1
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Wang N, Xian J, Zhao P, Zhao W, Pu N, Jia X, Zhang Y, Bo X, Wang Z. Evaluation of protective immune responses induced by DNA vaccines encoding Echinococcus granulosus EgM123 protein in Beagle dogs. Front Vet Sci 2024; 11:1444741. [PMID: 39386253 PMCID: PMC11462624 DOI: 10.3389/fvets.2024.1444741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Echinococcus granulosus, known as cystic echinococcosis, is a prominent zoonotic parasitic disease of significant global concern. The definitive hosts serves as the primary reservoir for the transmission of echinococcosis, as well as a main factor in the prevention and control of the disease. Unfortunately, there is currently no commercially available vaccine for these hosts. Nevertheless, DNA vaccines show potential as a feasible strategy for the control and management of parasitic diseases. Methods In this study, the EgM123 antigen was selected for its well-documented immunogenic properties to develop a DNA vaccine aimed at combating E. granulosus infection in canines. Results The results showed a marked increase in IgG levels in the group vaccinated with pVAX1-EgM123 DNA compared to the PBS group. Additionally, the cytokines IL-1, IFN-γ, IL-4, and IL-6 were significantly upregulated in the pVAX1-EgM123 DNA vaccine group. Furthermore, in comparison to the PBS control group, the EgM123 DNA vaccine group exhibited a notable 87.85% reduction in worm burden and a 65.00% inhibition in segment development. Discussion These findings indicate that the pVAX1-EgM123 DNA vaccine shows promising immunogenicity, successfully eliciting a targeted immune response in canines. Moreover, it significantly diminishes the worm burden and hinders the progression of tapeworms in the pVAX1-EgM123 DNA vaccine group. These findings suggest that the pVAX1-EgM123 DNA vaccine holds promise as a potential candidate vaccine for combating E. granulosus infection in dogs.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wenqing Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Tarim University, Xinjiang, China
| | - Na Pu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xinyue Jia
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Shihezi, China
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| |
Collapse
|
3
|
Leroux M, Benavides U, Hellel-Bourtal I, Silvarrey C, Milhau N, Marchal T, Bourgeois S, Lawton P, Briançon S, Petavy AF, Lahmar S, Esteves A, Almouazen E, Azzouz-Maache S. Development of an oral nanovaccine for dogs against Echinococcus granulosus. Eur J Pharm Biopharm 2023; 192:185-195. [PMID: 37769880 DOI: 10.1016/j.ejpb.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Dogs are the main source of animal and human cystic echinococcosis caused by the Cestode parasite Echinococcus granulosus. Dog vaccination seems to be a good strategy to control this parasitic disease. Here we present the development of a polymeric nanoparticle-based oral vaccine for dogs against Echinococcus granulosus delivered in enteric-coated capsules. To achieve our target, we encapsulated two recombinant antigens into biodegradable polymeric nanoparticles in the presence of Monophosphoryl lipid A as an adjuvant to ensure efficient delivery and activation of a protective mucosal immune response. The formulated delivery system showed a nanoparticle size less than 200 nm with more than 80 % antigen encapsulation efficiency and conserved integrity and immunogenicity. The nanoparticle surface was coated with chitosan to enhance adhesion to the gut mucosa and a subsequent antigen delivery. Chitosan-coated nanoparticles showed a higher cell internalization in murine macrophages and dendritic cells as well as a higher penetration into Caco-2 cells in vitro. Antigen-loaded nanoparticles were freeze-dried and enteric-coated capsules were filled with the obtained powder. The obtained results show a promising nanoparticles delivery system for oral vaccination.
