1
|
Fernández-Nogueira P, Linzoain-Agos P, Cueto-Remacha M, De la Guia-Lopez I, Recalde-Percaz L, Parcerisas A, Gascon P, Carbó N, Gutiérrez-Uzquiza A, Fuster G, Bragado P. Role of Semaphorins, neuropilins and plexins in cancer progression. Cancer Lett 2024; 606:217308. [PMID: 39490515 DOI: 10.1016/j.canlet.2024.217308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Progress in understanding nervous system-cancer interconnections has emphasized the functional role of semaphorins (SEMAs) and their receptors, neuropilins (NRPs) and plexins (PLXNs), in cancer progression. SEMAs are a conserved and extensive family of broadly expressed soluble and membrane-associated proteins that were first described as regulators of axon guidance and neural and vascular development. However, recent advances have shown that they can have a dual role in cancer progression, acting either as tumor promoters or suppressors. SEMAs effects result from their interaction with specific co-receptors/receptors NRPs/PLXNs, that have also been described to play a role in cancer progression. They can influence both cancer cells and tumor microenvironment components modulating various aspects of tumorigenesis such as oncogenesis, tumor growth, invasion and metastatic spread or treatment resistance. In this review we focus on the role of these axon guidance signals and their receptors and co/receptors in various aspects of cancer. Furthermore, we also highlight their potential application as novel approaches for cancer treatment in the future.
Collapse
Affiliation(s)
- P Fernández-Nogueira
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - P Linzoain-Agos
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - M Cueto-Remacha
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - I De la Guia-Lopez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - L Recalde-Percaz
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Parcerisas
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain
| | - P Gascon
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - N Carbó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain
| | - A Gutiérrez-Uzquiza
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - G Fuster
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08028 Barcelona, Spain; Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Universitat de Barcelona, Institute of Biomedicine of the Universitat de Barcelona (IBUB), 08028, Barcelona, Spain; Tissue Repair and Regeneration Laboratory (TR2Lab), Institute of Research and Innovation of Life Sciences and Health, Catalunya Central (IRIS-CC), 08500 Vic, Catalonia, Spain; Biosciences Department, Faculty of Sciences, Technology and Engineering, University of Vic. Central University of Catalonia (UVic-UCC), 08500 Vic, Catalonia, Spain.
| | - P Bragado
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; Health Research Institute of the Hospital Clínico San Carlos, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Qin SY, Li B, Liu JM, Lv QL, Zeng XL. LncRNA NR2F2-AS1 inhibits the progression of oral squamous cell carcinoma by mediating the miR-32-5p/SEMA3A axis. Kaohsiung J Med Sci 2024; 40:877-889. [PMID: 39177014 DOI: 10.1002/kjm2.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have supported a tumor-suppressive role of semaphorin 3A (SEMA3A) in several tumors including oral squamous cell carcinoma (OSCC). However, in-depth characterization of the role of SEMA3A in OSCC and the underlying molecular mechanisms is lacking. Gene and protein expressions were detected using quantitative real-time PCR, western blot assay, and immunohistochemistry. OSCC cell metastasis was evaluated using Transwell and angiogenesis of human umbilical vein endothelial cells (HUVECs) was determined using tube formation assay. The interactions among molecules were predicted using bioinformatics analysis and validated using luciferase activity experiment and RNA immunoprecipitation assay. Pulmonary metastasis was evaluated using hematoxylin and eosin staining after constructing a lung metastasis tumor model in mice. SEMA3A expression was decreased in OSCC cells and its overexpression led to suppression of epithelial-mesenchymal transition (EMT), migration, and invasion of OSCC cells and angiogenesis of HUVECs. miR-32-5p was identified as an upstream molecule of SEMA3A and long non-coding RNA NR2F2 antisense RNA 1 (NR2F2-AS1) was validated as an upstream gene of miR-32-5p. Further experiments revealed that the inhibitory effects of NR2F2-AS1 overexpression on EMT, migration, invasion of OSCC cells, and angiogenesis of HUVECs as well as tumor growth and metastasis in mice were mediated via the miR-32-5p/SEMA3A axis. To conclude, NR2F2-AS1 may attenuate OSCC cell metastasis and angiogenesis of HUVECs and suppress tumor growth and metastasis in mice via the miR-32-5p/SEMA3A axis.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mouth Neoplasms/pathology
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Animals
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Semaphorin-3A/metabolism
- Semaphorin-3A/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Cell Line, Tumor
