1
|
Vamesu BM, Nicola T, Li R, Hazra S, Matalon S, Kaminski N, Ambalavanan N, Kandasamy J. Thyroid hormone modulates hyperoxic neonatal lung injury and mitochondrial function. JCI Insight 2023; 8:e160697. [PMID: 36917181 PMCID: PMC10243814 DOI: 10.1172/jci.insight.160697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
Mitochondrial dysfunction at birth predicts bronchopulmonary dysplasia (BPD) in extremely low-birth weight (ELBW) infants. Recently, nebulized thyroid hormone (TH), given as triiodothyronine (T3), was noted to decrease pulmonary fibrosis in adult animals through improved mitochondrial function. In this study, we tested the hypothesis that TH may have similar effects on hyperoxia-induced neonatal lung injury and mitochondrial dysfunction by testing whether i.n. T3 decreases neonatal hyperoxic lung injury in newborn mice; whether T3 improves mitochondrial function in lung homogenates, neonatal murine lung fibroblasts (NMLFs), and umbilical cord-derived mesenchymal stem cells (UC-MSCs) obtained from ELBW infants; and whether neonatal hypothyroxinemia is associated with BPD in ELBW infants. We found that inhaled T3 (given i.n.) attenuated hyperoxia-induced lung injury and mitochondrial dysfunction in newborn mice. T3 also reduced bioenergetic deficits in UC-MSCs obtained from both infants with no or mild BPD and those with moderate to severe BPD. T3 also increased the content of peroxisome proliferator-activated receptor γ coactivator 1α in lung homogenates of mice exposed to hyperoxia as well as mitochondrial potential in both NMLFs and UC-MSCs. ELBW infants who died or developed moderate to severe BPD had lower total T4 (TT4) compared with survivors with no or mild BPD. In conclusion, TH signaling and function may play a critical role in neonatal lung injury, and inhaled T3 supplementation may be useful as a therapeutic strategy for BPD.
Collapse
Affiliation(s)
- Bianca M. Vamesu
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pediatrics, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Teodora Nicola
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rui Li
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Snehashis Hazra
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sadis Matalon
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jegen Kandasamy
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Perinatal Hyperoxia and Developmental Consequences on the Lung-Brain Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5784146. [PMID: 35251477 PMCID: PMC8894035 DOI: 10.1155/2022/5784146] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
Approximately 11.1% of all newborns worldwide are born preterm. Improved neonatal intensive care significantly increased survival rates over the last decades but failed to reduce the risk for the development of chronic lung disease (i.e., bronchopulmonary dysplasia (BPD)) and impaired neurodevelopment (i.e., encephalopathy of prematurity (EoP)), two major long-term sequelae of prematurity. Premature infants are exposed to relative hyperoxia, when compared to physiological in-utero conditions and, if needed to additional therapeutic oxygen supplementation. Both are associated with an increased risk for impaired organ development. Since the detrimental effects of hyperoxia on the immature retina are known for many years, lung and brain have come into focus in the last decade. Hyperoxia-induced excessive production of reactive oxygen species leading to oxidative stress and inflammation contribute to pulmonary growth restriction and abnormal neurodevelopment, including myelination deficits. Despite a large body of studies, which unraveled important pathophysiological mechanisms for both organs at risk, the majority focused exclusively either on lung or on brain injury. However, considering that preterm infants suffering from BPD are at higher risk for poor neurodevelopmental outcome, an interaction between both organs seems plausible. This review summarizes recent findings regarding mechanisms of hyperoxia-induced neonatal lung and brain injury. We will discuss common pathophysiological pathways, which potentially link both injured organ systems. Furthermore, promises and needs of currently suggested therapies, including pharmacological and regenerative cell-based treatments for BPD and EoP, will be emphasized. Limited therapeutic approaches highlight the urgent need for a better understanding of the mechanisms underlying detrimental effects of hyperoxia on the lung-brain axis in order to pave the way for the development of novel multimodal therapies, ideally targeting both severe preterm birth-associated complications.