Collapse
Affiliation(s)
- Marine Leroux
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France
| | - Uruguaysito Benavides
- Academic Unit of Immunology and Immunotherapy, Faculty of Veterinary Medicine, Universidad de la República, Montevideo, Uruguay
| | - Imène Hellel-Bourtal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France
| | - Cecilia Silvarrey
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Nadège Milhau
- UPSP ICE, VetAgro Sup, Campus vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy L'Etoile, France
| | - Thierry Marchal
- UPSP ICE, VetAgro Sup, Campus vétérinaire de Lyon, 1 avenue Bourgelat, F-69280 Marcy L'Etoile, France
| | - Sandrine Bourgeois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France; Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Philippe Lawton
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France; Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Stephanie Briançon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France; Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Anne-Françoise Petavy
- Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Samia Lahmar
- National School of Veterinary Medicine, Sidi Thabet, Tunisia
| | - Adriana Esteves
- Biochemistry Section, Faculty of Sciences, Universidad de la República, Montevideo, Uruguay
| | - Eyad Almouazen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France; Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France
| | - Samira Azzouz-Maache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, F-69100 Villeurbanne, France; Univ Lyon, Université Claude-Bernard Lyon I, ISPB-Faculté de Pharmacie, F-69008 Lyon, France.
| |
Collapse
|
4
|
Zhang P, Zhang Y, Cao L, Li J, Wu C, Tian M, Zhang Z, Zhang C, Zhang W, Li Y. A Diverse Virome Is Identified in Parasitic Flatworms of Domestic Animals in Xinjiang, China. Microbiol Spectr 2023; 11:e0070223. [PMID: 37042768 PMCID: PMC10269781 DOI: 10.1128/spectrum.00702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Parasitic flatworms infect diverse vertebrates and are major threats to animal and even human health; however, little is known about the virome of these lower life forms. Using viral metagenomic sequencing, we characterized the virome of the parasitic flatworms collected from major domestic animals, including Dicrocoelium lanceatum and Taenia hydatigena, Echinococcus granulosus sensu stricto and Echinococcus multilocularis. Seven and three different viruses were discovered from D. lanceatum and T. hydatigena, respectively, and no viral sequences were found in adult tapeworms and protoscoleces of E. granulosus sensu stricto and E. multilocularis. Two out of the five parasitic flatworm species carry viruses, showing a host specificity of these viruses. These viruses belong to the Parvoviridae, Circoviridae, unclassified circular, Rep-encoding single-stranded (CRESS) DNA virus, Rhabdoviridae, Endornaviridae, and unclassified RNA viruses. The presence of multiple highly divergent RNA viruses, especially those that cluster with viruses found in marine animals, implies a deep evolutionary history of parasite-associated viruses. In addition, we found viruses with high identity to common pathogens in dogs, including canine circovirus and canine parvovirus 2. The presence of these viruses in the parasites implies that they may infect parasitic flatworms but does not completely exclude the possibility of contamination from host intestinal contents. Furthermore, we demonstrated that certain viruses, such as CRESS DNA virus may integrate into the genome of their host. Our results expand the knowledge of viral diversity in parasites of important domestic animals, highlighting the need for further investigations of their prevalence among other parasites of key animals. IMPORTANCE Characterizing the virome of parasites is important for unveiling the viral diversity, evolution, and ecology and will help to understand the "Russian doll" pattern among viruses, parasites, and host animals. Our data indicate that diverse viruses are present in specific parasitic flatworms, including viruses that may have an ancient evolutionary history and viruses currently circulating in parasite-infected host animals. These data also raise the question of whether parasitic flatworms acquire and/or carry some viruses that may have transmission potential to animals. In addition, through the study of virus-parasite-host interactions, including the influence of viral infection on the life cycle of the parasite, as well as its fitness and pathogenicity to the host, we could find new strategies to prevent and control parasitic diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Le Cao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanchuan Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mengxiao Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhuangzhi Zhang
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, WHO-Collaborating Centre for Prevention and Care Management of Echinococcosis, Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Veterinary Research Institute, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, China
| | - Yanpeng Li
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Shen N, Wei W, Chen Y, Liu S, Xiong L, Xiao J, Gu X, Xie Y, Xu J, Jing B, Peng X, Yang G. Vaccination with a cocktail vaccine elicits significant protection against Sarcoptes scabiei in rabbits, whereas the multi-epitope vaccine offers limited protection. Exp Parasitol 2023; 245:108442. [PMID: 36509170 DOI: 10.1016/j.exppara.2022.108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Sarcoptes scabiei cause scabies in humans or sarcoptic mange in animals. Currently, information regarding vaccines against S. scabiei is limited and no commercial vaccine is available. In present study, we expressed and mixed recombinant S. scabiei serpin (rSs-serpin), recombinant S. scabiei chitinase-like protein-5 [rSs-CLP5] and -12 [rSs-CLP12] as a cocktail vaccine (three proteins mixed), and also a multi-epitope protein derived from these three S. scabiei genes was expressed as a vaccine candidate to evaluate the effects of two vaccine strategies. Four test groups (n = 12 per group) and a control group (n = 12 per group) were involved in this vaccination trial. The results showed that 91.67% (11/12) and 83.33% (10/12) of rabbits exhibited no detectable skin lesions from S. scabiei infestation in cocktail vaccine groups, whereas two multi-epitope groups produced only a few rabbits (5/12, 6/12) having no detectable skin lesions. Four test groups displayed significant increases in specific IgG antibodies (Abs) and total IgE Abs after immunized with recombinant proteins. Taken together, our data demonstrated a mixture of rSs-serpin, rSs-CLP5 and rSs-CLP12 was a promising vaccine candidate that induced robust immune protection and could significantly decrease mite populations to reduce the direct transmission between rabbits. However, vaccination with the multi-epitope protein showed limited protection in rabbits.
