1
|
Hou B, Zhou Y, Wang W, Shen W, Yu Q, Mao M, Wang S, Ai W, Yu F, Shao P. Characterization of ST15-KL112 Klebsiella pneumoniae Co-Harboring Bla oxa-232 and rmtF in China. Infect Drug Resist 2024; 17:2719-2732. [PMID: 38974316 PMCID: PMC11227325 DOI: 10.2147/idr.s462158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/24/2024] [Indexed: 07/09/2024] Open
Abstract
Introduction This study aimed to investigate the emergence and characteristics of carbapenem-resistant Klebsiella pneumoniae (CRKP) strains that demonstrate resistance to multiple antibiotics, including aminoglycosides and tigecycline, in a Chinese hospital. Methods A group of ten CRKP strains were collected from the nine patients in a Chinese hospital. Antimicrobial Susceptibility Testing (AST) and phenotypic inhibition assays precisely assess bacterial antibiotic resistance. Real-time quantitative PCR (RT-qPCR) was used to analyze the mRNA levels of efflux pump genes (acrA/acrB and oqxA/oqxB) and the regulatory gene (ramA). The core-genome tree and PFGE patterns were analyzed to assess the clonal and horizontal transfer expansion of the strains. Whole-genome sequencing was performed on a clinical isolate of K. pneumoniae named Kpn20 to identify key resistance genes and antimicrobial resistance islands (ARI). Results The CRKP strains showed high resistance to carbapenems, aminoglycosides (CLSI, 2024), and tigecycline (EUCAST, 2024). The mRNA expression levels of efflux pump genes and regulatory genes were detected by RT-qPCR. All 10 isolates had significant differences compared to the control group of ATCC13883. The core-genome tree and PFGE patterns revealed five clusters, indicating clonal and horizontal transfer expansion. Three key resistance genes (blaoxa-232, blaCTX-M-15 , and rmtF) were observed in the K. pneumoniae clinical isolate Kpn20. Mobile antibiotic resistance islands were identified containing bla CTX-M-15 and rmtF, with multiple insertion sequences and transposons present. The coexistence of bla oxa-232 and rmtF in a high-risk K. pneumoniae strain was reported. Conjugation assay was utilized to investigate the transferability of bla oxa-232-encoding plasmids horizontally. Conclusion The study highlights the emergence of ST15-KL112 high-risk CRKP strains with multidrug resistance, including to aminoglycosides and tigecycline. The presence of mobile ARI and clonal and horizontal transfer expansion of strains indicate the threat of transmission of these strains. Future research is needed to assess the prevalence of such isolates and develop effective control measures.
Collapse
Affiliation(s)
- Bailong Hou
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Ying Zhou
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
| | - Wei Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Weifeng Shen
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Qinlong Yu
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Minjie Mao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Siheng Wang
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| | - Wenxiu Ai
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200000, People’s Republic of China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People’s Republic of China
| | - Pingyang Shao
- Department of Clinical Laboratory Medicine, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, 314000, People’s Republic of China
| |
Collapse
|
2
|
Gao H, Tu Y, Li Q, Wu Q. Molecular Prevalence and Geographical Variations of Carbapenem-Resistant Klebsiella pneumoniae ST15 Isolates in a Tertiary Hospital in Ningbo, China. Med Sci Monit 2024; 30:e943596. [PMID: 38831571 PMCID: PMC11162142 DOI: 10.12659/msm.943596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 04/05/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND In China, the most prevalent type of CRKP is ST11, but the high-risk clone ST15 has grown in popularity in recent years, posing a serious public health risk. Therefore, we investigated the molecular prevalence characteristics of ST15 CRKP detected in a tertiary hospital in Ningbo to understand the current potential regional risk of ST15 CRKP outbreak. MATERIAL AND METHODS We collected and evaluated 18 non-duplicated CRKP strains of ST15 type for antibiotic resistance. Their integrons, virulence genes, and resistance genes were identified using polymerase chain reaction (PCR), and their homology was determined using MALDI-TOF MS. RESULTS The predominant serotype of 18 ST15 CRKP strains was K5. ST15 CRKP exhibited the lowest antimicrobial resistance to Cefoperazone/sulbactam (11.1%), followed by trimethoprim/sulfamethoxazole (22.2%). Resistance gene testing revealed that 14 out of 18 ST15 CRKP strains (77.8%) carried Klebsiella pneumoniae carbapenemase 2 (KPC-2), whereas all ST15 CRKP integrons were of the intI1 type. Furthermore, virulence gene testing revealed that all 18 ST15 CRKP strains carried ybtS, kfu, irp-1, and fyuA genes, followed by the irp-2 gene (17 strains) and entB (16 strains). The homology analysis report showed that 2 clusters had closer affinity, which was mainly concentrated in classes C and D. CONCLUSIONS The ST15 CRKP antibiotic resistance rates demonstrate clear geographical differences in Ningbo. Additionally, some strains carried highly virulent genes, indicating a possible evolution towards carbapenem-resistant highly virulent strains. To reduce the spread of ST15 CRKP, we must rationalize the clinical use of antibiotics and strengthen resistance monitoring to control nosocomial infections.
