 regulates integrin expression remains unclear. This study found that a transcription factor-nuclear factor I (NFI), which serves as the potential target of HMGN2 regulated integrin expression. The results showed that HMGN2 was able to promote NFIA and NFIB expression by increasing H3K27 acetylation of NFIA/B promoter regions. The integrin α5/β1 expression was significantly enhanced by knockdown of NFIA/B via a siRNA approach. Meanwhile, NFIA/B silence could also compromise the inhibition effect of HMGN2 on the integrin α5/β1 expression. Mechanistically, it was demonstrated that HMGN2 facilitated the recruitment of NFI on the promoter regions of integrin α5/β1 according to the chromatin immunoprecipitation assay. In addition, it was further demonstrated that the knockdown of NFIA/B induced more adhesion of Klebsiella pneumoniae on pulmonary epithelial A549 cells, which could be reversed by the application of an integrin inhibitor RGD. The results revealed a regulatory role of HMGN2 on the transcription level of integrin α5/β1, indicating a potential treatment strategy against Klebsiella pneumoniae-induced infectious lung diseases.
Collapse
Affiliation(s)
- Fan Geng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Zhihao Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xingmin Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Huan Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yanzhuo Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jing Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Min Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Yan Teng
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
2
|
Byun S, Han S, Zheng Y, Planelles V, Lee Y. The landscape of alternative splicing in HIV-1 infected CD4 T-cells. BMC Med Genomics 2020; 13:38. [PMID: 32241262 PMCID: PMC7118826 DOI: 10.1186/s12920-020-0680-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Elucidating molecular mechanisms that are altered during HIV-1 infection may provide a better understanding of the HIV-1 life cycle and how it interacts with infected T-cells. One such mechanism is alternative splicing (AS), which has been studied for HIV-1 itself, but no systematic analysis has yet been performed on infected T-cells. We hypothesized that AS patterns in infected T-cells may illuminate the molecular mechanisms underlying HIV-1 infection and identify candidate molecular markers for specifically targeting infected T-cells. Methods We downloaded previously published raw RNA-seq data obtained from HIV-1 infected and non-infected T-cells. We estimated percent spliced in (PSI) levels for each AS exon, then identified differential AS events in the infected cells (FDR < 0.05, PSI difference > 0.1). We performed functional gene set enrichment analysis on the genes with differentially expressed AS exons to identify their functional roles. In addition, we used RT-PCR to validate differential alternative splicing events in cyclin T1 (CCNT1) as a case study. Results We identified 427 candidate genes with differentially expressed AS exons in infected T-cells, including 20 genes related to cell surface, 35 to kinases, and 121 to immune-related genes. In addition, protein-protein interaction analysis identified six essential subnetworks related to the viral life cycle, including Transcriptional regulation by TP53, Class I MHC mediated antigen, G2/M transition, and late phase of HIV life cycle. CCNT1 exon 7 was more frequently skipped in infected T-cells, leading to loss of the key Cyclin_N motif and affecting HIV-1 transcriptional elongation. Conclusions Our findings may provide new insight into systemic host AS regulation under HIV-1 infection and may provide useful initial candidates for the discovery of new markers for specifically targeting infected T-cells.
Collapse
Affiliation(s)
- Seyoun Byun
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yue Zheng
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Vicente Planelles
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
3
|
Le Clerc S, Limou S, Zagury JF. Large-Scale "OMICS" Studies to Explore the Physiopatholgy of HIV-1 Infection. Front Genet 2019; 10:799. [PMID: 31572435 PMCID: PMC6754074 DOI: 10.3389/fgene.2019.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
In this review, we present the main large-scale experimental studies that have been performed in the HIV/AIDS field. These “omics” studies are based on several technologies including genotyping, RNA interference, and transcriptome or epigenome analysis. Due to the direct connection with disease evolution, there has been a large focus on genotyping cohorts of well-characterized patients through genome-wide association studies (GWASs), but there have also been several invitro studies such as small interfering RNA (siRNA) interference or transcriptome analyses of HIV-1–infected cells. After describing the major results obtained with these omics technologies—including some with a high relevance for HIV-1 treatment—we discuss the next steps that the community needs to embrace in order to derive new actionable therapeutic or diagnostic targets. Only integrative approaches that combine all big data results and consider their complex interactions will allow us to capture the global picture of HIV molecular pathogenesis. This novel challenge will require large collaborative efforts and represents a huge open field for innovative bioinformatics approaches.
Collapse
Affiliation(s)
- Sigrid Le Clerc
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| | - Sophie Limou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation en Urologie et Néphrologie (ITUN), CHU de Nantes, Nantes, France.,Computer Sciences and Mathematics Department, Ecole Centrale de Nantes, Nantes, France
| | - Jean-François Zagury
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, HESAM Université, Paris, France
| |
Collapse
|
4
|
Castro-Gonzalez S, Colomer-Lluch M, Serra-Moreno R. Barriers for HIV Cure: The Latent Reservoir. AIDS Res Hum Retroviruses 2018; 34:739-759. [PMID: 30056745 PMCID: PMC6152859 DOI: 10.1089/aid.2018.0118] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thirty-five years after the identification of HIV-1 as the causative agent of AIDS, we are still in search of vaccines and treatments to eradicate this devastating infectious disease. Progress has been made in understanding the molecular pathogenesis of this infection, which has been crucial for the development of the current therapy regimens. However, despite their efficacy at limiting active viral replication, these drugs are unable to purge the latent reservoir: a pool of cells that harbor transcriptionally inactive, but replication-competent HIV-1 proviruses, and that represent the main barrier to eradicate HIV-1 from affected individuals. In this review, we discuss advances in the field that have allowed a better understanding of HIV-1 latency, including the diverse cell types that constitute the latent reservoir, factors influencing latency, tools to study HIV-1 latency, as well as current and prospective therapeutic approaches to target these latently infected cells, so a functional cure for HIV/AIDS can become a reality.
Collapse
Affiliation(s)
- Sergio Castro-Gonzalez
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| | - Marta Colomer-Lluch
- IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Ruth Serra-Moreno
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, Lubbock, Texas
| |
Collapse
|