1
|
Romero-Hidalgo S, Sagaceta-Mejía J, Villalobos-Comparán M, Tejero ME, Domínguez-Pérez M, Jacobo-Albavera L, Posadas-Sánchez R, Vargas-Alarcón G, Posadas-Romero C, Macías-Kauffer L, Vadillo-Ortega F, Contreras-Sieck MA, Acuña-Alonzo V, Barquera R, Macín G, Binia A, Guevara-Chávez JG, Sebastián-Medina L, Menjívar M, Canizales-Quinteros S, Carnevale A, Villarreal-Molina T. Selection scan in Native Americans of Mexico identifies FADS2 rs174616: Evidence of gene-diet interactions affecting lipid levels and Delta-6-desaturase activity. Heliyon 2024; 10:e35477. [PMID: 39166092 PMCID: PMC11334880 DOI: 10.1016/j.heliyon.2024.e35477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Searching for positive selection signals across genomes has identified functional genetic variants responding to environmental change. In Native Americans of Mexico, we used the fixation index (Fst) and population branch statistic (PBS) to identify SNPs suggesting positive selection. The 103 most differentiated SNPs were tested for associations with metabolic traits, the most significant association was FADS2/rs174616 with body mass index (BMI). This variant lies within a linkage disequilibrium (LD) block independent of previously reported FADS selection signals and has not been clearly associated with metabolic phenotypes. We tested this variant in two independent cohorts with cardiometabolic data. In the Genetics of Atherosclerotic Disease (GEA) cohort, the derived allele (T) was associated with increased BMI, lower LDL-C levels and a decreased risk of subclinical atherosclerosis in women. Significant gene-diet interactions affected lipid, apolipoprotein and adiponectin levels with differences according to sex, involving mainly total and complex dietary carbohydrate%. In the Genotype-related Effects of PUFA trial, the derived allele was associated with lower Δ-6 desaturase activity and erythrocyte membrane dihomo-gamma-linolenic acid (DGLA) levels, and with increased Δ-5 desaturase activity and eicosapentaenoic acid levels. This variant interacted with dietary carbohydrate% affecting Δ-6 desaturase activity. Notably, the relationship of DGLA and other erythrocyte membrane LC-PUFA indices with HOMA-IR differed according to rs174616 genotype, which has implications regarding how these indices should be interpreted. In conclusion, this observational study identified rs174616 as a signal suggesting selection in an independent linkage disequilibrium block, was associated with cardiometabolic and erythrocyte measurements of LC-PUFA in two independent Mexican cohorts and showed significant gene-diet interactions.
Collapse
Affiliation(s)
- Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Janine Sagaceta-Mejía
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - María Elizabeth Tejero
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Mayra Domínguez-Pérez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leonor Jacobo-Albavera
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Rosalinda Posadas-Sánchez
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Departmento de Biología Molecular y Dirección de Investigación, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carlos Posadas-Romero
- Departamento de Endocrinología, Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| | - Luis Macías-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina UNAM en el Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - Víctor Acuña-Alonzo
- Laboratorio de Genética Molecular, Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology (MPI-EVA), Leipzig, Germany
- Anthropology (MPI-EVA), Leipzig, Germany
| | - Gastón Macín
- Escuela Nacional de Antropología e Historia, Mexico City, Mexico
| | - Aristea Binia
- Nestlé Institute of Health Sciences, Innovation Park, EPFL, Lausanne, Switzerland
| | - Jose Guadalupe Guevara-Chávez
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Leticia Sebastián-Medina
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Martha Menjívar
- Departamento de Biología, Facultad de Química UNAM, Mexico City and Unidad Académica de Ciencias y Tecnología, UNAM-Yucatán, Mérida, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genómica de Poblaciones Aplicada a la Salud, Facultad de Química UNAM e Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Teresa Villarreal-Molina
- Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
2
|
Chen R, Bao Q, Ma X. Association of IL13 polymorphisms with susceptibility to myocardial infarction: A case-control study in Chinese population. PLoS One 2024; 19:e0308081. [PMID: 39088580 PMCID: PMC11293651 DOI: 10.1371/journal.pone.0308081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/16/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Inflammatory cytokines play a major role in the pathogenesis of myocardial infarction (MI). Although information on the importance of interleukin 13 (IL13) in human MI is limited, it has been well documented in the mouse model. Genetic variation in the IL13 gene has been associated with the structure and expression of the IL13. In the present study, we hypothesized that IL13 common genetic variants would be associated with a predisposition to the development of MI. MATERIALS AND METHODS The present study enrolled 305 MI patients and 310 matched healthy controls. Common genetic polymorphisms in the IL13 gene (rs20541, rs1881457, and rs1800925) were genotyped using the TaqMan SNP genotyping method. Plasma levels of IL13 were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS In MI patients, minor alleles of the IL13 rs1881457 and rs1800925 polymorphisms were less common than in healthy controls [rs1881457: AC (P = 0.004, OR = 0.61), C (P = 0.001, OR = 0.66); rs1800925: CT (P = 0.006, OR = 0.59)]. Further haplotype analysis of three studied SNPs revealed a significant association with predisposition to MI. Interestingly, IL13 rs1881457 and rs1800925 were linked to plasma levels of IL13: the reference genotype had higher levels, heterozygotes were intermediate, and the alternate genotype had the lowest levels. CONCLUSIONS In the Chinese population, IL13 (rs1881457 and rs180092) variants are associated with different plasma IL13 levels and offer protection against MI development. However, additional research is required to validate our findings in different populations, including descent samples.