- Mice
- Gene Expression Regulation, Neoplastic
- Human Umbilical Vein Endothelial Cells/metabolism
- Disease Progression
- Epithelial-Mesenchymal Transition/genetics
- Cell Movement
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Mice, Nude
Collapse
Affiliation(s)
- Shi-Yu Qin
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Ji-Mu Liu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Qiu-Li Lv
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| | - Xiang-Lin Zeng
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, P.R. China
| |
Collapse
|
3
|
Zhang X, Yang Z, Zhang D, Bai M. The role of Semaphorin 3A in oral diseases. Oral Dis 2024; 30:1887-1896. [PMID: 37771213 DOI: 10.1111/odi.14748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023]
Abstract
Semaphorin 3A (SEMA3A), also referred to as H-Sema III, is a molecule with significant biological importance in regulating physiological and pathological processes. However, its role in oral diseases, particularly its association with inflammatory immunity and alveolar bone remodeling defects, remains poorly understood. This comprehensive review article aims to elucidate the recent advances in understanding SEMA3A in the oral system, encompassing nerve formation, periodontitis, pulpitis, apical periodontitis, and oral squamous cell carcinoma. Notably, we explore its novel function in inflammatory immunomodulation and alveolar bone formation during oral infectious diseases. By doing so, this review enhances our comprehension of SEMA3A's role in oral biology and opens up possibilities for modulatory approaches and potential treatments in oral diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhenqi Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Mingru Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Tan X, Yan Y, Song B, Zhu S, Mei Q, Wu K. Focal adhesion kinase: from biological functions to therapeutic strategies. Exp Hematol Oncol 2023; 12:83. [PMID: 37749625 PMCID: PMC10519103 DOI: 10.1186/s40164-023-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Focal adhesion kinase (FAK), a nonreceptor cytoplasmic tyrosine kinase, is a vital participant in primary cellular functions, such as proliferation, survival, migration, and invasion. In addition, FAK regulates cancer stem cell activities and contributes to the formation of the tumor microenvironment (TME). Importantly, increased FAK expression and activity are strongly associated with unfavorable clinical outcomes and metastatic characteristics in numerous tumors. In vitro and in vivo studies have demonstrated that modulating FAK activity by application of FAK inhibitors alone or in combination treatment regimens could be effective for cancer therapy. Based on these findings, several agents targeting FAK have been exploited in diverse preclinical tumor models. This article briefly describes the structure and function of FAK, as well as research progress on FAK inhibitors in combination therapies. We also discuss the challenges and future directions regarding anti-FAK combination therapies.
Collapse
Affiliation(s)
- Ximin Tan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Khayatan D, Hussain A, Tebyaniyan H. Exploring animal models in oral cancer research and clinical intervention: A critical review. Vet Med Sci 2023. [PMID: 37196179 DOI: 10.1002/vms3.1161] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Cancer is a leading cause of death worldwide, but advances in treatment, early detection, and prevention have helped to reduce its impact. To translate cancer research findings into clinical interventions for patients, appropriate animal experimental models, particularly in oral cancer therapy, can be helpful. In vitro experiments using animal or human cells can provide insight into cancer's biochemical pathways. This review discusses the various animal models used in recent years for research and clinical intervention in oral cancer, along with their advantages and disadvantages. We highlight the advantages and limitations of the used animal models in oral cancer research and therapy by searching the terms of animal models, oral cancer, oral cancer therapy, oral cancer research, and animals to find all relevant publications during 2010-2023. Mouse models, widely used in cancer research, can help us understand protein and gene functions in vivo and molecular pathways more deeply. To induce cancer in rodents, xenografts are often used, but companion animals with spontaneous tumours are underutilized for rapid advancement in human and veterinary cancer treatments. Like humans with cancer, companion animals exhibit biological behaviour, treatment responses, and cytotoxic agent responses similar to humans. In companion animal models, disease progression is more rapid, and the animals have a shorter lifespan. Animal models allow researchers to study how immune cells interact with cancer cells and how they can be targeted specifically. Additionally, animal models have been extensively used in research on oral cancers, so researchers can use existing knowledge and tools to better understand oral cancers using animal models.
