1
|
Kong WZ, Zhang HY, Sun YF, Song J, Jiang J, Cui HY, Zhang Y, Han S, Cheng Y. Plasmodium vivax tryptophan-rich antigen reduces type I collagen secretion via the NF-κBp65 pathway in splenic fibroblasts. Parasit Vectors 2024; 17:239. [PMID: 38802961 PMCID: PMC11131192 DOI: 10.1186/s13071-024-06264-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/26/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The spleen plays a critical role in the immune response against malaria parasite infection, where splenic fibroblasts (SFs) are abundantly present and contribute to immune function by secreting type I collagen (collagen I). The protein family is characterized by Plasmodium vivax tryptophan-rich antigens (PvTRAgs), comprising 40 members. PvTRAg23 has been reported to bind to human SFs (HSFs) and affect collagen I levels. Given the role of type I collagen in splenic immune function, it is important to investigate the functions of the other members within the PvTRAg protein family. METHODS Protein structural prediction was conducted utilizing bioinformatics analysis tools and software. A total of 23 PvTRAgs were successfully expressed and purified using an Escherichia coli prokaryotic expression system, and the purified proteins were used for co-culture with HSFs. The collagen I levels and collagen-related signaling pathway protein levels were detected by immunoblotting, and the relative expression levels of inflammatory factors were determined by quantitative real-time PCR. RESULTS In silico analysis showed that P. vivax has 40 genes encoding the TRAg family. The C-terminal region of all PvTRAgs is characterized by the presence of a domain rich in tryptophan residues. A total of 23 recombinant PvTRAgs were successfully expressed and purified. Only five PvTRAgs (PvTRAg5, PvTRAg16, PvTRAg23, PvTRAg30, and PvTRAg32) mediated the activation of the NF-κBp65 signaling pathway, which resulted in the production of inflammatory molecules and ultimately a significant reduction in collagen I levels in HSFs. CONCLUSIONS Our research contributes to the expansion of knowledge regarding the functional role of PvTRAgs, while it also enhances our understanding of the immune evasion mechanisms utilized by parasites.
Collapse
Affiliation(s)
- Wei-Zhong Kong
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Hang-Ye Zhang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Case Room, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jing Song
- Department of Obstetrics and Gynecology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi, 214000, China
| | - Heng-Yuan Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yu Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Su Han
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China.
| |
Collapse
|
2
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
3
|
Fei S, Zhao H, Yin J, Wang L, Sun Z, Zhang W, Zhang Y, Dong K, Lyu S, Guo X, Zhou XN, Kassegne K. Molecular Identification and Genetic Characterization of Public Health Threatening Ticks - Chongming Island, China, 2021-2022. China CDC Wkly 2023; 5:815-821. [PMID: 37814631 PMCID: PMC10560331 DOI: 10.46234/ccdcw2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/12/2023] [Indexed: 10/11/2023] Open
Abstract
What is already known about this topic? Although ticks and tick-borne diseases are prevalent throughout China, there remains a knowledge gap regarding their biology and potential risk of distribution to human and animal populations on Chongming Island. The island, being China's third largest and a crucial component in the ecological preservation of the Yangtze Delta region, has yet to be comprehensively studied in this context. What is added by this report? In this study, employing molecular methodologies, a significant prevalence of Haemaphysalis (H.) longicornis and H. flava ticks - widely recognized for their high pathogenicity - is reported from Chongming Island. Additionally, the identification of two previously unreported species on the island, namely, H. doenitzi and H. japonica, expands our understanding of both the range and evolution of tick species. What are the implications for public health practice? The populations of humans and animals in nearly all 18 towns on Chongming Island are potentially at risk for transmission of tick-borne infectious agents. As a result, there is a pressing necessity for public health alerts, proactive tick surveillance, and effective screening of suspected clinical cases of tick-borne diseases within the Chongming population.