Collapse
Affiliation(s)
- Rong Chen
- Department of Cardiology, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| | - Qiaoling Bao
- Department of Coronary Heart Disease, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| | - Xiaofeng Ma
- Department of Cardiology, Qinghai Province Cardiovascular and Cerebrovascular Disease Specialist Hospital, Xining, Qinghai, China
| |
Collapse
|
3
|
Katsukunya JN, Soko ND, Naidoo J, Rayner B, Blom D, Sinxadi P, Chimusa ER, Dandara M, Dzobo K, Jones E, Dandara C. Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans. Int J Hypertens 2023; 2023:9919677. [PMID: 38633331 PMCID: PMC11022520 DOI: 10.1155/2023/9919677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 04/19/2024] Open
Abstract
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
Collapse
Affiliation(s)
- Jonathan N. Katsukunya
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Nyarai D. Soko
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Jashira Naidoo
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Lipidology and Cape Heart Institute, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Clinical Pharmacology, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear NE1 8ST, UK
| | - Michelle Dandara
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| | - Kevin Dzobo
- Medical Research Council-SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa
| | - Erika Jones
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Division of Nephrology and Hypertension, Groote Schuur Hospital and Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT/South African Medical Research Council (SAMRC) Platform for Pharmacogenomics Research and Translation Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Nikolac Perkovic M, Gredicak M, Sagud M, Nedic Erjavec G, Uzun S, Pivac N. The association of brain-derived neurotrophic factor with the diagnosis and treatment response in depression. Expert Rev Mol Diagn 2023; 23:283-296. [PMID: 37038358 DOI: 10.1080/14737159.2023.2200937] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Recent evidence from the studies evaluating the association between brain derived neurotrophic factor (BDNF) concentration/levels, BDNF Val66Met (rs6265) polymorphism and major depressive disorders, referred as depression, and the association between BDNF levels and/or BDNF Val66Met with the treatment response in depression, is presented. AREAS COVERED This mini review focuses on the changes in the peripheral BDNF levels in blood (serum, plasma, platelets) in patients with depression before or after treatment with antidepressant drugs or different therapeutic strategies. In addition, this review describes the recent data on the possible association between different antidepressants/therapeutic strategies and the particular BDNF Val66Met genotypes, evaluating the risk alleles associated with the response in patients with depression. EXPERT OPINION BDNF has an important role in the pathophysiology and treatment response in depression. Most data reveal that peripheral BDNF levels are lower before than after antidepressant treatment and might be used as potential biomarkers of therapeutic response. Novel therapeutic strategies should target restoring/increasing BDNF levels.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Martin Gredicak
- General Hospital Zabok and Hospital for the Croatian Veterans, Zabok, Croatia
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine,University of Zagreb, Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Suzana Uzun
- School of Medicine,University of Zagreb, Zagreb, Croatia
- Department for Biological Psychiatry and Psychogeriatry, Clinics for Psychiatry Vrapce, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- Croatian Zagorje Polytechnic Krapina,Krapina, Croatia
| |
Collapse
|
5
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
6
|
Liu Y, Lin Z, Chen Q, Chen Q, Sang L, Wang Y, Shi L, Guo L, Yu Y. PAnno: A pharmacogenomics annotation tool for clinical genomic testing. Front Pharmacol 2023; 14:1008330. [PMID: 36778023 PMCID: PMC9909284 DOI: 10.3389/fphar.2023.1008330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction: Next-generation sequencing (NGS) technologies have been widely used in clinical genomic testing for drug response phenotypes. However, the inherent limitations of short reads make accurate inference of diplotypes still challenging, which may reduce the effectiveness of genotype-guided drug therapy. Methods: An automated Pharmacogenomics Annotation tool (PAnno) was implemented, which reports prescribing recommendations and phenotypes by parsing the germline variant call format (VCF) file from NGS and the population to which the individual belongs. Results: A ranking model dedicated to inferring diplotypes, developed based on the allele (haplotype) definition and population allele frequency, was introduced in PAnno. The predictive performance was validated in comparison with four similar tools using