1
|
Ball M, Bouffler SE, Barnett CB, Freckmann ML, Hunter MF, Kamien B, Kassahn KS, Lunke S, Patel CV, Pinner J, Roscioli T, Sandaradura SA, Scott HS, Tan TY, Wallis M, Compton AG, Thorburn DR, Stark Z, Christodoulou J. Critically unwell infants and children with mitochondrial disorders diagnosed by ultrarapid genomic sequencing. Genet Med 2025; 27:101293. [PMID: 39417332 DOI: 10.1016/j.gim.2024.101293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE To characterize the diagnostic and clinical outcomes of a cohort of critically ill infants and children with suspected mitochondrial disorders (MD) undergoing ultrarapid genomic testing as part of a national program. METHODS Ultrarapid genomic sequencing was performed in 454 families (genome sequencing: n = 290, exome sequencing +/- mitochondrial DNA sequencing: n = 164). In 91 individuals, MD was considered, prompting analysis using an MD virtual gene panel. These individuals were reviewed retrospectively and scored according to modified Nijmegen Mitochondrial Disease Criteria. RESULTS A diagnosis was achieved in 47% (43/91) of individuals, 40% (17/43) of whom had an MD. Seven additional individuals in whom an MD was not suspected were diagnosed with an MD after broader analysis. Gene-agnostic analysis led to the discovery of 2 novel disease genes, with pathogenicity validated through targeted functional studies (CRLS1 and MRPL39). Functional studies enabled diagnosis in another 4 individuals. Of the 24 individuals ultimately diagnosed with an MD, 79% had a change in management, which included 53% whose care was redirected to palliation. CONCLUSION Ultrarapid genetic diagnosis of MD in acutely unwell infants and children is critical for guiding decisions about the need for additional investigations and clinical management.
Collapse
Affiliation(s)
- Megan Ball
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.
| | | | - Christopher B Barnett
- Paediatric and Reproductive Genetics Unit, Women's and Children's Hospital, North Adelaide, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| | | | - Matthew F Hunter
- Monash Genetics, Monash Health, Melbourne, Australia; Department of Paediatrics, Monash University, Melbourne, Australia
| | | | - Karin S Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia
| | - Sebastian Lunke
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - Chirag V Patel
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Jason Pinner
- Sydney Children's Hospitals Network - Randwick, Sydney, Australia; University of New South Wales, Sydney, New South Wales, Australia
| | - Tony Roscioli
- NSW Health Pathology Randwick Genomics Laboratory, Sydney, Australia; Euroscience Research Australia, University of New South Wales, Sydney, Australia
| | - Sarah A Sandaradura
- Sydney Children's Hospitals Network-Westmead, Sydney, Australia; University of Sydney, Sydney, Australia
| | - Hamish S Scott
- Australian Genomics, Melbourne, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, Australia; Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, Australia; Centre for Cancer Biology, An alliance between SA Pathology and the University of South Australia, Adelaide, Australia; UniSA Clinical and Health Sciences, University of South Australia, Adelaide, Australia
| | - Tiong Y Tan
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mathew Wallis
- Tasmanian Clinical Genetics Service, Tasmanian Health Service, Hobart, Australia; School of Medicine and Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Alison G Compton
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - Zornitza Stark
- Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia; Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Australian Genomics, Melbourne, Australia.
| |
Collapse
|
2
|
Engin Erdal A, Yürek B, Kıreker Köylü O, Ceylan AC, Çıtak Kurt AN, Kasapkara ÇS. Hereditary spastic paraplegia type 35 in a Turkish girl with fatty acid hydroxylase-associated neurodegeneration. J Pediatr Endocrinol Metab 2024; 37:271-275. [PMID: 38353247 DOI: 10.1515/jpem-2023-0481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES The fatty acid 2-hydroxylase gene (FA2H) compound heterozygous or homozygous variants that cause spastic paraplegia type 35 (SPG35) (OMIM # 612319) are autosomal recessive HSPs. FA2H gene variants in humans have been shown to be associated with not only SPG35 but also leukodystrophy and neurodegeneration with brain iron accumulation. CASE PRESENTATION A patient with a spastic gait since age seven was admitted to the paediatric metabolism department. She was born to consanguineous, healthy Turkish parents and had no family history of neurological disease. She had normal developmental milestones and was able to walk at 11 months. At age seven, she developed a progressive gait disorder with increased muscle tone in her lower limbs, bilateral ankle clonus and dysdiadochokinesis. She had frequent falls and deteriorating school performance. Despite physiotherapy, her spastic paraplegia was progressive. Whole exome sequencing (WES) identified a homozygous NM_024306.5:c.460C>T missense variant in the FA2H gene, of which her parents were heterozygous carriers. A brain MRI showed a slight reduction in the cerebellar volume with no iron deposits. CONCLUSIONS Pathogenic variants of the FA2H gene have been linked to neurodegeneration with iron accumulation in the brain, leukodystrophy and SPG35. When patients developed progressive gait deterioration since early childhood even if not exhibited hypointensity in the basal ganglia detected by neuroimaging, FA2H-related neurodegeneration with brain iron accumulation should be ruled out. FA2H/SPG35 disease is characterised by notable clinical and imaging variability, as well as phenotypic diversity.