Collapse
|
3
|
Tsikis ST, Hirsch TI, Fligor SC, Quigley M, Puder M. Targeting the lung endothelial niche to promote angiogenesis and regeneration: A review of applications. Front Mol Biosci 2022; 9:1093369. [PMID: 36601582 PMCID: PMC9807216 DOI: 10.3389/fmolb.2022.1093369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Lung endothelial cells comprise the pulmonary vascular bed and account for the majority of cells in the lungs. Beyond their role in gas exchange, lung ECs form a specialized microenvironment, or niche, with important roles in health and disease. In early development, progenitor ECs direct alveolar development through angiogenesis. Following birth, lung ECs are thought to maintain their regenerative capacity despite the aging process. As such, harnessing the power of the EC niche, specifically to promote angiogenesis and alveolar regeneration has potential clinical applications. Here, we focus on translational research with applications related to developmental lung diseases including pulmonary hypoplasia and bronchopulmonary dysplasia. An overview of studies examining the role of ECs in lung regeneration following acute lung injury is also provided. These diseases are all characterized by significant morbidity and mortality with limited existing therapeutics, affecting both young children and adults.
Collapse
Affiliation(s)
- Savas T Tsikis
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Thomas I Hirsch
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Scott C Fligor
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mikayla Quigley
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mark Puder
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Pelizzo G, Silvestro S, Avanzini MA, Zuccotti G, Mazzon E, Calcaterra V. Mesenchymal Stromal Cells for the Treatment of Interstitial Lung Disease in Children: A Look from Pediatric and Pediatric Surgeon Viewpoints. Cells 2021; 10:3270. [PMID: 34943779 PMCID: PMC8699409 DOI: 10.3390/cells10123270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been proposed as a potential therapy to treat congenital and acquired lung diseases. Due to their tissue-regenerative, anti-fibrotic, and immunomodulatory properties, MSCs combined with other therapy or alone could be considered as a new approach for repair and regeneration of the lung during disease progression and/or after post- surgical injury. Children interstitial lung disease (chILD) represent highly heterogeneous rare respiratory diseases, with a wild range of age of onset and disease expression. The chILD is characterized by inflammatory and fibrotic changes of the pulmonary parenchyma, leading to gas exchange impairment and chronic respiratory failure associated with high morbidity and mortality. The therapeutic strategy is mainly based on the use of corticosteroids, hydroxychloroquine, azithromycin, and supportive care; however, the efficacy is variable, and their long-term use is associated with severe toxicity. The role of MSCs as treatment has been proposed in clinical and pre-clinical studies. In this narrative review, we report on the currently available on MSCs treatment as therapeutical strategy in chILD. The progress into the therapy of respiratory disease in children is mandatory to ameliorate the prognosis and to prevent the progression in adult age. Cell therapy may be a future therapy from both a pediatric and pediatric surgeon's point of view.
Collapse
Affiliation(s)
- Gloria Pelizzo
- Pediatric Surgery Department, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Maria Antonietta Avanzini
- Cell Factory, Pediatric Hematology Oncology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences-L. Sacco, University of Milan, 20157 Milan, Italy;
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (E.M.)