the consensus diplotype data of the Genetic Testing Reference Materials Coordination Program (GeT-RM) as ground truth. An annotation method was proposed to summarize prescribing recommendations and classify drugs into avoid use, use with caution, and routine use, following the recommendations of the Clinical Pharmacogenetics Implementation Consortium (CPIC), etc. It further predicts phenotypes of specific drugs in terms of toxicity, dosage, efficacy, and metabolism by integrating the high-confidence clinical annotations in the Pharmacogenomics Knowledgebase (PharmGKB). PAnno is available at https://github.com/PreMedKB/PAnno. Discussion: PAnno provides an end-to-end clinical pharmacogenomics decision support solution by resolving, annotating, and reporting germline variants.
Collapse
Affiliation(s)
- Yaqing Liu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zipeng Lin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qiaochu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Leqing Sang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yunjin Wang
- Department of Breast Surgery, Precision Cancer Medicine Center, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Li Guo
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Li Guo, ; Ying Yu,
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China,*Correspondence: Li Guo, ; Ying Yu,
| |
Collapse
|
7
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Kfoury JR, Algenstaedt P, Mehmetzade HF, Hashemi Aghdam Y. The impact of leptin and its receptor polymorphisms on type 1 diabetes in a population of northwest Iran. Ann Hum Biol 2022; 49:317-322. [PMID: 36218419 DOI: 10.1080/03014460.2022.2134453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Diabetes comprises a serious disease with significant growth in the number of cases in recent years. Here, we cover the gap in information between leptin (LEP) and type 1 diabetes in the Iranian population. AIM To recognise LEP G2548A and LEP receptor Q223R polymorphisms in Iranian people and their association with type 1 diabetes susceptibility. SUBJECTS AND METHODS Characteristics such as fasting blood sugar (FBS) were measured in 80 control non-diabetic individuals and 89 diabetic patients. Moreover, LEP G2548A and LEP receptor Q223R polymorphisms were genotyped using polymerase chain reaction-restriction fragment length polymorphism technique. RESULTS The frequency of the A allele was nearly three times greater in diabetes patients than in the control group. In addition, in the diabetes group, the AA genotype was five times greater than in the control group (p < 0.01). Furthermore, AA and AA + AG genotype models had higher FBS levels than the GG + AG and GG genotype models, respectively (p < 0.01). CONCLUSION The LEP G2548A polymorphism could be related to type 1 diabetes susceptibility, but not LEPR Q223R polymorphism in the Iranian population. Importantly, further studies are essential to examine the impact of LEP G2548A and LEPR Q223R polymorphisms in the endocrinology area.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Biology, Faculty of Science, Islamic Azad University, Iran.,Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maryam Soltani-Asl
- Department of Biology, Faculty of Science, Islamic Azad University, Iran.,Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - José Roberto Kfoury
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Petra Algenstaedt
- Medical Clinic and Polyclinic of University of Hamburg, Eppendorf University, Hamburg, Germany
| | | | - Yashar Hashemi Aghdam
- Department of Traumatology, Spine and Orthopedic Surgery, Asklepios Hospital Altona, Faculty of Medicine, University of Hamburg, Hamburg, Germany
| |
Collapse
|
8
|
Human Leukocyte Antigen (HLA) System: Genetics and Association with Bacterial and Viral Infections. J Immunol Res 2022; 2022:9710376. [PMID: 35664353 PMCID: PMC9162874 DOI: 10.1155/2022/9710376] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/08/2022] [Indexed: 12/19/2022] Open
Abstract
The human leukocyte antigen (HLA) system is one of the most crucial host factors influencing disease progression in bacterial and viral infections. This review provides the basic concepts of the structure and function of HLA molecules in humans. Here, we highlight the main findings on the associations between HLA class I and class II alleles and susceptibility to important infectious diseases such as tuberculosis, leprosy, melioidosis, Staphylococcus aureus infection, human immunodeficiency virus infection, coronavirus disease 2019, hepatitis B, and hepatitis C in populations worldwide. Finally, we discuss challenges in HLA typing to predict disease outcomes in clinical implementation. Evaluation of the impact of HLA variants on the outcome of bacterial and viral infections would improve the understanding of pathogenesis and identify those at risk from infectious diseases in distinct populations and may improve the individual treatment.