Collapse
|
3
|
Yan Z, Ju X, Zhang Y, Wu Y, Sun Y, Xiong P, Li Y, Li R, Zhang R. Analysis of the transmission chain of carbapenem-resistant Enterobacter cloacae complex infections in clinical, intestinal and healthcare settings in Zhejiang province, China (2022-2023). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170635. [PMID: 38340846 DOI: 10.1016/j.scitotenv.2024.170635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Considerable attention is given to intensive care unit-acquired infections; however, research on the transmission dynamics of multichain carbapenemase-resistant Enterobacter cloacae complex (CRECC) outbreaks remains elusive. A total of 118 non-duplicated CRECC strains were isolated from the clinical, intestinal, and hospital sewage samples collected from Zhejiang province of China during 2022-2023. A total of 64 CRECC strains were isolated from the hospital sewage samples, and their prevalence increased from 10.0 % (95 % confidence interval, CI = 0.52-45.8 %) in 2022 to 63.6 % (95 % CI = 31.6-87.6 %) in 2023. Species-specific identification revealed that Enterobacter hormaechei was the predominant CRECC species isolated in this study (53.4 %, 95 % CI = 44.0-62.6 %). The antimicrobial susceptibility profiles indicated that all 118 CRECC strains conferred high-level resistance to β-lactam antibiotics, ceftacillin/avibactam, and polymyxin. Furthermore, all CRECC strains exhibited resistance to β-lactams, quinolones, and fosfomycin, with a higher colistin resistance rate observed in the hospital sewage samples (67.2 %, 95 % CI = 54.2-78.1 %). Several antibiotic resistance genes were identified in CRECC strains, including Class A carbapenemases (blaKPC-2) and Class B carbapenemases (blaNDM-1/blaIMP), but not Class D carbapenemases. The WGS analysis showed that the majority of the CRECC strains carried carbapenemase-encoding genes, with blaNDM-1 being the most prevalent (86.9 %, 95 % CI = 77.4-92.9 %). Furthermore, sequence typing revealed that the isolated CRECC strains belonged to diverse sequence types (STs), among which ST418 was the most prevalent blaNDM-positive strain. The high risk of carbapenemase-producing ST418 E. hormaechei and the blaNDM-harboring IncFIB-type plasmid (81.4 %, 95 % CI = 72.9-87.7 %) were detected and emphasized in this study. This study provides valuable insights into the prevalence, antimicrobial resistance, genomic characteristics, and plasmid analysis of CRECC strains in diverse populations and environments. The clonal relatedness analysis showed sporadic clonal transmission of ST418 E. hormaechei strains, supporting inter-hospital transmission.