| | - Valeria Calcaterra
- Department of Pediatrics, Children’s Hospital “Vittore Buzzi”, 20154 Milano, Italy;
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
5
|
Segler A, Braun T, Fischer HS, Dukatz R, Weiss CR, Schwickert A, Jäger C, Bührer C, Henrich W. Feasibility of Umbilical Cord Blood Collection in Neonates at Risk of Brain Damage-A Step Toward Autologous Cell Therapy for a High-risk Population. Cell Transplant 2021; 30:963689721992065. [PMID: 33631961 PMCID: PMC7917411 DOI: 10.1177/0963689721992065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evidence for umbilical cord blood (UCB) cell therapies as a potential intervention for neurological diseases is emerging. To date, most existing trials worked with allogenic cells, as the collection of autologous UCB from high-risk patients is challenging. In obstetric emergencies the collection cannot be planned. In preterm infants, late cord clamping and anatomic conditions may reduce the availability. The aim of the present study was to assess the feasibility of UCB collection in neonates at increased risk of brain damage. Infants from four high-risk groups were included: newborns with perinatal hypoxemia, gestational age (GA) ≤30 + 0 weeks and/or birthweight <1,500 g, intrauterine growth restriction (IUGR), or monochorionic twins with twin-to-twin transfusion syndrome (TTTS). Feasibility of collection, quantity and quality of obtained UCB [total nucleated cell count (TNC), volume, sterility, and cell viability], and neonatal outcome were assessed. UCB collection was successful in 141 of 177 enrolled patients (hypoxemia n = 10; GA ≤30 + 0 weeks n = 54; IUGR n = 71; TTTS n = 6). Twenty-six cases were missed. The amount of missed cases per month declined over the time. Volume of collected UCB ranged widely (median: 24.5 ml, range: 5.0–102 ml) and contained a median of 0.77 × 108 TNC (range: 0.01–13.0 × 108). TNC and UCB volume correlated significantly with GA. A total of 10.7% (19/177) of included neonates developed brain lesions. To conclude, collection of UCB in neonates at high risk of brain damage is feasible with a multidisciplinary approach and intensive training. High prevalence of brain damage makes UCB collection worthwhile. Collected autologous UCB from mature neonates harbors a sufficient cell count for potential therapy. However, quality and quantity of obtained UCB are critical for potential therapy in preterm infants. Therefore, for extremely preterm infants alternative cell sources such as UCB tissue should be investigated for autologous treatment options because of the low yield of UCB.
Collapse
Affiliation(s)
- Angela Segler
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thorsten Braun
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of "Experimental Obstetrics" and Study group "Perinatal Programming", Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hendrik Stefan Fischer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ricarda Dukatz
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claire-Rachel Weiss
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexander Schwickert
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technische Universitaüt Muünchen, Munich, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
6
|
Singh S, Varshney A, Borkar N, Jindal A, Padhi P, Ahmed I, Srivastava N. Clinical Utility of Stem Cells in Congenital Anomalies: New Horizons in Pediatric Surgery. Indian J Surg 2020. [DOI: 10.1007/s12262-020-02264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, Smits HH, de Steenhuijsen Piters WAA, Strickland DH, Collins JJP. Early origins of lung disease: towards an interdisciplinary approach. Eur Respir Rev 2020; 29:29/157/200191. [PMID: 33004528 DOI: 10.1183/16000617.0191-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).
Collapse
Affiliation(s)
- Niki D J Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland.,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| | - Miguel A Alejandre Alcazar
- Dept of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Paediatrics, Experimental Pulmonology, University of Cologne, Cologne, Germany.,Centre of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Suhas G Kallapur
- Neonatal-Perinatal Medicine, Dept of Pediatrics, David Geffen School of Medicine, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Sylvia Knapp
- Dept of Medicine I/Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.,CeMM, Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Rory E Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Dept of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research, Giessen, Germany
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Niki L Reynaert
- Dept of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robbert J Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Jennifer J P Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands .,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| |
Collapse
|
8
|
Sveiven SN, Nordgren TM. Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L197-L210. [PMID: 32401672 DOI: 10.1152/ajplung.00049.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Until recently, data supporting the tissue-resident status of mesenchymal stromal cells (MSC) has been ambiguous since their discovery in the 1950-60s. These progenitor cells were first discovered as bone marrow-derived adult multipotent cells and believed to migrate to sites of injury, opposing the notion that they are residents of all tissue types. In recent years, however, it has been demonstrated that MSC can be found in all tissues and MSC from different tissues represent distinct populations with differential protein expression unique to each tissue type. Importantly, these cells are efficient mediators of tissue repair, regeneration, and prove to be targets for therapeutics, demonstrated by clinical trials (phase 1-4) for MSC-derived therapies for diseases like graft-versus-host-disease, multiple sclerosis, rheumatoid arthritis, and Crohn's disease. The tissue-resident status of MSC found in the lung is a key feature of their importance in the context of disease and injuries of the respiratory system, since these cells could be instrumental to providing more specific and targeted therapies. Currently, bone marrow-derived MSC have been established in the treatment of disease, including diseases of the lung. However, with lung-resident MSC representing a unique population with a different phenotypic and gene expression pattern than MSC derived from other tissues, their role in remediating lung inflammation and injury could provide enhanced efficacy over bone marrow-derived MSC methods. Through this review, lung-resident MSC will be characterized, using previously published data, by surface markers, gene expression patterns, and compared with bone-marrow MSC to highlight similarities and, importantly, differences in these cell types.