Collapse
Affiliation(s)
- Danial Khayatan
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ahmed Hussain
- School of Dentistry, Edmonton Clinic Health Academy (ECHA), University of Alberta, Edmonton, Canada
| | - Hamid Tebyaniyan
- Department of Science and Research, Islimic Azade University, Tehran, Iran
| |
Collapse
|
6
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
7
|
Jiao B, Liu S, Tan X, Lu P, Wang D, Xu H. Class-3 semaphorins: Potent multifunctional modulators for angiogenesis-associated diseases. Biomed Pharmacother 2021; 137:111329. [PMID: 33545660 DOI: 10.1016/j.biopha.2021.111329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 11/29/2022] Open
Abstract
Semaphorins, the neuronal guidance cues, were shown to have broad influences on pathophysiological processes such as bone remodeling, immune responses, and angiogenesis. In particular, Class-3 Semaphorins (SEMA3) is considered a vital regulator involved in angiogenesis. Scientific evidence has pointed to the role of angiogenesis in many diseases, and numerous efforts have been made to explore the possibilities of curing those diseases by targeting angiogenesis. Nevertheless, the efficacies are limited owing to the complex mechanisms of angiogenesis. Hence, investigating the mechanisms of SEMA3 in angiogenesis may contribute to novel therapeutics for diseases. Previous reviews mainly focused on the various functions of semaphorins in one particular disease, and the specific angiogenesis mechanism of SEMA3 in diverse diseases has not been well elucidated. Additionally, the role of SEMA3 in angiogenesis remains elusive, as contradicting results have been found in different disease types. Some evidence from recent studies implies that, while most SEMA3 molecules inhibit pathological angiogenesis in different diseases, occasionally SEMA3 may also promote angiogenesis. This review summarizes the specific role of SEMA3 in a variety of angiogenesis-associated diseases, and documents SEMA3 may be a promising therapeutic target for treating angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiyang Liu
- Department of Thyroid and Breast Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pei Lu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Zhang Y, Sun X. Role of Focal Adhesion Kinase in Head and Neck Squamous Cell Carcinoma and Its Therapeutic Prospect. Onco Targets Ther 2020; 13:10207-10220. [PMID: 33116602 PMCID: PMC7553669 DOI: 10.2147/ott.s270342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers are one of the most prevalent cancers globally. Among them, head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers, which occurs in the oral cavity, oral pharynx, hypopharynx and larynx. The 5-year survival rate of HNSCC patients is only 63%, mainly because about 80–90% of patients with advanced HNSCC tend to suffer from local recurrence or even distant metastasis. Despite the more in-depth understanding of the molecular mechanisms underlying the occurrence and progression of HNSCC in recent years, effective targeted therapies are unavailable for HNSCC, which emphasize the urgent demand for studies in this area. Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase that contributes to oncogenesis and tumor progression by its significant function in cell survival, proliferation, adhesion, invasion and migration. In addition, FAK exerts an effect on the tumor microenvironment, epithelial–mesenchymal transition, radiation (chemotherapy) resistance, tumor stem cells and regulation of inflammatory factors. Moreover, the overexpression and activation of FAK are detected in multiple types of tumors, including HNSCC. FAK inhibition can induce cell cycle arrest and apoptosis, significantly decrease cell growth, invasion and migration in HNSCC cell lines. In this article, we mainly review the research progress of FAK in the occurrence, development and metastasis of HNSCC, and put forward the prospects for the therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
9
|
Ahammad I. A comprehensive review of tumor proliferative and suppressive role of semaphorins and therapeutic approaches. Biophys Rev 2020; 12:1233-1247. [PMID: 32577918 PMCID: PMC7575654 DOI: 10.1007/s12551-020-00709-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 01/05/2023] Open
Abstract
Semaphorins have been traditionally known as axon guidance proteins that negatively regulate axonal growth. However, in the past couple of decades, their versatile role in so many other biological processes has come to prominence as well. One such example is their role in cancer. In this review article, the focus was on the tumor proliferative and tumor suppressive role of all 20 semaphorin family members under the 7 semaphorin classes found in vertebrates and invertebrates as well as the ongoing and emerging therapeutic approaches to combat semaphorin-mediated cancers. Except sema6C, 19 of the 20 non-viral semaphorin family members have been discovered to be associated with cancer in one way or another. Eleven semaphorin family members have been discovered to be tumor proliferative and 8 to be tumor suppressive. Six therapeutic avenues and their safety profiles have been discussed which are currently at use or at the various stages of development. Finally, perspectives on which approach is the best for treating cancers associated with semaphorins have been given.