Collapse
Affiliation(s)
- Zelin Yan
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaoyang Ju
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yanyan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yuchen Wu
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yi Sun
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Panfeng Xiong
- Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yan Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ruichao Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Rong Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Shen Z, Qin J, Xiang G, Chen T, Nurxat N, Gao Q, Wang C, Zhang H, Liu Y, Li M. Outer membrane vesicles mediating horizontal transfer of the epidemic blaOXA-232 carbapenemase gene among Enterobacterales. Emerg Microbes Infect 2023; 13:2290840. [PMID: 38044873 PMCID: PMC10810626 DOI: 10.1080/22221751.2023.2290840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
OXA-232 is one of the most common OXA-48-like carbapenemase derivatives and is widely disseminated in nosocomial settings across countries. The blaOXA-232 gene is located on a 6-kb non-conjugative ColKP3-type plasmid, while the dissemination of blaOXA-232 into different Enterobacterales species and the polyclonal dissemination of OXA-232-producing K. pneumoniae revealed the horizontal transfer of blaOXA-232. However, it's still unclear how this non-conjugative ColKP3 plasmid could facilitate the mobilization of blaOXA-232. Here, we observed the in vivo intraspecies transfer of blaOXA-232 during a nosocomial outbreak of OXA-232-producing K. pneumoniae. We demonstrated the presence of ColKP3 OXA-232 plasmid in the outer membrane vesicles (OMVs) derived from clinical isolates, and OMVs could facilitate the horizontal transfer of blaOXA-232 among Enterobacterales. In contrast, for the most prevalent carbapenemase genes, including blaKPC-2 and blaNDM-1, though the presence of carbapenemase genes and plasmid backbones in the vesicular lumen was observed, OMVs couldn't promote effective transformation, probably due to the low copy number of plasmids in clinical isolates and the low number of plasmids loaded into vesicles. Conjugation assay revealed that the epidemic IncX3 NDM-1 and IncFII(pHN7A8)/IncR KPC-2 plasmids were conjugative and could be horizontally transferred via independent conjugation or with the help of a co-existent conjugative plasmid. For the large-size and low-copy number conjugative plasmids carrying carbapenemase genes, OMVs-mediated gene exchange may only serve as an alternative pathway for horizontal transfer. In conclusion, diverse mobilization strategies were employed by plasmids harboring carbapenemase genes, and plasmids display a proper choice of mobility pathway due to their individual properties.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Guoxiu Xiang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianchi Chen
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Nadira Nurxat
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Qianqian Gao
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Chen Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Haomin Zhang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yao Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
5
|
Feng L, Zhang M, Fan Z. Population genomic analysis of clinical ST15 Klebsiella pneumoniae strains in China. Front Microbiol 2023; 14:1272173. [PMID: 38033569 PMCID: PMC10684719 DOI: 10.3389/fmicb.2023.1272173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
ST15 Klebsiella pneumoniae (Kpn) is a growing public health concern in China and worldwide, yet its genomic and evolutionary dynamics in this region remain poorly understood. This study comprehensively elucidates the population genomics of ST15 Kpn in China by analyzing 287 publicly available genomes. The proportion of the genomes increased sharply from 2012 to 2021, and 92.3% of them were collected from the Yangtze River Delta (YRD) region of eastern China. Carbapenemase genes, including OXA-232, KPC-2, and NDM, were detected in 91.6% of the studied genomes, and 69.2% of which were multidrug resistant (MDR) and hypervirulent (hv). Phylogenetic analysis revealed four clades, C1 (KL112, 59.2%), C2 (mainly KL19, 30.7%), C3 (KL48, 0.7%) and C4 (KL24, 9.4%). C1 appeared in 2007 and was OXA-232-producing and hv; C2 and C4 appeared between 2005 and 2007, and both were KPC-2-producing but with different levels of virulence. Transmission clustering detected 86.1% (n = 247) of the enrolled strains were grouped into 55 clusters (2-159 strains) and C1 was more transmissible than others. Plasmid profiling revealed 88 plasmid clusters (PCs) that were highly heterogeneous both between and within clades. 60.2% (n = 53) of the PCs carrying AMR genes and 7 of which also harbored VFs. KPC-2, NDM and OXA-232 were distributed across 14, 4 and 1 PCs, respectively. The MDR-hv strains all carried one of two homologous PCs encoding iucABCD and rmpA2 genes. Pangenome analysis revealed two major coinciding accessory components predominantly located on plasmids. One component, associated with KPC-2, encompassed 15 additional AMR genes, while the other, linked to OXA-232, involved seven more AMR genes. This study provides essential insights into the genomic evolution of the high-risk ST15 CP-Kpn strains in China and warrants rigorous monitoring.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | | |
Collapse
|
6
|
Wu X, Li X, Yu J, Shen M, Fan C, Lu Y, Gao J, Li X, Li H. Outbreak of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae ST15 in a Chinese teaching hospital: a molecular epidemiological study. Front Cell Infect Microbiol 2023; 13:1229284. [PMID: 37671147 PMCID: PMC10475586 DOI: 10.3389/fcimb.2023.1229284] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