Collapse
Affiliation(s)
- Nengxing Shen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Wenrui Wei
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yuhang Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China; Mianyang Animal Disease Control Center, Mianyang, 621000, China
| | - Song Liu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Lang Xiong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jie Xiao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Bo Jing
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Wenjiang, 611130, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, China.
| |
Collapse
|
6
|
Du X, Zhu M, Zhang T, Wang C, Tao J, Yang S, Zhu Y, Zhao W. The Recombinant Eg.P29-Mediated miR-126a-5p Promotes the Differentiation of Mouse Naive CD4 + T Cells via DLK1-Mediated Notch1 Signal Pathway. Front Immunol 2022; 13:773276. [PMID: 35211114 PMCID: PMC8861942 DOI: 10.3389/fimmu.2022.773276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Cystic echinococcosis (CE) is a zoonotic parasitic disease spread worldwide caused by Echinococcus granulosus (Eg), which sometimes causes serious damage; however, in many cases, people are not aware that they are infected. A number of recombinant vaccines based on Eg are used to evaluate their effectiveness against the infection. Our previous report showed that recombinant Eg.P29 (rEg.P29) has a marvelous immunoprotection and can induce Th1 immune response. Furthermore, data of miRNA microarray in mice spleen CD4+ T cells showed that miR-126a-5p was significantly elevated 1 week after immunization by using rEg.P29. Therefore, in this perspective, we discussed the role of miR-126a-5p in the differentiation of naive CD4+ T cells into Th1/Th2 under rEg.P29 immunization and determined the mechanisms associated with delta-like 1 homolog (DLK1) and Notch1 signaling pathway. One week after P29 immunization of mice, we found that miR-126a-5p was significantly increased and DLK1 expression was decreased, while Notch1 pathway activation was enhanced and Th1 response was significantly stronger. The identical conclusion was obtained by overexpression of mmu-miR-126a-5p in primary naive CD4+ T cells in mice. Intriguingly, mmu-miR-126a-5p was significantly raised in serum from mice infected with protoscolex in the early stages of infection and markedly declined in the late stages of infection, while has-miR-126-5p expression was dramatically reduced in serum from CE patients. Taken together, we show that miR-126a-5p functions as a positive regulator of Notch1-mediated differentiation of CD4+ T cells into Th1 through downregulating DLK1 in vivo and in vitro. Hsa-miR-126-5p is potentially a very promising diagnostic biomarker for CE.