Collapse
Affiliation(s)
- Ishtiaque Ahammad
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
| |
Collapse
|
10
|
Imoto T, Kondo S, Wakisaka N, Hai PT, Seishima N, Kano M, Ueno T, Mizokami H, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Moriyama-Kita M, Yoshizaki T. Overexpression of Semaphorin 3A is a Marker Associated with Poor Prognosis in Patients with Nasopharyngeal Carcinoma. Microorganisms 2020; 8:microorganisms8030423. [PMID: 32192122 PMCID: PMC7143379 DOI: 10.3390/microorganisms8030423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Semaphorins were discovered as guidance signals that mediate neural development. Recent studies suggest that semaphorin 3A (Sema3A), a member of the semaphorin family, is involved in the development of several cancers. This study aimed to analyze the association of Sema3A with the clinical features of nasopharyngeal carcinoma (NPC), an Epstein–Barr virus-associated carcinoma, and the Epstein–Barr virus primary oncogene latent membrane protein 1 (LMP1). The expression of Sema3A and LMP1 was immunohistochemically examined in the 35 NPC specimens. The mean expression scores for Sema3A and LMP1 were 20.8% ± 14.5% and 13.9% ± 14.8%, respectively. The expression of Sema3A significantly correlated with that of LMP1 (r = 0.41, p = 0.014). In addition, the Sema3A high cohort showed significantly poorer prognosis than the Sema3A low cohort. Sema3A expression was higher in the LMP1-positive KH-1 and KR-4 cell lines compared to the LMP1-negative HeLa cells. Overexpression of LMP1 in the LMP1-negative AdAH cell line upregulated Sema3A expression, both at the transcriptional and translational level. Finally, Sema3A expression was associated with poor prognosis in patients with NPC. Our data suggest that LMP1 induces the expression of Sema3A, which may promote tumor progression in NPC.
Collapse
|
11
|
Tian T, Zhang L, Tang K, Wang A, Wang J, Wang J, Wang F, Wang W, Ma X. SEMA3A Exon 9 Expression Is a Potential Prognostic Marker of Unfavorable Recurrence-Free Survival in Patients with Tongue Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:555-562. [PMID: 32074456 DOI: 10.1089/dna.2019.5109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
This study tried to assess the prognostic value of semaphorin (SEMA) family genes in patients with tongue squamous cell carcinoma (TSCC) and the potential epigenetic alterations of the genes. The part of third-level TSCC data in The Cancer Genome Atlas-Head and Neck Squamous Cell Carcinoma (TCGA-HNSC) was extracted using the UCSC Xena browser for analysis. Among 20 SEMA genes examined, 7 were markedly upregulated, while 8 were substantially decreased in TSCC tissues compared with adjacent normal tissues. SEMA3A was the only gene with independent prognostic value in terms of recurrence-free survival (RFS) in multivariate analysis (hazard ratio [HR]: 1.697, 95% CI: 1.228-2.345, p = 0.001). Among the individual exons of SEMA3A, the exon 9 had a better prognostic value in terms of recurrence than total SEMA3A expression and its expression also independently predicted shorter RFS (HR: 2.193, 95% CI: 1.463-3.290, p < 0.001). The methylation levels of two CpG sites (cg06144675 and cg13988052) were moderately correlated with SEMA3A expression. Interestingly, cg06144675, which locates at the promoter region, showed a negative correlation with SEMA3A expression, whereas cg13988052, which is in the intron of SEMA3A gene body showed a positive correlation with SEMA3A expression. In conclusion, SEMA3A expression is aberrantly upregulated in TSCC tissues. Its exon 9 expression is a potentially valuable prognostic marker of unfavorable RFS in TSCC patients. Both promoter hypomethylation and gene body hypermethylation might contribute to the dysregulation.