Collapse
Affiliation(s)
- Stefanie Noel Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| |
Collapse
|
9
|
Moreira AG, Siddiqui SK, Macias R, Johnson-Pais TL, Wilson D, Gelfond JAL, Vasquez MM, Seidner SR, Mustafa SB. Oxygen and mechanical ventilation impede the functional properties of resident lung mesenchymal stromal cells. PLoS One 2020; 15:e0229521. [PMID: 32142526 PMCID: PMC7064315 DOI: 10.1371/journal.pone.0229521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/07/2020] [Indexed: 01/18/2023] Open
Abstract
Resident/endogenous mesenchymal stromal cells function to promote the normal development, growth, and repair of tissues. Following premature birth, the effects of routine neonatal care (e.g. oxygen support and mechanical ventilation) on the biological properties of lung endogenous mesenchymal stromal cells is (L-MSCs) is poorly understood. New Zealand white preterm rabbits were randomized into the following groups: (i) sacrificed at birth (Fetal), (ii) spontaneously breathing with 50% O2 for 4 hours (SB), or (iii) mechanical ventilation with 50% O2 for 4h (MV). At time of necropsy, L-MSCs were isolated, characterized, and compared. L-MSCs isolated from the MV group had decreased differentiation capacity, ability to form stem cell colonies, and expressed less vascular endothelial growth factor mRNA. Compared to Fetal L-MSCs, 98 and 458 genes were differentially expressed in the L-MSCs derived from the SB and MV groups, respectively. Gene ontology analysis revealed these genes were involved in key regulatory processes including cell cycle, cell division, and angiogenesis. Furthermore, the L-MSCs from the SB and MV groups had smaller mitochondria, nuclear changes, and distended endoplasmic reticula. Short-term hyperoxia/mechanical ventilation after birth alters the biological properties of L-MSCs and stimulates genomic changes that may impact their reparative potential.
Collapse
Affiliation(s)
- Alvaro G. Moreira
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Sartaj K. Siddiqui
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Rolando Macias
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Teresa L. Johnson-Pais
- Department of Urology, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Desiree Wilson
- Department of Periodontics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Jonathon A. L. Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Margarita M. Vasquez
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Steven R. Seidner
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| | - Shamimunisa B. Mustafa
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Center San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
10
|
Ubags ND, Baker J, Boots A, Costa R, El-Merhie N, Fabre A, Faiz A, Heijink IH, Hiemstra PS, Lehmann M, Meiners S, Rolandsson Enes S, Bartel S. ERS International Congress, Madrid, 2019: highlights from the Basic and Translational Science Assembly. ERJ Open Res 2020; 6:00350-2019. [PMID: 32154289 PMCID: PMC7049707 DOI: 10.1183/23120541.00350-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/26/2020] [Indexed: 11/15/2022] Open
Abstract
In this review, the Basic and Translational Sciences Assembly of the European Respiratory Society (ERS) provides an overview of the 2019 ERS International Congress highlights. In particular, we discuss how the novel and very promising technology of single cell sequencing has led to the development of a comprehensive map of the human lung, the lung cell atlas, including the discovery of novel cell types and new insights into cellular trajectories in lung health and disease. Further, we summarise recent insights in the field of respiratory infections, which can aid in a better understanding of the molecular mechanisms underlying these infections in order to develop novel vaccines and improved treatment options. Novel concepts delineating the early origins of lung disease are focused on the effects of pre- and post-natal exposures on neonatal lung development and long-term lung health. Moreover, we discuss how these early life exposures can affect the lung microbiome and respiratory infections. In addition, the importance of metabolomics and mitochondrial function analysis to subphenotype chronic lung disease patients according to their metabolic program is described. Finally, basic and translational respiratory science is rapidly moving forward and this will be beneficial for an advanced molecular understanding of the mechanisms underlying a variety of lung diseases. In the long-term this will aid in the development of novel therapeutic targeting strategies in the field of respiratory medicine. Highlights of basic and translational science presented at #ERSCongress 2019 summarising latest research on the lung cell atlas, lung infections, early origins of lung disease and the importance of metabolic alterations in the lunghttp://bit.ly/2UbdBs4