Collapse
Affiliation(s)
- Ayşenur Engin Erdal
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Burak Yürek
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Oya Kıreker Köylü
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ahmet Cevdet Ceylan
- Department of Medical Genetics, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Ayşegül Neşe Çıtak Kurt
- Department of Pediatric Neurology, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| | - Çiğdem Seher Kasapkara
- Department of Pediatric Metabolic Diseases, Children's Hospital, Ankara Bilkent City Hospital, Ankara, Türkiye
| |
Collapse
|
3
|
Baker ZN, Forny P, Pagliarini DJ. Mitochondrial proteome research: the road ahead. Nat Rev Mol Cell Biol 2024; 25:65-82. [PMID: 37773518 PMCID: PMC11378943 DOI: 10.1038/s41580-023-00650-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/01/2023]
Abstract
Mitochondria are multifaceted organelles with key roles in anabolic and catabolic metabolism, bioenergetics, cellular signalling and nutrient sensing, and programmed cell death processes. Their diverse functions are enabled by a sophisticated set of protein components encoded by the nuclear and mitochondrial genomes. The extent and complexity of the mitochondrial proteome remained unclear for decades. This began to change 20 years ago when, driven by the emergence of mass spectrometry-based proteomics, the first draft mitochondrial proteomes were established. In the ensuing decades, further technological and computational advances helped to refine these 'maps', with current estimates of the core mammalian mitochondrial proteome ranging from 1,000 to 1,500 proteins. The creation of these compendia provided a systemic view of an organelle previously studied primarily in a reductionist fashion and has accelerated both basic scientific discovery and the diagnosis and treatment of human disease. Yet numerous challenges remain in understanding mitochondrial biology and translating this knowledge into the medical context. In this Roadmap, we propose a path forward for refining the mitochondrial protein map to enhance its discovery and therapeutic potential. We discuss how emerging technologies can assist the detection of new mitochondrial proteins, reveal their patterns of expression across diverse tissues and cell types, and provide key information on proteoforms. We highlight the power of an enhanced map for systematically defining the functions of its members. Finally, we examine the utility of an expanded, functionally annotated mitochondrial proteome in a translational setting for aiding both diagnosis of mitochondrial disease and targeting of mitochondria for treatment.
Collapse
Affiliation(s)
- Zakery N Baker
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick Forny
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| | - David J Pagliarini
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Fatty Acid 2-Hydroxylase and 2-Hydroxylated Sphingolipids: Metabolism and Function in Health and Diseases. Int J Mol Sci 2023; 24:ijms24054908. [PMID: 36902339 PMCID: PMC10002949 DOI: 10.3390/ijms24054908] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Sphingolipids containing acyl residues that are hydroxylated at C-2 are found in most, if not all, eukaryotes and certain bacteria. 2-hydroxylated sphingolipids are present in many organs and cell types, though they are especially abundant in myelin and skin. The enzyme fatty acid 2-hydroxylase (FA2H) is involved in the synthesis of many but not all 2-hydroxylated sphingolipids. Deficiency in FA2H causes a neurodegenerative disease known as hereditary spastic paraplegia 35 (HSP35/SPG35) or fatty acid hydroxylase-associated neurodegeneration (FAHN). FA2H likely also plays a role in other diseases. A low expression level of FA2H correlates with a poor prognosis in many cancers. This review presents an updated overview of the metabolism and function of 2-hydroxylated sphingolipids and the FA2H enzyme under physiological conditions and in diseases.