Background and Aims The incidence of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) has been on the rise in China over the past five years, potentially leading to nosocomial epidemics. This study investigates the first outbreak of CRKP in the Second Affiliated Hospital of Jiaxing University. Methods Between February 2021 and March 2022, 21 clinical isolates of OXA-232-producing CRKP were recovered from 16 patients in the Second Affiliated Hospital of Jiaxing University. We conducted antimicrobial susceptibility tests, whole genome sequencing, and bioinformatics to determine the drug resistance profile of these clinical isolates. Results Whole-genome sequencing revealed that all 21 OXA-232-producing CRKP strains belonged to the sequence type 15 (ST15) and shared similar resistance, virulence genes, and plasmid types, suggesting clonal transmission between the environment and patients. Integrated genomic and epidemiological analysis traced the outbreak to two clonal transmission clusters, cluster 1 and cluster 2, including 14 and 2 patients. It was speculated that the CRKP transmission mainly occurred in the ICU, followed by brain surgery, neurosurgery, and rehabilitation department. Phylogenetic analysis indicated that the earliest outbreak might have started at least a year before the admission of the index patient, and these strains were closely related to those previously isolated from two major adjacent cities, Shanghai and Hangzhou. Comparative genomics showed that the IncFII-type and IncHI1B-type plasmids of cluster 2 had homologous recombination at the insertion sequence sites compared with the same type of plasmids in cluster 1, resulting in the insertion of 4 new drug resistance genes, including TEM-1, APH(6)-Id, APH(3'')-Ib and sul2. Conclusions Our study observed the clonal spread of ST15 OXA-232-producing between patients and the hospital environment. The integration of genomic and epidemiological data offers valuable insights and facilitate the control of nosocomial transmission.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Xiangchen Li
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Junjie Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Mengli Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Chenliang Fan
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Yewei Lu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Junshun Gao
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research, Hangzhou, Zhejiang, China
| | - Xiaosi Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Hongsheng Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
7
|
Shen S, Han R, Yin D, Jiang B, Ding L, Guo Y, Wu S, Wang C, Zhang H, Hu F. A Nationwide Genomic Study of Clinical Klebsiella pneumoniae Carrying blaOXA-232 and rmtF in China. Microbiol Spectr 2023; 11:e0386322. [PMID: 37102869 PMCID: PMC10269757 DOI: 10.1128/spectrum.03863-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 04/01/2023] [Indexed: 04/28/2023] Open
Abstract
OXA-232 carbapenemase is becoming a threat in China due to its high prevalence, mortality, and limited treatment options. However, little information is available on the impact of OXA-232-producing Klebsiella pneumoniae in China. This study aims to characterize the clonal relationships, the genetic mechanisms of resistance, and the virulence of OXA-232-producing K. pneumoniae isolates in China. We collected 81 OXA-232-producing K. pneumoniae clinical isolates from 2017 to 2021. Antimicrobial susceptibility testing was performed using the broth microdilution method. Capsular types, multilocus sequence types, virulence genes, antimicrobial resistance (AMR) determinants, plasmid replicon types, and single-nucleotide polymorphism (SNP) phylogeny were inferred from whole-genome sequences. OXA-232-producing K. pneumoniae strains were resistant to most antimicrobial agents. These isolates showed partial differences in susceptibility to carbapenems: all strains were resistant to ertapenem, while the resistance rates to imipenem and meropenem were 67.9% and 97.5%, respectively. Sequencing and capsular diversity analysis of the 81 K. pneumoniae isolates revealed 3 sequence types (ST15, ST231, and one novel ST [ST-V]), 2 K-locus types (KL112 and KL51), and 2 O-locus types (O2V1 and O2V2). The predominant plasmid replicon types associated with the OXA-232 and rmtF genes were ColKP3 (100%) and IncFIB-like (100%). Our study summarized the genetic characteristics of OXA-232-producing K. pneumoniae circulating in China. The results demonstrate the practical applicability of genomic surveillance and its utility in providing methods to prevent transmission. It alerts us to the urgent need for longitudinal surveillance of these transmissible lineages. IMPORTANCE In recent years, the detection rate of carbapenem-resistant K. pneumoniae has increased and represents a major threat to clinical anti-infective therapy. Compared with KPC-type carbapenemases and NDM-type metallo-β-lactamases, OXA-48 family carbapenemases are another important resistance mechanism mediating bacterial resistance to carbapenems. In this study, we investigated the molecular characteristics of OXA-232 carbapenemase-producing K. pneumoniae isolated from several hospitals to clarify the epidemiological dissemination characteristics of such drug-resistant strains in China.
Collapse
Affiliation(s)
- Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Renru Han
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Dandan Yin
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Bo Jiang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Shi Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Chuning Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Fupin Hu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| |
Collapse
|