Collapse
Affiliation(s)
- Siwei Fei
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanqing Zhao
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxian Yin
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Chongming Centre for Disease Control and Prevention, Shanghai, China
| | - Zhishan Sun
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenge Zhang
- Shanghai Chongming Centre for Disease Control and Prevention, Shanghai, China
| | - Yan Zhang
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Dong
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Lyu
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases at Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases of the Chinese Ministry of Science and Technology, Shanghai, China
| | - Xiaokui Guo
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-nong Zhou
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases at Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases of the Chinese Ministry of Science and Technology, Shanghai, China
| | - Kokouvi Kassegne
- School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Xu SJ, Shen HM, Cui YB, Chen SB, Xu B, Chen JH. Genetic diversity and natural selection of rif gene (PF3D7_1254800) in the Plasmodium falciparum global populations. Mol Biochem Parasitol 2023; 254:111558. [PMID: 36918126 DOI: 10.1016/j.molbiopara.2023.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
To reveal the genetic characteristics of one member of the Plasmodium falciparum repetitive interspersed family (rif), we sequenced the rif gene (PF3D7_1254800) in 53 field isolates collected from Ghana-imported cases into China and compared them with 350 publicly available P. falciparum rif sequences from global populations. In the Ghana-imported population, the nucleotide diversities were 0.05714 and 0.06616 for the full length and variable region of rif gene, respectively. Meanwhile, 22 and 20 haplotypes were identified for the full length and variable region of rif gene (Hd = 0.843 and 0.838, respectively). Diversity of rif gene in Ghana-imported population was higher than that observed in Cambodia, Thailand, Vietnam, Myanmar, Mali, Ghana, and Senegal populations. In this analysis, we found high genetic diversity of rif gene in global P. falciparum populations and identified 158 haplotypes. Tajima's D-test shows that there are large differences in the direction of selection between the conserved and variable region of rif gene. Tajima's D value for the variable region was 0.20074, indicating that balancing selection existed in this region. We found that the variable region was the main target of selection for positive diversification, and most mutation sites were located in this region. The population structure suggested optimized cluster values of K = 6. The five groups in Ghana-imported population included a unique subpopulation. Our results reveal the dynamics of the rif gene (PF3D7_1254800) in P. falciparum populations, which can aid in the rational design of P. falciparum rif-based vaccines.
Collapse
Affiliation(s)
- Shao-Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, PR China.
| |
Collapse
|
5
|
Liu Y, Zhang T, Chen SB, Cui YB, Wang SQ, Zhang HW, Shen HM, Chen JH. Retrospective analysis of Plasmodium vivax genomes from a pre-elimination China inland population in the 2010s. Front Microbiol 2023; 14:1071689. [PMID: 36846776 PMCID: PMC9948256 DOI: 10.3389/fmicb.2023.1071689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/04/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction In malaria-free countries, imported cases are challenging because interconnections with neighboring countries with higher transmission rates increase the risk of parasite reintroduction. Establishing a genetic database for rapidly identifying malaria importation or reintroduction is crucial in addressing these challenges. This study aimed to examine genomic epidemiology during the pre-elimination stage by retrospectively reporting whole-genome sequence variation of 10 Plasmodium vivax isolates from inland China. Methods The samples were collected during the last few inland outbreaks from 2011 to 2012 when China implemented a malaria control plan. After next-generation sequencing, we completed a genetic analysis of the population, explored the geographic specificity of the samples, and examined clustering of selection pressures. We also scanned genes for signals of positive selection. Results China's inland populations were highly structured compared to the surrounding area, with a single potential ancestor. Additionally, we identified genes under selection and evaluated the selection pressure on drug-resistance genes. In the inland population, positive selection was detected in some critical gene families, including sera, msp3, and vir. Meanwhile, we identified selection signatures in drug resistance, such as ugt, krs1, and crt, and noticed that the ratio of wild-type dhps and dhfr-ts increased after China banned sulfadoxine-pyrimethamine (SP) for decades. Discussion Our data provides an opportunity to investigate the molecular epidemiology of pre-elimination inland malaria populations, which exhibited lower selection pressure on invasion and immune evasion genes than neighbouring areas, but increased drug resistance in low transmission settings. Our results revealed that the inland population was severely fragmented with low relatedness among infections, despite a higher incidence of multiclonal infections, suggesting that superinfection or co-transmission events are rare in low-endemic circumstances. We identified selective signatures of resistance and found that the proportion of susceptible isolates fluctuated in response to the prohibition of specific drugs. This finding is consistent with the alterations in medication strategies during the malaria elimination campaign in inland China. Such findings could provide a genetic basis for future population studies, assessing changes in other pre-elimination countries.