Collapse
Affiliation(s)
- Xiancai Du
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Mingxing Zhu
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| | - Tingrui Zhang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Chan Wang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Jia Tao
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Songhao Yang
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Yazhou Zhu
- School of Basic Medical Science of Ningxia Medical University, Yinchuan, China.,Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China
| | - Wei Zhao
- Ningxia Key Laboratory of Prevention and Control of Common Infectious Diseases, Yinchuan, China.,Center of Scientific Technology of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Xian J, Zhao P, Wang N, Wang W, Zhang Y, Meng J, Ma X, Wang Z, Bo X. Molecular Characterization of a Tetraspanin TSP11 Gene in Echinococcus granulosus and Evaluation Its Immunoprotection in Model Dogs. Front Vet Sci 2021; 8:759283. [PMID: 34869731 PMCID: PMC8635718 DOI: 10.3389/fvets.2021.759283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cystic echinococcosis (CE) is a cosmopolitan zoonosis caused by the larval stage of Echinococcus granulosus, which affects humans and a wide range of mammalian intermediate hosts. Parasite tetraspanin proteins are crucial for host-parasite interactions, and therefore they may be useful for vaccine development or disease diagnosis. In the present study, the major antigen coding sequence of tetraspanin 11 (Eg-TSP11) from E. granulosus was determined. The results of immunolocalization showed that Eg-TSP11 was mainly located in the tegument of adult worms and protoscoleces. Western blotting analysis showed that the serum from dogs injected with recombinant Eg-TSP11 (rEg-TSP11) could recognize Eg-TSP11 among natural protoscolex proteins. Moreover, the serum from dogs with E. granulosus infection also recognized rEg-TSP11. Serum indirect enzyme-linked immunosorbent assays demonstrated that IgG levels gradually increased after the first immunization with rEg-TSP11 compared with those in the control group. Furthermore, the serum levels of interleukin 4, interleukin 5, and interferon gamma were significantly altered in the rEg-TSP11 group. Importantly, we found that vaccination with rEg-TSP11 significantly decreased worm burden and inhibited segment development in a dog model of E. granulosus infection. Based on these findings, we speculated that rEg-TSP11 might be a potential candidate vaccine antigen against E. granulosus infection in dogs.
Collapse
Affiliation(s)
- Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weiye Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| |
Collapse
|
8
|
Xian J, Wang N, Zhao P, Zhang Y, Meng J, Ma X, Guo X, Wang Z, Bo X. Molecular characterization and immune protection of the 3-hydroxyacyl-CoA dehydrogenase gene in Echinococcus granulosus. Parasit Vectors 2021; 14:489. [PMID: 34556147 PMCID: PMC8460197 DOI: 10.1186/s13071-021-05001-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/08/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a serious parasitic zoonosis caused by the larvae of the tapeworm Echinococcus granulosus. The development of an effective vaccine is one of the most promising strategies for controlling CE. METHODS The E. granulosus 3-hydroxyacyl-CoA dehydrogenase (EgHCDH) gene was cloned and expressed in Escherichia coli. The distribution of EgHCDH in protoscoleces (PSCs) and adult worms was analyzed using immunofluorescence. The transcript levels of EgHCDH in PSCs and adult worms were analyzed using quantitative real-time reverse transcription PCR (RT-qPCR). The immune protective effects of the rEgHCDH were evaluated. RESULTS The 924-bp open reading frame sequence of EgHCDH, which encodes a protein of approximately 34 kDa, was obtained. RT-qPCR analysis revealed that EgHCDH was expressed in both the PSCs and adult worms of E. granulosus. Immunofluorescence analysis showed that EgHCDH was mainly localized in the tegument of PSCs and adult worms. Western blot analysis showed that the recombinant protein was recognized by E. granulosus-infected dog sera. Animal challenge experiments demonstrated that dogs immunized with recombinant (r)EgHCDH had significantly higher serum IgG, interferon gamma and interleukin-4 concentrations than the phosphate-buffered saline (PBS) control group. The rEgHCDH vaccine was able to significantly reduce the number of E. granulosus and inhibit the segmental development of E. granulosus compared to the PBS control group. CONCLUSIONS The results suggest that rEgHCDH can induce partial immune protection against infection with E. granulosus and could be an effective candidate for the development of new vaccines.