Collapse
|
9
|
Yao J, Zhang Z, Huang X, Guo Y. Blocker displacement amplification mediated PCR based screen-printed carbon electrode biosensor and lateral flow strip strategy for CYP2C19*2 genotyping. Biosens Bioelectron 2022; 207:114138. [PMID: 35334330 DOI: 10.1016/j.bios.2022.114138] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/24/2022] [Indexed: 01/26/2023]
Abstract
Single nucleotide variants in CYP2C19*2 are associated with clopidogrel resistance in coronary heart disease. In order the guidance the dosage of drug and personalized medicine, blocker displacement amplification was first used to specific amplify G site and A site alleles. For electrochemical strategy, forward primers were labeled electrochemical active methyl blue and ferrocene, generates signals on -0.26 for G site and 0.22 V for A site. For lateral flow strip assay, primers with specific modification were used to generates unique color in test line 1 for G site and test line 2 for A site. In conclusion, we developed a sensitive screen-printed carbon electrodes based electrochemical sensor and gold nano particle based lateral flow strip assay strategy to successfully genotyping CYP2C19*2 GG, GA and AA genotype. The proposed method can realize CYP2C19*2 analysis from multiple biological samples including whole blood, buccal swab, saliva and hair root, and showed good consistency with Sequencing. Due to the fact our proposed strategy merely relies on thermal cycler instrument and visual strip detection, this platform shows great potential in source-limited regions genotyping.
Collapse
Affiliation(s)
- Juan Yao
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
| | - Zhang Zhang
- Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, PR China.
| | - Xiaoling Huang
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Department of Laboratory Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, PR China.
| |
Collapse
|
10
|
Application of long-read sequencing to elucidate complex pharmacogenomic regions: a proof of principle. THE PHARMACOGENOMICS JOURNAL 2022; 22:75-81. [PMID: 34741133 PMCID: PMC8794781 DOI: 10.1038/s41397-021-00259-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of pharmacogenomics in clinical practice is becoming standard of care. However, due to the complex genetic makeup of pharmacogenes, not all genetic variation is currently accounted for. Here, we show the utility of long-read sequencing to resolve complex pharmacogenes by analyzing a well-characterised sample. This data consists of long reads that were processed to resolve phased haploblocks. 73% of pharmacogenes were fully covered in one phased haploblock, including 9/15 genes that are 100% complex. Variant calling accuracy in the pharmacogenes was high, with 99.8% recall and 100% precision for SNVs and 98.7% precision and 98.0% recall for Indels. For the majority of gene-drug interactions in the DPWG and CPIC guidelines, the associated genes could be fully resolved (62% and 63% respectively). Together, these findings suggest that long-read sequencing data offers promising opportunities in elucidating complex pharmacogenes and haplotype phasing while maintaining accurate variant calling.
Collapse
|
11
|
Lukianenko N, Kens O, Nurgaliyeva Z, Toguzbayeva D, Sakhipov M. Finding a molecular genetic marker for the incidence of recurrent episodes of acute obstructive bronchitis in children. J Med Life 2021; 14:695-699. [PMID: 35027973 PMCID: PMC8742891 DOI: 10.25122/jml-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/25/2021] [Indexed: 11/17/2022] Open
Abstract
Over the last ten years, the incidence of the pathology of the bronchus-pulmonary system in children has increased 3.6 times, mainly due to acute and recurrent inflammatory diseases of the upper and lower respiratory tract. Thus, the problem of identifying children with recurrent episodes of acute obstructive bronchitis and an increased risk of developing asthma is relevant and promising. The goal of this study was to find molecular genetic markers associated with increased susceptibility of children to repeated episodes of acute obstructive bronchitis. The molecular genetic testing of the IL4 gene of a single nucleotide polymorphism C-33T was performed in 35 children with recurrent episodes of acute obstructive bronchitis and 35 children with acute bronchitis. The results were statistically processed on a personal computer with the calculation of values the arithmetic mean (M), of the errors arithmetic mean (m), Student criterion (t), the degree of probability (p), Pearson criterion (χ2), and the odds ratio (OR). Statistically significant differences were figured at p<0.01 and p<0.05. It has been proved that the presence of a child's genotype 33CT IL4 increases the risk of recurrent acute obstructive bronchitis four times.