Collapse
Affiliation(s)
- Tian Tian
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Lingnan Zhang
- Department of Orthodontics, Binzhou Medical University Hospital, Binzhou, China
| | - Kailiang Tang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, China
| | - Aiqin Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jing Wang
- Department of Oral Medicine, Binzhou Medical University Hospital, Binzhou, China
| | - Jingjing Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Fang Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Wenlong Wang
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Xiangrui Ma
- Department of Oral and Maxillofacial Surgery, Binzhou Medical University Hospital, Binzhou, China
| |
Collapse
|
12
|
Olek M, Kasperski J, Skaba D, Wiench R, Cieślar G, Kawczyk-Krupka A. Photodynamic therapy for the treatment of oral squamous carcinoma—Clinical implications resulting from in vitro research. Photodiagnosis Photodyn Ther 2019; 27:255-267. [DOI: 10.1016/j.pdpdt.2019.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 12/27/2022]
|
13
|
Abstract
IMPACT STATEMENT Sickle cell disease (SCD) is one of the most common inherited diseases and is associated with a reduced life expectancy and acute and chronic complications, including frequent painful vaso-occlusive episodes that often require hospitalization. At present, treatment of SCD is limited to hematopoietic stem cell transplant, transfusion, and limited options for pharmacotherapy, based principally on hydroxyurea therapy. This review highlights the importance of intracellular cGMP-dependent signaling pathways in SCD pathophysiology; modulation of these pathways with soluble guanylate cyclase (sGC) stimulators or phosphodiesterase (PDE) inhibitors could potentially provide vasorelaxation and anti-inflammatory effects, as well as elevate levels of anti-sickling fetal hemoglobin.
Collapse
Affiliation(s)
- Nicola Conran
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| | - Lidiane Torres
- Hematology Center, University of Campinas – UNICAMP,
Cidade Universitária, Campinas-SP 13083-878-SP, Brazil
| |
Collapse
|
14
|
Ding W, Cao Y, Xing F, Tao M, Fu H, Luo H, Yang X. A Preliminary Study of the Effect of Semaphorin 3A and Acitretin on the Proliferation, Migration, and Apoptosis of HaCaT Cells. Indian J Dermatol 2019; 64:250. [PMID: 31148871 PMCID: PMC6537688 DOI: 10.4103/ijd.ijd_179_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) is significantly elevated in psoriatic patients and is associated with the severity of the psoriasis. Due to the effect of inhibiting production of VEGF, acitretin can effectively treat psoriasis. Semaphorin 3A (Sema3A) restrain tumor growth and angiogenesis by partially reversing VEGF effects on tumor. However, the role of Sema3A in the pathogenesis of psoriasis is unclear. Aims and Objectives: This study aimed to investigate the effect of VEGF, Sema3A, and acitretin on HaCaT cells, to see whether Sema3A could be a beneficial factor in psoriasis, as well as acitretin. Materials and Methods: Functional analysis of VEGF, Sema3A, and acitretin was carried out using HaCaT cells cultured under different treatments. Cell counting kit-8 method, colony formation assay, flow cytometry, transwell migration, reverse transcription-polymerase chain reaction, and Western blot test were performed to measure proliferation, colony formation, migration, apoptosis, and the expression of Bcl2, Bax, Caspase 3, and Caspase 9 of HaCaT cells. Results: Sema3A and acitretin inhibited the proliferation, colony formation, and migration of HaCaT cells, while induced the apoptosis of HaCaT cells by inhibiting the expression of Bcl2, and promoting the expression of Bax, Caspase 3, and Caspase 9, which were opposite to VEGF. Sema3A and acitretin partially reversed the function of VEGF. Conclusions: Like acitretin, exogenous supplement of Sema3A may correct the abnormal proliferation and apoptosis procedure of HaCaT cells, and partially reverse the function of VEGF.