Collapse
Affiliation(s)
- Jinwen Xian
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Ning Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Pengpeng Zhao
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Yanyan Zhang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Jimeng Meng
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xun Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, 832000 China
| | - Xiaola Guo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Gansu, 730046 China
| | - Zhengrong Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| | - Xinwen Bo
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, 832000 Shihezi, China
| |
Collapse
|
9
|
Tropical Medicine in China: Bibliometric Analysis Based on Web of Science (2010-2019). J Trop Med 2021; 2021:4267230. [PMID: 34422063 PMCID: PMC8371669 DOI: 10.1155/2021/4267230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose The current study quantitatively assessed research trends in tropical medicine in China via a bibliometric method, which used the Web of Science database to analyse the research-based literature related to tropical medicine published from 2010 to 2019. Methods Articles were analysed according to the output and research performance of institutes and countries that collaborated with China. Distribution of keywords was applied to evaluate research trends. Results Our findings showed that 3372 articles in the field of tropical medicine have been indexed under the Web of Science database during the past 10 years, indicating that studies pertaining to tropical medicine have been growing from 2010 to 2019. The Chinese Center for Disease Control and Prevention (China CDC) system, which published 549 articles on tropical medicine, may be considered as the flagship of tropical medicine in China. The United States ranked first in internationally collaborative articles with China. Furthermore, Parasite & Vectors, which published 707 papers, emerged as the top journal according to the number of publications. Conclusions This study highlights the key institutes and topics pertaining to tropical medicine research in China. Although there has been rapid progress in research on tropical medicine in China, some gaps still remain.
Collapse
|
10
|
Li Y, Zhu Y, Sha T, Chen Z, Yu M, Zhang F, Ding J. A Multi-Epitope Chitosan Nanoparticles Vaccine of Canine Against Echinococcus granulosus. J Biomed Nanotechnol 2021; 17:910-920. [PMID: 34082876 DOI: 10.1166/jbn.2021.3065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cystic Echinococcosis (CE) is caused by Echinococcus granulosus (Eg), which endangers the health of the intermediate host. Therefore, effective canid vaccines against Eg infection are urgently needed to reduce the incidence of this disease. In the present work, the aim was to predict epitopes in four vaccine candidate antigens (VCAs) in Eg as a basis to design a multi-epitope canine-directed vaccine. This vaccine is based on chitosan nanoparticles (CS-NPs) and is directed against Eg infection in the definitive host. The canine-directed vaccine was designed based on Eg antigens EgM9, Eg_10196, EgA31 and EgG1Y162. Several tools in online servers were used to predict VCAs information, which was combined with B cell, CTL and Th epitopes. Considering that acquiring experimental information in canids is difficult, and that it may be possible to perform future experiments in mice, we predicted both canine and murine T cell epitopes. The multi-epitope vaccine was synthetically prepared by ionic crosslinking method, and CS-NPs was used as adjuvant. The mice were immunized by oral gavage and laser scanning confocal microscopy was used to localize the fluorescein- labeled multi-epitope peptide in the intestinal tract. The final multi-epitope vaccine was construct consist of Co1 targeting peptide, four B-cell epitopes, four canine-directed CTL epitopes and four murine-directed Th epitopes. It has been proven experimentally by this research that multi-epitope antigen concentration merged with microfold cells was high in the CS-NPs vaccine group. The present bioinformatics study is a first step towards the construction of a canine-specific multiepitope vaccine against Eg with twelve predicted epitopes. CS-NPs is a potential adjuvant with relatively safe penetration enhancement delivery and a potent immunostimulant.
Collapse
Affiliation(s)
- Yujiao Li
- School of Public Health, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Yuejie Zhu
- Department of Blood Transfusion, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Tong Sha
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Zhiqiang Chen
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Mingkai Yu
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| | - Fengbo Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang 830011, PR China
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine, Xinjiang Medical University, Xinjiang 830011, PR China
| |
Collapse
|
11
|
Vaccination with rEGVac elicits immunoprotection against different stages of Echinococcus granulosus life cycle: A pilot study. Acta Trop 2021; 218:105883. [PMID: 33676937 DOI: 10.1016/j.actatropica.2021.105883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/16/2022]
Abstract
Vaccination against dog-sheep transmission cycle is necessary to control cystic echinococcosis (CE) infection. A multi-epitope multi-antigenic recombinant vaccine was developed-comprising the three putative vaccine antigens EG95, Eg14-3-3 and EgEnolase-was cloned and expressed. In a pilot experiment, the multi-antigen vaccine was assessed in 15 dogs and 15 sheep (five experimental groups and three animals in each group) by two subcutaneous doses 28 days apart. To evaluate the efficacy of the vaccine candidate first immunological analysis were done comprising IgG and IgE antibodies and the cytokine IL-4 in sera of the immunized dogs and sheep. Serum IgG, IgE, and IL-4, in particular in the dogs, were increased after the two rounds of vaccine candidate injection, while the total number of hydatid cysts was reduced (~85.43%). This pilot trial indicated significant immune protection efficacy against E. granulosus especially in dogs, while its efficacy in sheep was not as high as dogs. The multi-antigenic candidate vaccine is proposed as a protective vaccine modality in both dogs and sheep.