Collapse
Affiliation(s)
- Nataliia Lukianenko
- Department of Clinical Genetics, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
- Department of Propaedeutics of Pediatrics and Medical Genetics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Olena Kens
- Department of Clinical Genetics, Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine, Lviv, Ukraine
| | - Zhansulu Nurgaliyeva
- Department of Pharmacology, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Republic of Kazakhstan
| | - Dinara Toguzbayeva
- Department of Otorhinolaryngology, Kazakh Medical University of Continuing Education, Almaty, Republic of Kazakhstan
| | - Musa Sakhipov
- Department of Surgery with a Course of Anesthesiology and Resuscitation, Kazakh-Russian Medical University, Almaty, Republic of Kazakhstan
| |
Collapse
|
12
|
Blouin AG, Ye F, Williams J, Askar M. A practical guide to chimerism analysis: Review of the literature and testing practices worldwide. Hum Immunol 2021; 82:838-849. [PMID: 34404545 DOI: 10.1016/j.humimm.2021.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE Currently there are no widely accepted guidelines for chimerism analysis testing in hematopoietic cell transplantation (HCT) patients. The objective of this review is to provide a practical guide to address key aspects of performing and utilizing chimerism testing results. In developing this guide, we conducted a survey of testing practices among laboratories that are accredited for performing engraftment monitoring/chimerism analysis by either the American Society for Histocompatibility & Immunogenetics (ASHI) and/or the European Federation of Immunogenetics (EFI). We interpreted the survey results in the light of pertinent literature as well as the experience in the laboratories of the authors. RECENT DEVELOPMENTS In recent years there has been significant advances in high throughput molecular methods such as next generation sequencing (NGS) as well as growing access to these technologies in histocompatibility and immunogenetics laboratories. These methods have the potential to improve the performance of chimerism testing in terms of sensitivity, availability of informative genetic markers that distinguish donors from recipients as well as cost. SUMMARY The results of the survey revealed a great deal of heterogeneity in chimerism testing practices among participating laboratories. The most consistent response indicated monitoring of engraftment within the first 30 days. These responses are reflective of published literature. Additional clinical indications included early detection of impending relapse as well as identification of cases of HLA-loss relapse.
Collapse
Affiliation(s)
- Amanda G Blouin
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fei Ye
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jenifer Williams
- Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States
| | - Medhat Askar
- Department of Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Pathology & Laboratory Medicine, Baylor University Medical Center, Dallas, TX, United States; Department of Pathology and Laboratory Medicine, Texas A&M Health Science Center College of Medicine, United States.