Collapse
Affiliation(s)
- Ying Liu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Tao Zhang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shu-Qi Wang
- Anhui Provincial Center for Disease Control and Prevention, Hefei, China
| | - Hong-Wei Zhang
- Henan Provincial Center for Disease Control and Prevention, Zhengzhou, China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, China
- National Health Commission of the People’s Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai, China
- World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Akoniyon OP, Adewumi TS, Maharaj L, Oyegoke OO, Roux A, Adeleke MA, Maharaj R, Okpeku M. Whole Genome Sequencing Contributions and Challenges in Disease Reduction Focused on Malaria. BIOLOGY 2022; 11:587. [PMID: 35453786 PMCID: PMC9027812 DOI: 10.3390/biology11040587] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
Malaria elimination remains an important goal that requires the adoption of sophisticated science and management strategies in the era of the COVID-19 pandemic. The advent of next generation sequencing (NGS) is making whole genome sequencing (WGS) a standard today in the field of life sciences, as PCR genotyping and targeted sequencing provide insufficient information compared to the whole genome. Thus, adapting WGS approaches to malaria parasites is pertinent to studying the epidemiology of the disease, as different regions are at different phases in their malaria elimination agenda. Therefore, this review highlights the applications of WGS in disease management, challenges of WGS in controlling malaria parasites, and in furtherance, provides the roles of WGS in pursuit of malaria reduction and elimination. WGS has invaluable impacts in malaria research and has helped countries to reach elimination phase rapidly by providing required information needed to thwart transmission, pathology, and drug resistance. However, to eliminate malaria in sub-Saharan Africa (SSA), with high malaria transmission, we recommend that WGS machines should be readily available and affordable in the region.
Collapse
Affiliation(s)
- Olusegun Philip Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Taiye Samson Adewumi
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Olukunle Olugbenle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Alexandra Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Matthew A. Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town 7505, South Africa;
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4041, South Africa; (O.P.A.); (T.S.A.); (L.M.); (O.O.O.); (A.R.); (M.A.A.)
| |
Collapse
|
7
|
Kassegne K, Fei SW, Ananou K, Noussougnon KS, Komi Koukoura K, Abe EM, Guo XK, Chen JH, Zhou XN. A Molecular Investigation of Malaria Infections From High-Transmission Areas of Southern Togo Reveals Different Species of Plasmodium Parasites. Front Microbiol 2021; 12:732923. [PMID: 34925255 PMCID: PMC8674532 DOI: 10.3389/fmicb.2021.732923] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 11/21/2022] Open
Abstract
Malaria particularly burdens people in poor and neglected settings across the tropics of Africa. Meanwhile, a large proportion of the Togo population have poor understanding of malaria epidemiology and parasites. This study carried out a molecular survey of malaria cases in southern Togo during 2017–2019. We estimated Plasmodium species infection rates and microscopic examination compliance with nested PCR results. Sensitivity and specificity analyses were performed in conjunction with predictive values. Also, phylogenetic characterization of species of malaria parasites was assessed. Plasmodium genus-specific nested PCR identified 565 positive cases including 536/611 (87.8%) confirmed cases from the microscopy-positive group and 29/199 (14.6%) diagnosed malaria cases from the microscopy-negative group. Our findings revealed a disease prevalence (69.8%) higher than that reported (25.5–55.1%) for the country. The diagnostic test had 94.9% sensitivity and 69.4% specificity, i.e., it missed 120 of the people who had malaria and about one-third of the people tested positive for the disease, which they did not have, respectively. In conjunction, the test showed 87.7% positive predictive value and 85.4% negative predictive value, which, from a clinical perspective, indicates the chance that a person with a positive diagnostic test truly has the disease and the probability that a person with a negative test does not have the disease, respectively. Further species-specific nested PCR followed by analysis of gene sequences confirmed species of malaria parasites and indicated infection rates for Plasmodium falciparum (Pf), 95.5% (540/565); P. ovale (Po), 0.5% (3/565); and P. malariae (Pm), 0.4% (2/565). In addition, 20 cases were coinfection cases of Pf-Po (15/565) and Pf-Pm (5/565). This study publicly reports, for the first time, a molecular survey of malaria cases in Togo and reveals the presence of other malaria parasites (Po and Pm) other than Pf. These findings might provide answers to some basic questions on the malaria scenario and, knowledge gained could help with intervention deployment for effective malaria control in Togo.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Si-Wei Fei