Collapse
|
12
|
Anvari D, Rezaei F, Ashouri A, Rezaei S, Majidiani H, Pagheh AS, Rezaei F, Shariatzadeh SA, Fotovati A, Siyadatpanah A, Gholami S, Ahmadpour E. Current situation and future prospects of Echinococcus granulosus vaccine candidates: A systematic review. Transbound Emerg Dis 2020; 68:1080-1096. [PMID: 32762075 DOI: 10.1111/tbed.13772] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/20/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022]
Abstract
Cystic echinococcosis is a worldwide zoonotic disease, represents a threat for livestock and humans, manifests as a quiescent, subclinical and chronic hydatid cyst infection. The disease imposes high expenditures and economic losses in medical and veterinary. Prophylactic vaccination would be one of the effective preventive health care against echinococcosis. During the last decades, many studies have characterized the protective antigens of Echinococcus granulosus and their role in immunization of various animal host species. Herein, we aimed to systematically evaluate and represent the best antigens as possible vaccine candidates for cystic echinococcosis. Data were systematically searched from five databases including ProQuest, PubMed, Scopus, ScienceDirect and Web of Science, up to 1 February 2020. Two reviewers independently screened and assessed data extraction and quality assessment. A total of 47 articles were eligible for inclusion criteria in the current study. The most common antigens used for vaccination against E. granulosus were EG95 and antigen B. Freund's adjuvant and Quil A have been predominantly utilized. In addition, regarding the antigen delivery, animal models, measurement of immune responses and reduction in hydatid cyst have been discussed in the text. The data demonstrated that DNA vaccines with antigen B and recombinant protein vaccines based on EG95 antigen have the best results and elicited protective immune responses.
Collapse
Affiliation(s)
- Davood Anvari
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Fatemeh Rezaei
- Faculty of Modern Sciences and Technologies, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Alireza Ashouri
- Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeed Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Karaj, Iran
| | - Hamidreza Majidiani
- Zonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Abdol Sattar Pagheh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Rezaei
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Ali Shariatzadeh
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Fotovati
- Faculty of Veterinary Medicine, University of Zabol, Zabol, Iran
| | | | - Shirzad Gholami
- Department of Parasitology, School of Medicine, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Parasitology and Mycology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sander VA, Sánchez López EF, Mendoza Morales L, Ramos Duarte VA, Corigliano MG, Clemente M. Use of Veterinary Vaccines for Livestock as a Strategy to Control Foodborne Parasitic Diseases. Front Cell Infect Microbiol 2020; 10:288. [PMID: 32670892 PMCID: PMC7332557 DOI: 10.3389/fcimb.2020.00288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/19/2022] Open
Abstract
Foodborne diseases (FBDs) are a major concern worldwide since they are associated with high mortality and morbidity in the human population. Among the causative agents of FBDs, Taenia solium, Echinococcus granulosus, Toxoplasma gondii, Cryptosporidium spp., and Trichinella spiralis are listed in the top global risk ranking of foodborne parasites. One common feature between them is that they affect domestic livestock, encompassing an enormous risk to global food production and human health from farm to fork, infecting animals, and people either directly or indirectly. Several approaches have been employed to control FBDs caused by parasites, including veterinary vaccines for livestock. Veterinary vaccines against foodborne parasites not only improve the animal health by controlling animal infections but also contribute to increase public health by controlling an important source of FBDs. In the present review, we discuss the advances in the development of veterinary vaccines for domestic livestock as a strategy to control foodborne parasitic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Marina Clemente
- Laboratorio de Molecular Farming y Vacunas, Unidad Biotecnológica 6-UB6, INTECH, UNSAM-CONICET, Chascomús, Argentina
| |
Collapse
|
14
|