| |
Collapse
|
13
|
Srivastava K, Fratzscher AS, Lan B, Flegel WA. Cataloguing experimentally confirmed 80.7 kb-long ACKR1 haplotypes from the 1000 Genomes Project database. BMC Bioinformatics 2021; 22:273. [PMID: 34039276 PMCID: PMC8150616 DOI: 10.1186/s12859-021-04169-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Background Clinically effective and safe genotyping relies on correct reference sequences, often represented by haplotypes. The 1000 Genomes Project recorded individual genotypes across 26 different populations and, using computerized genotype phasing, reported haplotype data. In contrast, we identified long reference sequences by analyzing the homozygous genomic regions in this online database, a concept that has rarely been reported since next generation sequencing data became available. Study design and methods Phased genotype data for a 80.6 kb region of chromosome 1 was downloaded for all 2,504 unrelated individuals of the 1000 Genome Project Phase 3 cohort. The data was centered on the ACKR1 gene and bordered by the CADM3 and FCER1A genes. Individuals with heterozygosity at a single site or with complete homozygosity allowed unambiguous assignment of an ACKR1 haplotype. A computer algorithm was developed for extracting these haplotypes from the 1000 Genome Project in an automated fashion. A manual analysis validated the data extracted by the algorithm. Results We confirmed 902 ACKR1 haplotypes of varying lengths, the longest at 80,584 nucleotides and shortest at 1,901 nucleotides. The combined length of haplotype sequences comprised 19,895,388 nucleotides with a median of 16,014 nucleotides. Based on our approach, all haplotypes can be considered experimentally confirmed and not affected by the known errors of computerized genotype phasing. Conclusions Tracts of homozygosity can provide definitive reference sequences for any gene. They are particularly useful when observed in unrelated individuals of large scale sequence databases. As a proof of principle, we explored the 1000 Genomes Project database for ACKR1 gene data and mined long haplotypes. These haplotypes are useful for high throughput analysis with next generation sequencing. Our approach is scalable, using automated bioinformatics tools, and can be applied to any gene. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04169-6.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anne-Sophie Fratzscher
- Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bo Lan
- Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Willy Albert Flegel
- Laboratory Services Section, Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Technologies for Pharmacogenomics: A Review. Genes (Basel) 2020; 11:genes11121456. [PMID: 33291630 PMCID: PMC7761897 DOI: 10.3390/genes11121456] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
The continuous development of new genotyping technologies requires awareness of their potential advantages and limitations concerning utility for pharmacogenomics (PGx). In this review, we provide an overview of technologies that can be applied in PGx research and clinical practice. Most commonly used are single nucleotide variant (SNV) panels which contain a pre-selected panel of genetic variants. SNV panels offer a short turnaround time and straightforward interpretation, making them suitable for clinical practice. However, they are limited in their ability to assess rare and structural variants. Next-generation sequencing (NGS) and long-read sequencing are promising technologies for the field of PGx research. Both NGS and long-read sequencing often provide more data and more options with regard to deciphering structural and rare variants compared to SNV panels-in particular, in regard to the number of variants that can be identified, as well as the option for haplotype phasing. Nonetheless, while useful for research, not all sequencing data can be applied to clinical practice yet. Ultimately, selecting the right technology is not a matter of fact but a matter of choosing the right technique for the right problem.
Collapse
|
15
|
Abstract
Mutation of the human genome results in three classes of genomic variation: single nucleotide variants; short insertions or deletions; and large structural variants (SVs). Some mutations occur during normal processes, such as meiotic recombination or B cell development, and others result from DNA replication or aberrant repair of breaks in sequence-specific contexts. Regardless of mechanism, mutations are subject to selection, and some hotspots can manifest in disease. Here, we discuss genomic regions prone to mutation, mechanisms contributing to mutation susceptibility, and the processes leading to their accumulation in normal and somatic genomes. With further, more accurate human genome sequencing, additional mutation hotspots, mechanistic details of their formation, and the relevance of hotspots to evolution and disease are likely to be discovered.
Collapse
|
16
|
Owoicho O, Olwal CO, Quaye O. Commentary: An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Front Immunol 2020; 11:772. [PMID: 32411149 PMCID: PMC7198812 DOI: 10.3389/fimmu.2020.00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/06/2020] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| |
Collapse
|
17
|
Shen C, Zhong Y, Huang X, Wang Y, Peng Y, Li K, Zhou B, Zhang L, Rao L. Associations between TAB2 gene polymorphisms and dilated cardiomyopathy in a Chinese population. Biomark Med 2020; 14:441-450. [PMID: 32270697 DOI: 10.2217/bmm-2019-0384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: The present study aimed to investigate the role of TAB2 gene polymorphisms in dilated cardiomyopathy (DCM) susceptibility and prognosis in a Chinese population. Materials & methods: A total of 343 DCM patients and 451 controls were enrolled and had their blood genotyped. Survival analysis was evaluated with Kaplan-Meier curves and Cox regression analysis. Results: G carriers (AG/GG) and AG genotype of rs237028 had a higher DCM susceptibility as well as a worse DCM prognosis. Additionally, C carriers (CT/CC) of rs652921 and G carriers (TG/GG) of rs521845 had a higher DCM risk and CC homozygote of rs652921 had a worse DCM prognosis. These associations were still significant after adjustment for the Bonferroni correction. Conclusion: TAB2 gene polymorphisms were associated with DCM susceptibility and prognosis in the Chinese population.