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Koffigan Ananou
- Centre Médico-Social Notre Dame de la Consolation, Atakpamé, Togo
| | | | - Komi Komi Koukoura
- Laboratoire des Sciences Biomédicales, Alimentaires et Santé Environnementale, Département des Analyses Biomédicales, Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Eniola Michael Abe
- Department of Social Work, Education and Community Wellbeing, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Xiao-Kui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention (Chinese Center for Tropical Diseases Research), National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, World Health Organization (WHO) Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| |
Collapse
|
8
|
Chen JH, Fen J, Zhou XN. From 30 million to zero malaria cases in China: lessons learned for China-Africa collaboration in malaria elimination. Infect Dis Poverty 2021; 10:51. [PMID: 33875017 PMCID: PMC8055304 DOI: 10.1186/s40249-021-00839-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Malaria was once one of the most serious public health problems in China, with more than 30 million malaria cases annually before 1949. However, the disease burden has sharply declined and the epidemic areas has shrunken after the implementation of an integrated malaria control and elimination strategy, especially since 2000. Till now, China has successfully scaled up its efforts to become malaria-free and is currently being evaluated for malaria-free certification by the WHO. In the battle against malaria, China's efforts have spanned generations, reducing from an incidence high of 122.9/10 000 (6.97 million cases) in 1954 to 0.06/10 000 (7855 cases) in 2010. In 2017, for the first time, China reached zero indigenous case of malaria, putting the country on track to record three consecutive years of zero transmission by 2020, accoding to the National Malaria Elimination Action Plan (2010-2020). China's efforts to eliminate malaria is impressive, and the country is dedicated to sharing its lessons learned in malaria elimination-including, but not limited to, the application of novel genetics-based approaches-with other nations through new initiatives. China will promote international relationships and establish collaborative platforms on a wide range of topics in roughly 65 countries, including 20 African nations. China's experience in applying innovative genetics-based approaches and tools to characterize malaria parasite populations, including surveillance of markers related to drug resistance, categorization of cases as indigenous or imported, and objective identification of the likely sources of infections to inform efforts towards malaria control and elimination in Africa could offer game-changing results when applied to settings with ongoing transmission.
Collapse
Affiliation(s)
- Jun-Hu Chen
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Jun Fen
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China
| | - Xiao-Nong Zhou
- NHC Key Laboratory of Parasite and Vector Biology, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, 200025, People's Republic of China.
- The School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
9
|
Kassegne K, Komi Koukoura K, Shen HM, Chen SB, Fu HT, Chen YQ, Zhou XN, Chen JH, Cheng Y. Genome-Wide Analysis of the Malaria Parasite Plasmodium falciparum Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes. Front Immunol 2020; 11:552698. [PMID: 33193320 PMCID: PMC7645038 DOI: 10.3389/fimmu.2020.552698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria is a public health concern worldwide, and Togo has proven to be no exception. Effective approaches to provide information on biological insights for disease elimination are therefore a research priority. Local selection on malaria pathogens is due to multiple factors including host immunity. We undertook genome-wide analysis of sequence variation on a sample of 10 Plasmodium falciparum (Pf) clinical isolates from Togo to identify local-specific signals of selection. Paired-end short-read sequences were mapped and aligned onto > 95% of the 3D7 Pf reference genome sequence in high fold coverage. Data on 266 963 single nucleotide polymorphisms were obtained, with average nucleotide diversity π = 1.79 × 10−3. Both principal component and neighbor-joining tree analyses showed that the Togo parasites clustered according to their geographic (Africa) origin. In addition, the average genome-wide diversity of Pf from Togo was much higher than that from other African samples. Tajima’s D value of the Togo isolates was −0.56, suggesting evidence of directional