Collapse
|
5
|
Wong TS, Belaramani KM, Chan CK, Chan WK, Chan WLL, Chang SK, Cheung SN, Cheung KY, Cheung YF, Chong SCJ, Chow CKJ, Chung HYB, Fan SYF, Fok WMJ, Fong KW, Fung THS, Hui KF, Hui TH, Hui J, Ko CH, Kwan MC, Kwok MKA, Kwok SSJ, Lai MS, Lam YO, Lam CW, Lau MC, Law CYE, Lee WC, Lee HCH, Lee CN, Leung KH, Leung KY, Li SH, Ling TKJ, Liu KTT, Lo FM, Lui HT, Luk CO, Luk HM, Ma CK, Ma K, Ma KH, Mew YN, Mo A, Ng SF, Poon WKG, Rodenburg R, Sheng B, Smeitink J, Szeto CLC, Tai SM, Tse CTA, Tsung LYL, Wong HMJ, Wong WYW, Wong KK, Wong SNS, Wong CNV, Wong WSS, Wong CKF, Wu SP, Wu HFJ, Yau MM, Yau KCE, Yeung WL, Yeung HMJ, Yip KKE, Young PHT, Yuan G, Yuen YPL, Yuen CL, Fung CW. Mitochondrial diseases in Hong Kong: prevalence, clinical characteristics and genetic landscape. Orphanet J Rare Dis 2023; 18:43. [PMID: 36859275 PMCID: PMC9979401 DOI: 10.1186/s13023-023-02632-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/06/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVE To determine the prevalence of mitochondrial diseases (MD) in Hong Kong (HK) and to evaluate the clinical characteristics and genetic landscape of MD patients in the region. METHODS This study retrospectively reviewed the phenotypic and molecular characteristics of MD patients from participating public hospitals in HK between January 1985 to October 2020. Molecularly and/or enzymatically confirmed MD cases of any age were recruited via the Clinical Analysis and Reporting System (CDARS) using relevant keywords and/or International Classification of Disease (ICD) codes under the HK Hospital Authority or through the personal recollection of treating clinicians among the investigators. RESULTS A total of 119 MD patients were recruited and analyzed in the study. The point prevalence of MD in HK was 1.02 in 100,000 people (95% confidence interval 0.81-1.28 in 100,000). 110 patients had molecularly proven MD and the other nine were diagnosed by OXPHOS enzymology analysis or mitochondrial DNA depletion analysis with unknown molecular basis. Pathogenic variants in the mitochondrial genome (72 patients) were more prevalent than those in the nuclear genome (38 patients) in our cohort. The most commonly involved organ system at disease onset was the neurological system, in which developmental delay, seizures or epilepsy, and stroke-like episodes were the most frequently reported presentations. The mortality rate in our cohort was 37%. CONCLUSION This study is a territory-wide overview of the clinical and genetic characteristics of MD patients in a Chinese population, providing the first available prevalence rate of MD in Hong Kong. The findings of this study aim to facilitate future in-depth evaluation of MD and lay the foundation to establish a local MD registry.
Collapse
Affiliation(s)
- Tsz-Sum Wong
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Kiran M Belaramani
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Kong Chan
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Ki Chan
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Lun Larry Chan
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, SAR, People's Republic of China
| | - Shek-Kwan Chang
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Sing-Ngai Cheung
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Ka-Yin Cheung
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Yuk-Fai Cheung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Shuk-Ching Josephine Chong
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Chi-Kwan Jasmine Chow
- Department of Paediatrics and Adolescent Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Hon-Yin Brian Chung
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
- Hong Kong Genome Institute, Hong Kong, SAR, People's Republic of China
| | - Sin-Ying Florence Fan
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Ming Joshua Fok
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Ka-Wing Fong
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Tsui-Hang Sharon Fung
- Department of Paediatrics and Adolescent Medicine, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Kwok-Fai Hui
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Ting-Hin Hui
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Joannie Hui
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Hung Ko
- Department of Paediatrics and Adolescent Medicine, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Min-Chung Kwan
- Department of Medicine and Geriatrics, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Mei-Kwan Anne Kwok
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Sung-Shing Jeffrey Kwok
- Department of Chemical Pathology, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Moon-Sing Lai
- Department of Medicine, North District Hospital, Hong Kong, SAR, People's Republic of China
| | - Yau-On Lam
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Ching-Wan Lam
- Department of Pathology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Ming-Chung Lau
- Department of Paediatrics and Adolescent Medicine, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Yiu Eric Law
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Cheong Lee
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Han-Chih Hencher Lee