Collapse
Affiliation(s)
- Niki D Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland
| | - Jonathan Baker
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Agnes Boots
- Dept of Pharmacology and Toxicology, Maastricht University, Maastricht, the Netherlands
| | - Rita Costa
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Natalia El-Merhie
- Early Life Origins of Chronic Lung Disease, Research Center Borstel, Leibniz Lung Center, Member of the DZL and the Airway Research Center North (ARCN), Borstel, Germany
| | - Aurélie Fabre
- St Vincent's University Hospital, Dublin, Ireland.,University College Dublin School of Medicine, Dublin, Ireland
| | - Alen Faiz
- University of Technology Sydney, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, Australia
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Mareike Lehmann
- Lung Repair and Regeneration Unit, Helmholtz-Zentrum Munich, Ludwig-Maximilians-University, University Hospital Grosshadern, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the DZL, Munich, Germany
| | - Sara Rolandsson Enes
- University of Vermont, Dept of Medicine, Larner College of Medicine, Burlington, VT, USA.,Lund University, Dept of Experimental Medical Science, Lund, Sweden
| | - Sabine Bartel
- University of Groningen, University Medical Center Groningen, Depts of Pathology & Medical Biology and Pulmonology, Groningen, The Netherlands
| |
Collapse
|
11
|
Calcaterra V, Avanzini MA, Mantelli M, Agolini E, Croce S, De Silvestri A, Re G, Collura M, Maltese A, Novelli A, Pelizzo G. A case report on filamin A gene mutation and progressive pulmonary disease in an infant: A lung tissued derived mesenchymal stem cell study. Medicine (Baltimore) 2018; 97:e13033. [PMID: 30557962 PMCID: PMC6319781 DOI: 10.1097/md.0000000000013033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Mesenchymal stem cells (MSC) play a crucial role in both the maintenance of pulmonary integrity and the pathogenesis of lung disease. Lung involvement has been reported in patients with the filamin A (FLNA) gene mutation. Considering FLNA's role in the intrinsic mechanical properties of MSC, we characterized MSCs isolated from FLNA-defective lung tissue, in order to define their pathogenetic role in pulmonary damage. PATIENT CONCERNS A male infant developed significant lung disease resulting in emphysematous lesions and perivascular and interstitial fibrosis. He also exhibited general muscular hypotonia, bilateral inguinal hernia, and deformities of the lower limbs (pes tortus congenitalis and hip dysplasia). Following lobar resection, chronic respiratory failure occurred. DIAGNOSIS Genetic testing was performed during the course of his clinical care and revealed a new pathogenic variant of the FLNA gene c.7391_7403del; (p.Val2464AlafsTer5). Brain magnetic resonance imaging revealed periventricular nodular heterotopia. INTERVENTIONS AND OUTCOMES Surgical thoracoscopic lung biopsy was performed in order to obtain additional data on the pathological pulmonary features. A small portion of the pulmonary tissue was used for MSC expansion. Morphology, immunophenotype, differentiation capacity, and proliferative growth were evaluated. Bone marrow-derived mesenchymal stem cells (BM-MSC) were employed as a control. MSCs presented the typical MSC morphology and phenotype while exhibiting higher proliferative capacity (P <.001) and lower migration potential (P=.02) compared to control BM-MSC. LESSONS The genetic profile and altered features of the MSCs isolated from FLNA-related pediatric lung tissue could be directly related to defects in cell migration during embryonic lung development and pulmonary damage described in FLNA-defective patients.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Unit, Department of Internal Medicine University of Pavia and Fondazione IRCCS Policlinico San Matteo
| | - Maria Antonietta Avanzini
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Melissa Mantelli
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Stefania Croce
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Annalisa De Silvestri
