1
|
Usui N. Possible roles of deep cortical neurons and oligodendrocytes in the neural basis of human sociality. Anat Sci Int 2024; 99:34-47. [PMID: 38010534 PMCID: PMC10771383 DOI: 10.1007/s12565-023-00747-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Sociality is an instinctive property of organisms that live in relation to others and is a complex characteristic of higher order brain functions. However, the evolution of the human brain to acquire higher order brain functions, such as sociality, and the neural basis for executing these functions and their control mechanisms are largely unknown. Several studies have attempted to evaluate how human sociality was acquired during the course of evolution and the mechanisms controlling sociality from a neurodevelopment viewpoint. This review discusses these findings in the context of human brain evolution and the pathophysiology of autism spectrum disorder (ASD). Comparative genomic studies of postmortem primate brains have demonstrated human-specific regulatory mechanisms underlying higher order brain functions, providing evidence for the contribution of oligodendrocytes to human brain function. Functional analyses of the causative genes of ASD in animal models have demonstrated that the neural basis of social behavior is associated with layer 6 (L6) of the neocortex and oligodendrocytes. These findings demonstrate that both neurons and oligodendrocytes contribute to the neural basis and molecular mechanisms underlying human brain evolution and social functioning. This review provides novel insights into sociability and the corresponding neural bases of brain disorders and evolution.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- Omics Center, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
- United Graduate School of Child Development, Osaka University, Suita, 565-0871, Japan.
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan.
- Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka, 541-8567, Japan.
| |
Collapse
|
2
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
3
|
Khan A, Tian S, Tariq M, Khan S, Safeer M, Ullah N, Akbar N, Javed I, Asif M, Ahmad I, Ullah S, Satti HS, Khan R, Naeem M, Ali M, Rendu J, Fauré J, Dieterich K, Latypova X, Baig SM, Malik NA, Zhang F, Khan TN, Liu C. NGS-driven molecular diagnosis of heterogeneous hereditary neurological disorders reveals novel and known variants in disease-causing genes. Mol Genet Genomics 2022; 297:1601-1613. [PMID: 36002593 DOI: 10.1007/s00438-022-01945-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Hereditary neurological disorders (HNDs) are a clinically and genetically heterogeneous group of disorders. These disorders arise from the impaired function of the central or peripheral nervous system due to aberrant electrical impulses. More than 600 various neurological disorders, exhibiting a wide spectrum of overlapping clinical presentations depending on the organ(s) involved, have been documented. Owing to this clinical heterogeneity, diagnosing these disorders has been a challenge for both clinicians and geneticists and a large number of patients are either misdiagnosed or remain entirely undiagnosed. Contribution of genetics to neurological disorders has been recognized since long; however, the complete picture of the underlying molecular bases are under-explored. The aim of this study was to accurately diagnose 11 unrelated Pakistani families with various HNDs deploying NGS as a first step approach. Using exome sequencing and gene panel sequencing, we successfully identified disease-causing genomic variants these families. We report four novel variants, one each in, ECEL1, NALCN, TBR1 and PIGP in four of the pedigrees. In the rest of the seven families, we found five previously reported pathogenic variants in POGZ, FA2H, PLA2G6 and CYP27A1. Of these, three families segregate a homozygous 18 bp in-frame deletion of FA2H, indicating a likely founder mutation segregating in Pakistani population. Genotyping for this mutation can help low-cost population wide screening in the corresponding regions of the country. Our findings not only expand the existing repertoire of mutational spectrum underlying neurological disorders but will also help in genetic testing of individuals with HNDs in other populations.
Collapse
Affiliation(s)
- Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Shixiong Tian
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200438, China
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Sheraz Khan
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Muhammad Safeer
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Naimat Ullah
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Nazia Akbar
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Pakistan
| | - Iram Javed
- Department of Paediatric Neurology, Children Hospital and Institute of Child Health, Faisalabad, Pakistan
| | - Mahnoor Asif
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Ilyas Ahmad
- Institute for Cardiogenetics, University of Lübeck, DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, University Heart Center Lübeck, Lübeck, Germany
| | - Shahid Ullah
- Department of General Surgery, Hayatabad Medical Complex, Peshawar, 2500, Pakistan
| | - Humayoon Shafique Satti
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Muhammad Naeem
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Mahwish Ali
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan.,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - John Rendu
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Julien Fauré
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Klaus Dieterich
- Inserm, U1209, CHU Grenoble Alpes, Institute of Advanced Biosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Xenia Latypova
- Inserm, U1216, CHU Grenoble Alpes, Grenoble Institute of Neurosciences, University of Grenoble Alpes, 38000, Grenoble, France
| | - Shahid Mahmood Baig
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan.,Pakistan Science Foundation, Constitution Avenue, Islamabad, Pakistan
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad, Pakistan
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China
| | - Tahir Naeem Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,NUMS Institute of Advance Studies and Research, National University of Medical Sciences, Rawalpindi, 46000, Pakistan. .,Advanced Center for Translational and Genetic Medicine, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, United States.
| | - Chunyu Liu
- Obstetrics and Gynecology Hospital, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Institute of Reproduction and Development, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
4
|
Lee K, Jung Y, Vyas Y, Skelton I, Abraham WC, Hsueh YP, Montgomery JM. Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1 +/- mouse model of autism spectrum disorders. Mol Autism 2022; 13:13. [PMID: 35303947 PMCID: PMC8932001 DOI: 10.1186/s13229-022-00494-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Šídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yewon Jung
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yukti Vyas
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Imogen Skelton
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Academia Rd., Taipei, 11529, Taiwan
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|