Milhau N, Almouazen E, Bouteille S, Hellel-Bourtal I, Azzouz-Maache S, Benavides U, Petavy AF, Marchal T. In vitro evaluations on canine monocyte-derived dendritic cells of a nanoparticles delivery system for vaccine antigen against Echinococcus granulosus. PLoS One 2020; 15:e0229121. [PMID: 32101539 PMCID: PMC7043750 DOI: 10.1371/journal.pone.0229121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Since dogs play a central role in the contamination of humans and livestock with Echinococcus granulosus, the development of an effective vaccine for dogs is essential to control the disease caused by this parasite. For this purpose, a formulation based on biodegradable polymeric nanoparticles (NPs) as delivery system of recombinant Echinococcus granulosus antigen (tropomyosin EgTrp) adjuved with monophosphoryl lipid A (MPLA) has been developed. The obtained nanoparticles had a size of approximately 200 nm in diameter into which the antigen was correctly preserved and encapsulated. The efficiency of this system to deliver the antigen was evaluated in vitro on canine monocyte-derived dendritic cells (cMoDCs) generated from peripheral blood monocytes. After 48 h of contact between the formulations and cMoDCs, we observed no toxic effect on the cells but a strong internalization of the NPs, probably through different pathways depending on the presence or not of MPLA. An evaluation of cMoDCs activation by flow cytometry showed a stronger expression of CD80, CD86, CD40 and MHCII by cells treated with any of the tested formulations or with LPS (positive control) in comparison to cells treated with PBS (negative control). A higher activation was observed for cells challenged with EgTrp-NPs-MPLA compared to EgTrp alone. Formulations with MPLA, even at low ratio of MPLA, give better results than formulations without MPLA, proving the importance of the adjuvant in the nanoparticles structure. Moreover, autologous T CD4+ cell proliferation observed in presence of cMoDCs challenged with EgTrp-NPs-MPLA was higher than those observed after challenged with EgTrp alone (p<0.05). These first results suggest that our formulation could be used as an antigen delivery system to targeting canine dendritic cells in the course of Echinococcus granulosus vaccine development.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- CD4-Positive T-Lymphocytes/immunology
- Cell Differentiation
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dogs/blood
- Dogs/immunology
- Dogs/parasitology
- Drug Carriers/chemistry
- Drug Carriers/toxicity
- Echinococcosis/immunology
- Echinococcosis/parasitology
- Echinococcosis/prevention & control
- Echinococcosis/veterinary
- Echinococcus granulosus/genetics
- Echinococcus granulosus/immunology
- Immunogenicity, Vaccine
- Lipid A/analogs & derivatives
- Lipid A/chemistry
- Lipid A/toxicity
- Lymphocyte Activation/immunology
- Monocytes/physiology
- Nanoparticles/chemistry
- Nanoparticles/toxicity
- Polyesters/chemistry
- Polyesters/toxicity
- Primary Cell Culture
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Toxicity Tests, Acute
- Tropomyosin/administration & dosage
- Tropomyosin/genetics
- Tropomyosin/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Nadège Milhau
- Université de Lyon, VetAgro Sup, UPSP ICE 2011.03.101, Marcy L’Etoile, France
| | - Eyad Almouazen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
| | - Sylvie Bouteille
- Université de Lyon, VetAgro Sup, Laboratoire d’Histopathologie, Marcy L’Etoile, France
| | - Imène Hellel-Bourtal
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, Villeurbanne, France
| | - Samira Azzouz-Maache
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
| | - Uruguaysito Benavides
- Immunology Department, Faculty of Veterinary, Universidad de la República, Montevideo, Uruguay
| | - Anne-Françoise Petavy
- ISPB-Faculté de Pharmacie, Université Claude-Bernard Lyon 1, Lyon, France
- Institut de recherche pour le développement (IRD), UMR InterTryp IRD/CIRAD, campus international de Baillarguet, Montpellier, France
| | - Thierry Marchal
- Université de Lyon, VetAgro Sup, UPSP ICE 2011.03.101, Marcy L’Etoile, France
- Université de Lyon, VetAgro Sup, Laboratoire d’Histopathologie, Marcy L’Etoile, France
- * E-mail:
| |
Collapse
|
15
|
Larrieu E, Gavidia CM, Lightowlers MW. Control of cystic echinococcosis: Background and prospects. Zoonoses Public Health 2019; 66:889-899. [PMID: 31529690 DOI: 10.1111/zph.12649] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/24/2019] [Indexed: 12/14/2022]
Abstract