selection and/or recent population expansion. Against this background, within-population analyses identifying loci of balancing and recent positive selections evidenced that host immunity has been the major selective agent. Importantly, 87 and 296 parasite antigen genes with Tajima’s D values > 1 and in the top 1% haplotype scores, respectively, include a significant representation of membrane proteins at the merozoite stage that invaded red blood cells (RBCs) and parasitized RBCs surface proteins that play roles in immunoevasion, adhesion, or rosetting. This is consistent with expectations that elevated signals of selection due to allele-specific acquired immunity are likely to operate on antigenic targets. Collectively, our data suggest a recent expansion of Pf population in Togo and evidence strong host immune selection on membrane/surface antigens reflected in signals of balancing/positive selection of important gene loci. Findings from this study provide a fundamental basis to engage studies for effective malaria control in Togo.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Komi Komi Koukoura
- Laboratoire des Sciences Biomédicales, Alimentaires et Santé Environnementale, Département des Analyses Biomédicales, Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hai-Tian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong-Quan Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Population genomics of Vibrionaceae isolated from an endangered oasis reveals local adaptation after an environmental perturbation. BMC Genomics 2020; 21:418. [PMID: 32571204 PMCID: PMC7306931 DOI: 10.1186/s12864-020-06829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background In bacteria, pan-genomes are the result of an evolutionary “tug of war” between selection and horizontal gene transfer (HGT). High rates of HGT increase the genetic pool and the effective population size (Ne), resulting in open pan-genomes. In contrast, selective pressures can lead to local adaptation by purging the variation introduced by HGT and mutation, resulting in closed pan-genomes and clonal lineages. In this study, we explored both hypotheses, elucidating the pan-genome of Vibrionaceae isolates after a perturbation event in the endangered oasis of Cuatro Ciénegas Basin (CCB), Mexico, and looking for signals of adaptation to the environments in their genomes. Results We obtained 42 genomes of Vibrionaceae distributed in six lineages, two of them did not showed any close reference strain in databases. Five of the lineages showed closed pan-genomes and were associated to either water or sediment environment; their high Ne estimates suggest that these lineages are not from a recent origin. The only clade with an open pan-genome was found in both environments and was formed by ten genetic groups with low Ne, suggesting a recent origin. The recombination and mutation estimators (r/m) ranged from 0.005 to 2.725, which are similar to oceanic Vibrionaceae estimations. However, we identified 367 gene families with signals of positive selection, most of them found in the core genome; suggesting that despite recombination, natural selection moves the Vibrionaceae CCB lineages to local adaptation, purging the genomes and keeping closed pan-genome patterns. Moreover, we identify 598 SNPs associated with an unstructured environment; some of the genes associated with these SNPs were related to sodium transport. Conclusions Different lines of evidence suggest that the sampled Vibrionaceae, are part of the rare biosphere usually living under famine conditions. Two of these lineages were reported for the first time. Most Vibrionaceae lineages of CCB are adapted to their micro-habitats rather than to the sampled environments. This pattern of adaptation is concordant with the association of closed pan-genomes and local adaptation.
Collapse
|
11
|
Berndtson AE. Increasing Globalization and the Movement of Antimicrobial Resistance between Countries. Surg Infect (Larchmt) 2020; 21:579-585. [PMID: 32434446 DOI: 10.1089/sur.2020.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: The threat of antimicrobial resistance continues to grow worldwide, exacerbated by poor antibiotic stewardship practices, limited development of new antimicrobial agents, and increasing globalization. Methods: This review covers previously published studies examining how human movement contributes to the global spread of antimicrobial resistance, including between low- and middle-income and high-income countries. Results: The emergence of resistance in one country or part of the world can become a worldwide event quickly. Human movement, including travel, medical tourism, military service, and migration, results in the globalization of resistant bacterial strains. Conclusions: Increased surveillance, whole-genome sequencing, focused infection control, and effective stewardship practices are needed to maintain the efficacy of antibiotics.