- Department of Chemical Pathology, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Chin-Nam Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Hang Leung
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Kit-Yan Leung
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Siu-Hung Li
- Department of Medicine, North District Hospital, Hong Kong, SAR, People's Republic of China
| | - Tsz-Ki Jacky Ling
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Kam-Tim Timothy Liu
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Fai-Man Lo
- Department of Health, Clinical Genetic Service, Hong Kong, SAR, People's Republic of China
| | - Hiu-Tung Lui
- Department of Medicine, Tseung Kwan O Hospital, Hong Kong, SAR, People's Republic of China
| | - Ching-On Luk
- Department of Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Ho-Ming Luk
- Clinical Genetics Service Unit, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Che-Kwan Ma
- Department of Paediatrics and Adolescent Medicine, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Karen Ma
- Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, SAR, People's Republic of China
| | - Kam-Hung Ma
- Department of Paediatrics and Adolescent Medicine, Alice Ho Miu Ling Nethersole hospital, Hong Kong, SAR, People's Republic of China
| | - Yuen-Ni Mew
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Alex Mo
- Department of Paediatrics and Adolescent Medicine, Kwong Wah Hospital, Hong Kong, SAR, People's Republic of China
| | - Sui-Fun Ng
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wing-Kit Grace Poon
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Richard Rodenburg
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medicine Centre, Nijmegen, The Netherlands
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Jan Smeitink
- Department of Paediatrics, Radboud Centre for Mitochondrial Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medicine Centre, Nijmegen, The Netherlands
| | - Cheuk-Ling Charing Szeto
- Department of Medicine and Geriatrics, United Christian Hospital, Hong Kong, SAR, People's Republic of China
| | - Shuk-Mui Tai
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Choi-Ting Alan Tse
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Li-Yan Lilian Tsung
- Department of Paediatrics and Adolescent Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong, SAR, People's Republic of China
| | - Ho-Ming June Wong
- Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Wing-Yin Winnie Wong
- Department of Medicine and Geriatrics, Caritas Medical Centre, Hong Kong, SAR, People's Republic of China
| | - Kwok-Kui Wong
- Department of Medicine, Yan Chai Hospital, Hong Kong, SAR, People's Republic of China
| | - Suet-Na Sheila Wong
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chun-Nei Virginia Wong
- Department of Paediatrics & Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Wai-Shan Sammy Wong
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Chi-Kin Felix Wong
- Department of Chemical Pathology, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Shun-Ping Wu
- Department of Paediatrics and Adolescent Medicine, Queen Elizabeth Hospital, Hong Kong, SAR, People's Republic of China
| | - Hiu-Fung Jerome Wu
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Man-Mut Yau
- Department of Paediatrics and Adolescent Medicine, Tseung Kwan O Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Cheong Eric Yau
- Department of Paediatrics and Adolescent Medicine, Princess Margaret Hospital, Hong Kong, SAR, People's Republic of China
| | - Wai-Lan Yeung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Hon-Ming Jonas Yeung
- Department of Medicine, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, SAR, People's Republic of China
| | - Kin-Keung Edwin Yip
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong, SAR, People's Republic of China
| | - Pui-Hong Terence Young
- Department of Medicine and Geriatrics, Ruttonjee and Tang Shiu Kin Hospitals, Hong Kong, SAR, People's Republic of China
| | - Gao Yuan
- Department of Medicine, Queen Mary Hospital, Hong Kong, SAR, People's Republic of China
| | - Yuet-Ping Liz Yuen
- Department of Chemical Pathology, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China
| | - Chi-Lap Yuen
- Department of Medicine and Geriatrics, Tuen Mun Hospital, Hong Kong, SAR, People's Republic of China
| | - Cheuk-Wing Fung
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
6
|
Chau JFT, Lee M, Chui MMC, Yu MHC, Fung JLF, Mak CCY, Chau CSK, Siu KK, Hung J, Yeung KS, Kwong AKY, O'Callaghan C, Lau YL, Lee CWD, Chung BHY, Lee SL. Functional Evaluation and Genetic Landscape of Children and Young Adults Referred for Assessment of Bronchiectasis. Front Genet 2022; 13:933381. [PMID: 36003331 PMCID: PMC9393783 DOI: 10.3389/fgene.2022.933381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022] Open
Abstract