Collapse
Affiliation(s)
- Wei Ding
- Department of Dermatology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Fengling Xing
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongyang Fu
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongbin Luo
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaohong Yang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Yang ZG, Wen RT, Qi K, Li J, Zheng GX, Wang YF, Hong YG, Zhang YM. The Neuropilin-1 Ligand, Sema3A, Acts as a Tumor Suppressor in the Pathogenesis of Acute Leukemia. Anat Rec (Hoboken) 2018; 302:1127-1135. [PMID: 30378769 DOI: 10.1002/ar.24016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/12/2022]
Abstract
Semaphorin-3A (Sema3A) and vascular endothelial growth factor (VEGF165) are ligands of neuropilin-1 (NRP-1 or CD304) and are related to immunoregulation and tumor angiogenesis, respectively. However, possible interactions between NRP-1 and Sema3A and VEGF165 in acute leukemia remain unclear, especially whether Sema3A plays a role in acute leukemia. In this study, both of the proportion of regulatory T cells (Tregs) and their expression of NRP-1 were found to increase in acute leukemia patients compared with healthy controls. In contrast, lower mRNA and plasma levels of Sema3A were detected in the acute leukemia patients. In vitro, the addition of exogenous Sema3A inhibited the expression of NRP-1 on Tregs and it promoted apoptosis of leukemia cells. However, in the presence of anti-Sema3A antibody, the effect of rhSema3A on NRP-1 expression was reversed. These results suggest that Sema3A promotes apoptosis in leukemia cells by inhibiting expression of NRP-1, and thus, represents a tumor suppressor protein with a role in the pathogenesis of acute leukemia. Consequently, NRP-1/Sema3A signaling may represent a novel target for the treatment of acute leukemia and should be further studied. Anat Rec, 302:1127-1135, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhi-Gang Yang
- Department of Hematology, Affiliated Central People's Hospital of Zhanjiang of Guangdong Medical University, Zhanjiang, Guangdong, 524045, People's Republic of China.,Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Rui-Ting Wen
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| | - Kai Qi
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Jun Li
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Gui-Xian Zheng
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Yu-Feng Wang
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Yun-Guang Hong
- Laboratory of Hematology, Guangdong Medical University, Zhanjiang, Guangdong, 524023, People's Republic of China
| | - Yu-Ming Zhang
- Department of Hematology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, People's Republic of China
| |
Collapse
|
16
|
Świerczewska M, Klejewski A, Brązert M, Kaźmierczak D, Iżycki D, Nowicki M, Zabel M, Januchowski R. New and Old Genes Associated with Primary and Established Responses to Paclitaxel Treatment in Ovarian Cancer Cell Lines. Molecules 2018; 23:molecules23040891. [PMID: 29649113 PMCID: PMC6017641 DOI: 10.3390/molecules23040891] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 01/10/2023] Open
Abstract
Development of drug resistance is the main reason for low chemotherapy effectiveness in treating ovarian cancer. Paclitaxel (PAC) is a chemotherapeutic drug used in the treatment of this cancer. We analysed the development of PAC resistance in two ovarian cancer cell lines. Exposure of drug-sensitive cell lines (A2780 and W1) to PAC was used to determine the primary response. An established response was determined in PAC-resistant sublines of the A2780 and W1 cell lines. qRT-PCR was performed to measure the expression levels of specific genes. We observed decreased expression of the PCDH9, NSBP1, MCTP1 and SEMA3A genes in the PAC-resistant cell lines. Short-term exposure to PAC led to increased expression of the MDR1 and BCRP genes in the A2780 and W1 cell lines. In the A2780 cell line, we also observed increased expression of the C4orf18 gene and decreased expression of the PCDH9 and SEMA3A genes after PAC treatment. In the W1 cell line, short-term treatment with PAC upregulated the expression of the ALDH1A1 gene, a marker of Cancer stem cells (CSCs). Our results suggest that downregulation of the PCDH9, NSBP1, MCTP1 and SEMA3A genes and upregulation of the MDR1, BCRP, C4orf18 and ALDH1A1 genes may be related to PAC resistance.