Collapse
Affiliation(s)
- Can Shen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yue Zhong
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xingming Huang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Pathology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yanyun Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Peng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kai Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.,Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin Zhou
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Lin Zhang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects & Related Diseases of Women & Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
18
|
MicroRNA binding site polymorphism in inflammatory genes associated with colorectal cancer: literature review and bioinformatics analysis. Cancer Gene Ther 2020; 27:739-753. [PMID: 32203060 DOI: 10.1038/s41417-020-0172-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/21/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
Inflammation, among environmental risk factors, is one of the most important contributors to colorectal cancer (CRC) development. In this way, studies revealed that the incidence of CRC in inflammatory bowel disease patients is up to 60% higher than the general population. MicroRNAs (miRNAs), small noncoding RNA molecules, have attracted excessive attention due to their fundamental role in various aspects of cellular biology, such as inflammation by binding to the 3'-untranslated regions (3'-UTR) of pro and anti-inflammatory genes. Based on multiple previous studies, SNPs at 3'-UTR can affect miRNA recognition elements by changing the thermodynamic features and secondary structure. This effect can be categorized, based on the number of changes, into four groups, including break, decrease, create, and enhance. In this paper, we will focus on functional variants in miRNA binding sites in inflammatory genes, which can modulate the risk of CRC by both investigating previous studies, regarding miRSNPs in inflammatory genes associated with CRC and recruiting in silico prediction algorithms to report putative miRSNPs in 176 inflammatory genes. In our analysis, we achieved 110 miRSNPs in 3'-UTR of 67 genes that seem good targets for future researches.
Collapse
|
19
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Novel genetic and epigenetic factors of importance for inter-individual differences in drug disposition, response and toxicity. Pharmacol Ther 2019; 197:122-152. [PMID: 30677473 PMCID: PMC6527860 DOI: 10.1016/j.pharmthera.2019.01.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Individuals differ substantially in their response to pharmacological treatment. Personalized medicine aspires to embrace these inter-individual differences and customize therapy by taking a wealth of patient-specific data into account. Pharmacogenomic constitutes a cornerstone of personalized medicine that provides therapeutic guidance based on the genomic profile of a given patient. Pharmacogenomics already has applications in the clinics, particularly in oncology, whereas future development in this area is needed in order to establish pharmacogenomic biomarkers as useful clinical tools. In this review we present an updated overview of current and emerging pharmacogenomic biomarkers in different therapeutic areas and critically discuss their potential to transform clinical care. Furthermore, we discuss opportunities of technological, methodological and institutional advances to improve biomarker discovery. We also summarize recent progress in our understanding of epigenetic effects on drug disposition and response, including a discussion of the only few pharmacogenomic biomarkers implemented into routine care. We anticipate, in part due to exciting rapid developments in Next Generation Sequencing technologies, machine learning methods and national biobanks, that the field will make great advances in the upcoming years towards unlocking the full potential of genomic data.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
20
|
Lauschke VM, Ingelman-Sundberg M. Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. Eur J Pharm Sci 2019; 130:65-77. [PMID: 30684656 DOI: 10.1016/j.ejps.2019.01.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 01/12/2023]
Abstract
Understanding and predicting inter-individual differences related to the success of drug therapy is of tremendous importance, both during drug development and for clinical applications. Importantly, while seminal twin studies indicate that the majority of inter-individual differences in drug disposition are driven by hereditary factors, common genetic polymorphisms explain only less than half of this genetically encoded variability. Recent progress in Next Generation Sequencing (NGS) technologies has for the first time allowed to comprehensively map the genetic landscape of human pharmacogenes. Importantly, these projects have unveiled vast numbers of rare genetic variants, which are estimated to contribute substantially to the missing heritability of drug metabolism phenotypes. However, functional interpretation of these rare variants remains challenging and constitutes one of the important frontiers of contemporary pharmacogenomics. Furthermore, NGS technologies face challenges in the interrogation of genes residing in complex genomic regions, such as CYP2D6 and HLA genes. We here provide an update of the implementation of pharmacogenomic variations in the clinical setting and present emerging strategies that facilitate the translation of NGS data into clinically useful information. Importantly, we anticipate that these developments will soon result in a paradigm shift of pre-emptive genotyping away from the interrogation to candidate variants and towards the comprehensive profiling of an individuals genotype, thus allowing for a true individualization of patient drug treatment regimens.
Collapse
Affiliation(s)
- Volker M Lauschke
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Section of Pharmacogenetics, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|