Collapse
Affiliation(s)
- Allison E Berndtson
- Division of Trauma, Surgical Critical Care, Burns, and Acute Care Surgery, University of California-San Diego, San Diego, California, USA
| |
Collapse
|
12
|
Brown AC, Moore CC, Guler JL. Cholesterol-dependent enrichment of understudied erythrocytic stages of human Plasmodium parasites. Sci Rep 2020; 10:4591. [PMID: 32165667 PMCID: PMC7067793 DOI: 10.1038/s41598-020-61392-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
For intracellular pathogens, the host cell provides needed protection and nutrients. A major challenge of intracellular parasite research is collection of high parasite numbers separated from host contamination. This situation is exemplified by the malaria parasite, which spends a substantial part of its life cycle inside erythrocytes as rings, trophozoites, and schizonts, before egress and reinvasion. Erythrocytic Plasmodium parasite forms refractory to enrichment remain understudied due to high host contamination relative to low parasite numbers. Here, we present a method for separating all stages of Plasmodium-infected erythrocytes through lysis and removal of uninfected erythrocytes. The Streptolysin O-Percoll (SLOPE) method is effective on previously inaccessible forms, including circulating rings from malaria-infected patients and artemisinin-induced quiescent parasites. SLOPE can be used on multiple parasite species, under multiple media formulations, and lacks measurable impacts on parasite viability. We demonstrate erythrocyte membrane cholesterol levels modulate the preferential lysis of uninfected host cells by SLO, and therefore modulate the effectiveness of SLOPE. Targeted metabolomics of SLOPE-enriched ring stage samples confirms parasite-derived metabolites are increased and contaminating host material is reduced compared to non-enriched samples. Due to consumption of cholesterol by other intracellular bacteria and protozoa, SLOPE holds potential for improving research on organisms beyond Plasmodium.
Collapse
Affiliation(s)
- Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA, USA. .,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
13
|
Lee SK, Han JH, Park JH, Ha KS, Park WS, Hong SH, Na S, Cheng Y, Han ET. Evaluation of antibody responses to the early transcribed membrane protein family in Plasmodium vivax. Parasit Vectors 2019; 12:594. [PMID: 31856917 PMCID: PMC6921578 DOI: 10.1186/s13071-019-3846-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/09/2019] [Indexed: 11/25/2022] Open
Abstract
Background Malaria parasites form intracellular membranes that separate the parasite from the internal space of erythrocytes, and membrane proteins from the parasites are exported to the host via the membrane. In our previous study, Plasmodium vivax early transcribed membrane protein (PvETRAMP) 11.2, an intracellular membrane protein that is highly expressed in blood-stage parasites, was characterized as a highly immunogenic protein in P. vivax malaria patients. However, the other PvETRAMP family proteins have not yet been investigated. In this study, PvETRAMPs were expressed and evaluated to determine their immunological profiles. Methods The protein structure and amino acid alignment were carried out using bioinformatics analysis software. A total of six PvETRAMP family proteins were successfully expressed and purified using a wheat germ cell free protein expression system and the purified proteins were used for protein microarray and immunization of mice. The localization of the protein was determined with serum against PvETRAMP4. IgG subclasses were assessed from the immunized mice. Results In silico analysis showed that P. vivax exhibits nine genes encoding the ETRAMP family. The ETRAMP family proteins are relatively small molecules with conserved structural features. A total of 6 recombinant ETRAMP proteins were successfully expressed and purified. The serum positivity of P. vivax malaria patients and healthy individuals was evaluated using a protein microarray method. Among the PvETRAMPs, ETRAMP4 showed the highest positivity rate of 62%, comparable to that of PvETRAMP11.2, which served as the positive control, and a typical export pattern of PvETRAMP4 was observed in the P. vivax parasite. The assessment of IgG subclasses in mice immunized with PvETRAMP4 showed high levels of IgG1 and IgG2b. PvETRAMP family proteins were identified and characterized as serological markers. Conclusions The relatively high antibody responses to PvETRAMP4 as well as the specific IgG subclasses observed in immunized mice suggest that the ETRAMP family is immunogenic in pathogens and can be used as a protein marker and for vaccine development.![]()
Collapse
Affiliation(s)
- Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Ji-Hoon Park
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Kwon-Soo Ha
- Department of Cellular and Molecular Biology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Won Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Sunghun Na
- Department of Obstetrics and Gynecology, Kangwon National University Hospital, Chuncheon, Gangwon-do, 24341, Republic of Korea
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Laboratory of Pathogen Infection and Immunity, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, People's Republic of China.
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|