Bronchiectasis is the abnormal dilation of the airway which may be caused by various etiologies in children. Beyond the more recognized cause of bacterial and viral infections and primary immunodeficiencies, other genetic conditions such as cystic fibrosis and primary ciliary dyskinesia (PCD) can also contribute to the disease. Currently, there is still debate on whether genome sequencing (GS) or exome sequencing reanalysis (rES) would be beneficial if the initial targeted testing results returned negative. This study aims to provide a back-to-back comparison between rES and GS to explore the best integrated approach for the functional and genetics evaluation for patients referred for assessment of bronchiectasis. In phase 1, an initial 60 patients were analyzed by exome sequencing (ES) with one additional individual recruited later as an affected sibling for ES. Functional evaluation of the nasal nitric oxide test, transmission electron microscopy, and high-speed video microscopy were also conducted when possible. In phase 2, GS was performed on 30 selected cases with trio samples available. To provide a back-to-back comparison, two teams of genome analysts were alternatively allocated to GS or rES and were blinded to each other’s analysis. The time for bioinformatics, analysis, and diagnostic utility was recorded for evaluation. ES revealed five positive diagnoses (5/60, 8.3%) in phase 1, and four additional diagnoses were made by rES and GS (4/30, 13%) during phase 2. Subsequently, one additional positive diagnosis was identified in a sibling by ES and an overall diagnostic yield of 10/61 (16.4%) was reached. Among those patients with a clinical suspicion of PCD (n = 31/61), the diagnostic yield was 26% (n = 8/31). While GS did not increase the diagnostic yield, we showed that a variant of uncertain significance could only be detected by GS due to improved coverage over ES and hence is a potential benefit for GS in the future. We show that genetic testing is an essential component for the diagnosis of early-onset bronchiectasis and is most effective when used in combination with functional tools such as TEM or HSVM. Our comparison of rES vs. GS suggests that rES and GS are comparable in clinical diagnosis.
Collapse
Affiliation(s)
- Jeffrey Fong Ting Chau
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Martin Man Chun Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Mullin Ho Chung Yu
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jasmine Lee Fong Fung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Christy Shuk-Kuen Chau
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
| | - Ka Ka Siu
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
| | - Jacqueline Hung
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
| | - Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Anna Ka Yee Kwong
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Christopher O'Callaghan
- UCL Great Ormond Street Institute of Child Health, UCL and GOSH NIHR BRC, London, United Kingdom
| | - Yu Lung Lau
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
| | - Chun-Wai Davy Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Duchess of Kent Children’s Hospital, Pok Fu Lam, Hong Kong SAR, China
| | - Brian Hon-Yin Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- Department of Paediatrics and Adolescent Medicine, Duchess of Kent Children’s Hospital, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Brian Hon-Yin Chung, ; So-Lun Lee,
| | - So-Lun Lee
- Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, Pok Fu Lam, Hong Kong SAR, China
- *Correspondence: Brian Hon-Yin Chung, ; So-Lun Lee,
| |
Collapse
|
7
|
Xie J, Jiang J, Guo Q. Primary Coenzyme Q10 Deficiency-7 and Pathogenic COQ4 Variants: Clinical Presentation, Biochemical Analyses, and Treatment. Front Genet 2022; 12:776807. [PMID: 35154243 PMCID: PMC8826242 DOI: 10.3389/fgene.2021.776807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary Coenzyme Q10 Deficiency-7 (COQ10D7) is a rare mitochondrial disorder caused by pathogenic COQ4 variants. In this review, we discuss the correlation of COQ4 genotypes, particularly the East Asian-specific c.370G > A variant, with the clinical presentations and therapeutic effectiveness of coenzyme Q10 supplementation from an exon-dependent perspective. Pathogenic COQ4 variants in exons 1–4 are associated with less life-threating presentations, late onset, responsiveness to CoQ10 therapy, and a relatively long lifespan. In contrast, pathogenic COQ4 variants in exons 5–7 are associated with early onset, unresponsiveness to CoQ10 therapy, and early death and are more fatal. Patients with the East Asian-specific c.370G > A variant displays intermediate disease severity with multi-systemic dysfunction, which is between that of the patients with variants in exons 1–4 and 5–7. The mechanism underlying this exon-dependent genotype-phenotype correlation may be associated with the structure and function of COQ4. Sex is shown unlikely to be associated with disease severity. While point-of-care high-throughput sequencing would be useful for the rapid diagnosis of pathogenic COQ4 variants, whereas biochemical analyses of the characteristic impairments in CoQ10 biosynthesis and mitochondrial respiratory chain activity, as well as the phenotypic rescue of the CoQ10 treatment, are necessary to confirm the pathogenicity of suspicious variants. In addition to CoQ10 derivatives, targeted drugs and gene therapy could be useful treatments for COQ10D7 depending on the in-depth functional investigations and the development of gene editing technologies. This review provides a fundamental reference for the sub-classification of COQ10D7 and aim to advance our knowledge of the pathogenesis, clinical diagnosis, and prognosis of this disease and possible interventions.