Collapse
Affiliation(s)
- Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznan, Poland.
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznan, Poland.
| | - Maciej Brązert
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland.
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Dariusz Iżycki
- Department of Cancer Immunology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznań, Poland.
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Maciej Zabel
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|
17
|
Expression of semaphorin class 3 is higher in the proliferative phase on the human endometrium. Arch Gynecol Obstet 2018; 297:1175-1179. [PMID: 29450692 DOI: 10.1007/s00404-018-4719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The semaphorins are related to angiogenesis and cell proliferation depending on the tissue. The purpose of this study was to assess gene expression of class 3 semaphorin (SEMA3A-F) and protein expression of semaphorin 3A (SEMA3A) within human endometrium throughout the menstrual cycle. METHODS Gene expression of SEMA3A-F was analyzed by real-time PCR (qRT-PCR) and protein expression of SEMA3A was analyzed by ELISA in endometrial biopsies in the proliferative and secretory phase of the menstrual cycle. RESULTS Gene expression of SEMA3A, SEMA3C, SEMA3D, and SEMA3E was statistically significant decreased in secretory compared to proliferative phase endometrium (p < 0.05). Accordingly, SEMA3A protein expression in the secretory phase was lower than protein expression in proliferative phase endometrium (p ≤ 0.05). CONCLUSION SEMA3A, 3C, 3D, and 3E are possibly related to cell proliferation in the endometrium, being more expressed in the proliferative phase of the cycle. This finding may stimulate studies of class 3 semaphorins as a possible target for treatment of endometrial pathologies.
Collapse
|
18
|
Lontos K, Adamik J, Tsagianni A, Galson DL, Chirgwin JM, Suvannasankha A. The Role of Semaphorin 4D in Bone Remodeling and Cancer Metastasis. Front Endocrinol (Lausanne) 2018; 9:322. [PMID: 29971044 PMCID: PMC6018527 DOI: 10.3389/fendo.2018.00322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/28/2018] [Indexed: 12/20/2022] Open
Abstract
Semaphorin 4D (Sema4D; CD100) is a transmembrane homodimer 150-kDa glycoprotein member of the Semaphorin family. Semaphorins were first identified as chemorepellants that guide neural axon growth. Sema4D also possesses immune regulatory activity. Recent data suggest other Sema4D functions: inactivation of platelets, stimulation of angiogenesis, and regulation of bone formation. Sema4D is a coupling factor expressed on osteoclasts that inhibits osteoblast differentiation. Blocking Sema4D may, therefore, be anabolic for bone. Sema4D and its receptor Plexin-B1 are commonly dysregulated in cancers, suggesting roles in cancer progression, invasion, tumor angiogenesis, and skeletal metastasis. This review focuses on Sema4D in bone and cancer biology and the molecular pathways involved, particularly Sema4D-Plexin-B1 signaling crosstalk between cancer cells and the bone marrow microenvironment-pertinent areas since a humanized Sema4D-neutralizing antibody is now in early phase clinical trials in cancers and neurological disorders.
Collapse
Affiliation(s)
- Konstantinos Lontos
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juraj Adamik
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anastasia Tsagianni
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Deborah L. Galson
- Hematology-Oncology Division, Department of Medicine, UPMC Hillman Cancer Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Chirgwin
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
| | - Attaya Suvannasankha
- Hematology and Oncology Division, Department of Medicine, Indiana University School of Medicine, Richard L. Roudebush VA Medical Center, Indianapolis, IN, United States
- *Correspondence: Attaya Suvannasankha,
| |
Collapse
|