- Biometry & Clinical Epidemiology, Scientific Direction, Fondazione IRCCS Policlinico San Matteo, Pavia
| | - Giuseppe Re
- Pediatric Anesthesiology and Intensive Care Unit
| | | | - Alice Maltese
- Immunology and Transplantation Laboratory, Cell Factory, Pediatric Hematology Oncology Unit, Department of Maternal and Children's Health, Fondazione IRCCS Policlinico S, Matteo, Pavia
| | - Antonio Novelli
- Laboratory of Medical Genetics, Ospedale Pediatrico Bambino Gesù, Rome
| | - Gloria Pelizzo
- Pediatric Surgery Department, Children's Hospital, ARNAS Civico-Di Cristina-Benfratelli, Palermo, Italy
| |
Collapse
|
12
|
Treatment of Hyperoxia-Induced Lung Injury with Lung Mesenchymal Stem Cells in Mice. Stem Cells Int 2018; 2018:5976519. [PMID: 30356447 PMCID: PMC6178508 DOI: 10.1155/2018/5976519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/03/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
Objective Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in preterm neonates and has no effective treatment. This study aimed to investigate the therapeutic effects of neonatal mouse lung resident mesenchymal stem cells (L-MSCs) on the hyperoxia-induced lung injury. Methods L-MSCs were separated and identified according to the MSC criterions. Hyperoxia-Induced Lung Injury (HILI) of neonatal KM mice was induced with hyperoxia (FiO2 = 60%) and investigated with pathological methods. Neonatal KM mice were divided into 3 groups (hyperoxia + L-MSC group, hyperoxia + PBS group, and air control group). Mice in the hyperoxia + L-MSC group were treated with L-MSCs at 3, 7, and 14 days after birth. After hyperoxia exposure for 21 days, the lung pathology, Radial Alveolar Count (RAC), CD31 expression, and vascular endothelial growth factor (VEGF) expression were investigated. Results After hyperoxia exposure, the body weight, RAC, CD31 expression, and VEGF expression in the hyperoxia + L-MSC group were significantly better than those in the hyperoxia + PBS group but inferior to those in the air control group significantly. These indicate L-MSCs are partially protective on the lung injury of mice with hyperoxia-induced BPD. Conclusion L-MSCs are helpful for the prevention and treatment of BPD, and endogenous L-MSCs may play a role in the postinjury repair of the lung.
Collapse
|
13
|
Reicherzer T, Häffner S, Shahzad T, Gronbach J, Mysliwietz J, Hübener C, Hasbargen U, Gertheiss J, Schulze A, Bellusci S, Morty RE, Hilgendorff A, Ehrhardt H. Activation of the NF-κB pathway alters the phenotype of MSCs in the tracheal aspirates of preterm infants with severe BPD. Am J Physiol Lung Cell Mol Physiol 2018; 315:L87-L101. [PMID: 29644893 DOI: 10.1152/ajplung.00505.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are released into the airways of preterm infants following lung injury. These cells display a proinflammatory phenotype and are associated with development of severe bronchopulmonary dysplasia (BPD). We aimed to characterize the functional properties of MSCs obtained from tracheal aspirates of 50 preterm infants who required invasive ventilation. Samples were separated by disease severity. The increased proliferative capacity of MSCs was associated with longer duration of mechanical ventilation and higher severity of BPD. Augmented growth depended on nuclear accumulation of NFκBp65 and was accompanied by reduced expression of cytosolic α-smooth muscle actin (α-SMA). The central role of NF-κB signaling was confirmed by inhibition of IκBα phosphorylation. The combined score of proliferative capacity, accumulation of NFκBp65, and expression of α-SMA was used to predict the development of severe BPD with an area under the curve (AUC) of 0.847. We mimicked the clinical situation in vitro, and stimulated MSCs with IL-1β and TNF-α. Both cytokines induced similar and persistent changes as was observed in MSCs obtained from preterm infants with severe BPD. RNA interference was employed to investigate the mechanistic link between NFκBp65 accumulation and alterations in phenotype. Our data indicate that determining the phenotype of resident pulmonary MSCs represents a promising biomarker-based approach. The persistent alterations in phenotype, observed in MSCs from preterm infants with severe BPD, were induced by the pulmonary inflammatory response. NFκBp65 accumulation was identified as a central regulatory mechanism. Future preclinical and clinical studies, aimed to prevent BPD, should focus on phenotype changes in pulmonary MSCs.