Collapse
Affiliation(s)
- Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Jiayang Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,School of Medicine, Huaqiao University, Quanzhou, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
8
|
Kwong AK, Wong SS, Rodenburg RJT, Smeitink J, Chan GCF, Fung C. Human d-lactate dehydrogenase deficiency by LDHD mutation in a patient with neurological manifestations and mitochondrial complex IV deficiency. JIMD Rep 2021; 60:15-22. [PMID: 34258137 PMCID: PMC8260477 DOI: 10.1002/jmd2.12220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/18/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND d-lactate, one of the isomers of lactate, exists in a low concentration in healthy individuals and it can be oxidized to pyruvate catalyzed by d-lactate dehydrogenase. Excessive amount of d-lactate causes d-lactate acidosis associated with neurological manifestations. METHODS AND RESULTS We report here a patient with developmental delay, cerebellar ataxia, and transient hepatomegaly. Enzyme analysis in the patient's skin fibroblast showed decreased mitochondrial complex IV activity. Using whole exome sequencing, we identified compound heterozygous variants in the LDHD gene, which encodes the d-lactate dehydrogenase, consisting of a splice site variant c.469+1dupG and a missense variant c.752C>T, p.(Thr251Met) which are pathogenic and likely pathogenic respectively according to the American College of Medical Genetics and Genomics (ACMG) classification. The serum d-lactate level was subsequently detected to be elevated (0.61 mmol/L, reference value: 0-0.25 mmol/L). CONCLUSION This is the third report on LDHD mutations associated with d-lactate elevation and was first reported to have decreased mitochondrial complex IV activity. The study provides more information on this rare metabolic condition but the association of LDHD deficiency with the clinical presentations requires further investigations.
Collapse
Affiliation(s)
- Anna Ka‐Yee Kwong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
| | - Sheila Suet‐Na Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Richard J. T. Rodenburg
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Jan Smeitink
- Radboud Centre for Mitochondrial Medicine, Department of PaediatricsRadboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegenThe Netherlands
| | - Godfrey Chi Fung Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| | - Cheuk‐Wing Fung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong Kong SARChina
- Department of Paediatrics and Adolescent MedicineHong Kong Children's HospitalHong Kong SARChina
| |
Collapse
|
9
|
Alston CL, Stenton SL, Hudson G, Prokisch H, Taylor RW. The genetics of mitochondrial disease: dissecting mitochondrial pathology using multi-omic pipelines. J Pathol 2021; 254:430-442. [PMID: 33586140 PMCID: PMC8600955 DOI: 10.1002/path.5641] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria play essential roles in numerous metabolic pathways including the synthesis of adenosine triphosphate through oxidative phosphorylation. Clinically, mitochondrial diseases occur when there is mitochondrial dysfunction – manifesting at any age and affecting any organ system; tissues with high energy requirements, such as muscle and the brain, are often affected. The clinical heterogeneity is parallel to the degree of genetic heterogeneity associated with mitochondrial dysfunction. Around 10% of human genes are predicted to have a mitochondrial function, and defects in over 300 genes are reported to cause mitochondrial disease. Some involve the mitochondrial genome (mtDNA), but the vast majority occur within the nuclear genome. Except for a few specific genetic defects, there remains no cure for mitochondrial diseases, which means that a genetic diagnosis is imperative for genetic counselling and the provision of reproductive options for at‐risk families. Next‐generation sequencing strategies, particularly exome and whole‐genome sequencing, have revolutionised mitochondrial diagnostics such that the traditional muscle biopsy has largely been replaced with a minimally‐invasive blood sample for an unbiased approach to genetic diagnosis. Where these genomic approaches have not identified a causative defect, or where there is insufficient support for pathogenicity, additional functional investigations are required. The application of supplementary ‘omics’ technologies, including transcriptomics, proteomics, and metabolomics, has the potential to greatly improve diagnostic strategies. This review aims to demonstrate that whilst a molecular diagnosis can be achieved for many cases through next‐generation sequencing of blood DNA, the use of patient tissues and an integrated, multidisciplinary multi‐omics approach is pivotal for the diagnosis of more challenging cases. Moreover, the analysis of clinically relevant tissues from affected individuals remains crucial for understanding the molecular mechanisms underlying mitochondrial pathology. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Charlotte L Alston