Cystic echinococcosis (CE), caused by Echinococcus granulosus, is a chronic and debilitating zoonotic larval cestode infection in humans, which is principally transmitted between dogs and domestic livestock, particularly sheep. Human CE occurs in almost all pastoral communities and rangeland areas of the underdeveloped and developed world. Control programmes against CE have been implemented in several endemic countries to reduce or eliminate the disease. New Zealand and Tasmania are examples of some of the first programmes to be undertaken (in insular territories) and which were very successful in the elimination of CE. The advent and proven effectiveness of praziquantel, plus the experience of insular models, produced high expectations for rapid advances in a second generation of control programmes undertaken in continental areas (Argentina, Uruguay and Chile). Nevertheless, only moderate gains in CE control have been made and the impact on prevalence among humans has been slight. A major impediment to the adoption of procedures that were successful in New Zealand and Tasmania has been the requirement to administer praziquantel to dogs in rural areas eight times per year over numerous years. In addition, there have been clear technological improvements made in the diagnosis of canine echinococcosis for surveillance, the genetic characterization of parasite strains and in vaccination against CE infection in livestock. In order to establish new paradigms and appropriate combinations of control strategies, we have carried out a review and discussion of the available control tools and control models. Control strategies must be suitable and sustainable to benefit the Echinococcosis-endemic areas primarily, which at the same time are the poorest regions of the world.
Collapse
Affiliation(s)
- Edmundo Larrieu
- Facultad de Veterinaria, Universidad Nacional de La Pampa, General Pico, Argentina.,Escuela de Veterinaria, Universidad Nacional de Rio Negro, Choele Choel, Argentina
| | - Cesar M Gavidia
- Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Lima, Perú
| | | |
Collapse
|
16
|
Wen H, Vuitton L, Tuxun T, Li J, Vuitton DA, Zhang W, McManus DP. Echinococcosis: Advances in the 21st Century. Clin Microbiol Rev 2019; 32:e00075-18. [PMID: 30760475 PMCID: PMC6431127 DOI: 10.1128/cmr.00075-18] [Citation(s) in RCA: 531] [Impact Index Per Article: 106.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Echinococcosis is a zoonosis caused by cestodes of the genus Echinococcus (family Taeniidae). This serious and near-cosmopolitan disease continues to be a significant public health issue, with western China being the area of highest endemicity for both the cystic (CE) and alveolar (AE) forms of echinococcosis. Considerable advances have been made in the 21st century on the genetics, genomics, and molecular epidemiology of the causative parasites, on diagnostic tools, and on treatment techniques and control strategies, including the development and deployment of vaccines. In terms of surgery, new procedures have superseded traditional techniques, and total cystectomy in CE, ex vivo resection with autotransplantation in AE, and percutaneous and perendoscopic procedures in both diseases have improved treatment efficacy and the quality of life of patients. In this review, we summarize recent progress on the biology, epidemiology, diagnosis, management, control, and prevention of CE and AE. Currently there is no alternative drug to albendazole to treat echinococcosis, and new compounds are required urgently. Recently acquired genomic and proteomic information can provide a platform for improving diagnosis and for finding new drug and vaccine targets, with direct impact in the future on the control of echinococcosis, which continues to be a global challenge.
Collapse
Affiliation(s)
- Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
| | - Lucine Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and French National Centre for Echinococcosis, University Bourgogne Franche-Comte and University Hospital, Besançon, France
| | - Tuerhongjiang Tuxun
- Department of Liver and Laparoscopic Surgery, Digestive and Vascular Surgery Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dominique A Vuitton
- WHO Collaborating Centre for Prevention and Treatment of Human Echinococcosis and French National Centre for Echinococcosis, University Bourgogne Franche-Comte and University Hospital, Besançon, France
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia and WHO Collaborating Centre for Prevention and Care Management of Echinococcosis, Urumqi, China
- Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|