Collapse
Affiliation(s)
- Tobias Reicherzer
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Susanne Häffner
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| | - Judith Gronbach
- Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| | - Josef Mysliwietz
- Institute of Molecular Immunology, Helmholtz Center Munich , Munich , Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, Perinatal Center, University Hospital, Ludwig-Maximilians-University, Munich , Germany
| | - Uwe Hasbargen
- Department of Obstetrics and Gynecology, Perinatal Center, University Hospital, Ludwig-Maximilians-University, Munich , Germany
| | - Jan Gertheiss
- Institute of Applied Stochastics and Operations Research, Research Group Applied Statistics, Clausthal University of Technology , Clausthal-Zellerfeld , Germany
| | - Andreas Schulze
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany
| | - Saverio Bellusci
- Universities of Giessen and Marburg Lung Center, Excellence Cluster Cardio-Pulmonary System, Member of the German Center for Lung Research (DZL), Department of Internal Medicine II , Giessen , Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Member of the German Lung Center (DZL) , Bad Nauheim , Germany
| | - Anne Hilgendorff
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Comprehensive Pneumology Center, Ludwig-Maximilians-University, Asklepios Hospital, and Helmholtz Center Munich , Munich , Germany
| | - Harald Ehrhardt
- Division of Neonatology, University Children's Hospital, Perinatal Center, Ludwig-Maximilians-University, Campus Grosshadern, Munich , Germany.,Department of General Pediatrics and Neonatology, Justus-Liebig-University and Universities of Giessen and Marburg Lung Center, Member of the German Lung Research Center (DZL) , Giessen , Germany
| |
Collapse
|
14
|
The Potentials and Caveats of Mesenchymal Stromal Cell-Based Therapies in the Preterm Infant. Stem Cells Int 2018; 2018:9652897. [PMID: 29765429 PMCID: PMC5911321 DOI: 10.1155/2018/9652897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Preponderance of proinflammatory signals is a characteristic feature of all acute and resulting long-term morbidities of the preterm infant. The proinflammatory actions are best characterized for bronchopulmonary dysplasia (BPD) which is the chronic lung disease of the preterm infant with lifelong restrictions of pulmonary function and severe consequences for psychomotor development and quality of life. Besides BPD, the immature brain, eye, and gut are also exposed to inflammatory injuries provoked by infection, mechanical ventilation, and oxygen toxicity. Despite the tremendous progress in the understanding of disease pathologies, therapeutic interventions with proven efficiency remain restricted to a few drug therapies with restricted therapeutic benefit, partially considerable side effects, and missing option of applicability to the inflamed brain. The therapeutic potential of mesenchymal stromal cells (MSCs)—also known as mesenchymal stem cells—has attracted much attention during the recent years due to their anti-inflammatory activities and their secretion of growth and development-promoting factors. Based on a molecular understanding, this review summarizes the positive actions of exogenous umbilical cord-derived MSCs on the immature lung and brain and the therapeutic potential of reprogramming resident MSCs. The pathomechanistic understanding of MSC actions from the animal model is complemented by the promising results from the first phase I clinical trials testing allogenic MSC transplantation from umbilical cord blood. Despite all the enthusiasm towards this new therapeutic option, the caveats and outstanding issues have to be critically evaluated before a broad introduction of MSC-based therapies.