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sarah L Stenton
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Holger Prokisch
- Institute of Human Genetics, Technische Universität München, München, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Services for Rare Mitochondrial Disorders, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| |
Collapse
|
10
|
Mero S, Salviati L, Leuzzi V, Rubegni A, Calderan C, Nardecchia F, Galatolo D, Desbats MA, Naef V, Gemignani F, Novelli M, Tessa A, Battini R, Santorelli FM, Marchese M. New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ 10 deficiency in muscle or skin fibroblasts. J Neurol 2021; 268:3381-3389. [PMID: 33704555 DOI: 10.1007/s00415-021-10509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
COQ4 is a component of an enzyme complex involved in the biosynthesis of coenzyme Q10 (CoQ10), a molecule with primary importance in cell metabolism. Mutations in the COQ4 gene are responsible for mitochondrial diseases showing heterogeneous age at onset, clinical presentations and association with CoQ10 deficiency. We herein expand the phenotypic and genetic spectrum of COQ4-related diseases, by reporting two patients harboring bi-allelic variants but not showing CoQ10 deficiency. One patient was found to harbor compound heterozygous mutations (specifically, c.577C>T/p.Pro193Ser and the previously reported c.718C>T/p.Arg240Cys) associated with progressive spasticity, while the other harbored two novel missense (c.284G>A/p.Gly95Asp and c.305G>A/p.Arg102His) associated with a neurodevelopmental disorder. Both patients presented motor impairment and ataxia. To further understand the role of COQ4, we performed functional studies in patient-derived fibroblasts, yeast and "crispant" zebrafish larvae. Micro-oxygraphy showed impaired oxygen consumption rates in one patient, while yeast complementation assays showed that all the mutations were presumably disease related. Moreover, characterization of the coq4 F0 CRISPR zebrafish line showed motor defects and cell reduction in a specific area of the hindbrain, a region reminiscent of the human cerebellum. Our expanded phenotype associated with COQ4 mutations allowed us to investigate, for the first time, the role of COQ4 in brain development in vivo.
Collapse
Affiliation(s)
- Serena Mero
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Vincenzo Leuzzi
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Calderan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Francesca Nardecchia
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | | | | | - Maria Novelli
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
11
|
Wu J, Lu G. Multiple functions of TBCK protein in neurodevelopment disorders and tumors. Oncol Lett 2021; 21:17. [PMID: 33240423 PMCID: PMC7681195 DOI: 10.3892/ol.2020.12278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
TBC1 domain containing kinase (TBCK) protein is composed of three conserved domains, including N-terminal Serine/Threonine kinase domain, central TBC domain and C-terminal rhodanese homology domain (RHOD). A total of 9 different transcripts (classified as long and short TBCK) generated by alternative splicing have been reported in different cell lines. Exogenous expression of long TBCK has been identified to function as a suppressor of cell growth in certain cell types. On the contrary, TBCK has also been reported to serve a tumor-promoting role in other cell lines, indicating that TBCK might function differentially, depending on the context in different cellular environments. Furthermore, deleterious homozygous or compound heterozygous mutations identified by whole-exome sequencing in the TBCK gene could ablate the function of TBCK, further impacting the mTOR signaling pathway and leading to neurogenetic disorders, such as hypotonia, global developmental delay, facial dysmorphic features and brain abnormalities. However, as a poorly explored protein, there are a lot of studies associated with the functions of TBCK that need to be performed in the future. The present review summarizes data regarding the structural features and potential roles of TBCK in developmental and neurological diseases and tumorigenesis. Future prospects of TBCK research lie in revealing numerous biological functions of TBCK.
Collapse
Affiliation(s)
- Jin Wu
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Guanting Lu
- Department of Pathology, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|