Collapse
|
15
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
16
|
Collins JJP, Tibboel D, de Kleer IM, Reiss IKM, Rottier RJ. The Future of Bronchopulmonary Dysplasia: Emerging Pathophysiological Concepts and Potential New Avenues of Treatment. Front Med (Lausanne) 2017; 4:61. [PMID: 28589122 PMCID: PMC5439211 DOI: 10.3389/fmed.2017.00061] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022] Open
Abstract
Yearly more than 15 million babies are born premature (<37 weeks gestational age), accounting for more than 1 in 10 births worldwide. Lung injury caused by maternal chorioamnionitis or preeclampsia, postnatal ventilation, hyperoxia, or inflammation can lead to the development of bronchopulmonary dysplasia (BPD), one of the most common adverse outcomes in these preterm neonates. BPD patients have an arrest in alveolar and microvascular development and more frequently develop asthma and early-onset emphysema as they age. Understanding how the alveoli develop, and repair, and regenerate after injury is critical for the development of therapies, as unfortunately there is still no cure for BPD. In this review, we aim to provide an overview of emerging new concepts in the understanding of perinatal lung development and injury from a molecular and cellular point of view and how this is paving the way for new therapeutic options to prevent or treat BPD, as well as a reflection on current treatment procedures.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Ismé M de Kleer
- Division of Pediatric Pulmonology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Irwin K M Reiss
- Division of Neonatology, Department of Pediatrics, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
17
|
Ehrhardt H, Zimmer KP. The need for coordination of research activities in pediatric lung diseases. Mol Cell Pediatr 2016; 3:26. [PMID: 27465412 PMCID: PMC4963328 DOI: 10.1186/s40348-016-0060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Affiliation(s)
- Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstr. 12, D-35392, Gießen, Germany.
| | - Klaus-Peter Zimmer
- Department of General Pediatrics and Neonatology, Center for Pediatrics and Youth Medicine, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Lung Research Center (DZL), Feulgenstr. 12, D-35392, Gießen, Germany
| |
Collapse
|
18
|
O'Reilly M, Thébaud B. Cell-based therapies for neonatal lung disease. Cell Tissue Res 2016; 367:737-745. [PMID: 27770256 DOI: 10.1007/s00441-016-2517-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
Preterm birth occurs in approximately 11 % of all births worldwide. Advances in perinatal care have enabled the survival of preterm infants born as early as 23-24 weeks of gestation. However, many are affected by bronchopulmonary dysplasia (BPD)-a common respiratory complication of preterm birth, which has life-long consequences for lung health. Currently, there is no specific treatment for BPD. Recent advances in stem cell research have opened new therapeutic avenues for prevention/repair of lung damage. This review summarizes recent pre-clinical data and early clinical translation of cell-based therapies for BPD.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Physiology and Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada, T6G 2E1
| | - Bernard Thébaud
- Sinclair Centre for Regenerative Medicine and Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON, Canada, K1H 8L6. .,Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 5B2.
| |
Collapse
|
19
|
Meiners S, Hilgendorff A. Early injury of the neonatal lung contributes to premature lung aging: a hypothesis. Mol Cell Pediatr 2016; 3:24. [PMID: 27406259 PMCID: PMC4942446 DOI: 10.1186/s40348-016-0052-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic lung disease of the newborn, also known as bronchopulmonary dysplasia (BPD), is the most common chronic lung disease in early infancy and results in an increased risk for long-lasting pulmonary impairment in the adult. BPD develops upon injury of the immature lung by oxygen toxicity, mechanical ventilation, and infections which trigger sustained inflammatory immune responses and extensive remodeling of the extracellular matrix together with dysregulated growth factor signaling. Histopathologically, BPD is characterized by impaired alveolarization, disrupted vascular development, and saccular wall fibrosis. Here, we explore the hypothesis that development of BPD involves disturbance of conserved pathways of molecular aging that may contribute to premature aging of the lung and an increased susceptibility to chronic lung diseases in adulthood.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.
| | - Anne Hilgendorff
- Comprehensive Pneumology Center (CPC), Ludwig-Maximilians University, Helmholtz Zentrum München, German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377, München, Germany.,Perinatal Center Grosshadern, Dr. von Haunersches Children's Hospital, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|