1
|
Rastegar-Moghaddam SH, Amirahmadi S, Akbarian M, Sharizina M, Beheshti F, Rajabian A, Eshaghi Ghalibaf MH, Azimi M, Mahmoudabady M, Hosseini M. Cardioprotective effect of cedrol in an inflammation systemic model induced by lipopolysaccharide: Biochemical and histological verification. J Cardiovasc Thorac Res 2024; 16:120-128. [PMID: 39253340 PMCID: PMC11380743 DOI: 10.34172/jcvtr.33112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction Evidence declared lipopolysaccharide (LPS) initiates inflammatory responses by stimulating the abandon of cytokines, which may perturb organ function. On the other side, it has been suggested Cedrol has potential properties, including anti-inflammatory and anti-oxidative activities. Herein, this study was done to assess the protective effect of Cedrol against LPS-associated heart damage. Methods Thirty-five rats (200-250 g) were sorted into five groups, including control, LPS, LPS-Cedrol 7.5 mg/kg, LPS-Cedrol 15 mg/kg, and LPS-Cedrol 30 mg/kg groups. Cedrol was administrated through injected intra-peritoneally for two weeks. The heart tissues were removed and malondialdehyde (MDA) as a lipid peroxidation marker, superoxide dismutase (SOD), and catalase (CAT) as antioxidant markers were assessed. Furthermore, the interleukin (IL)-6 level in cardiac tissue was measured and Masson's trichrome methods were employed to appraise cardiac inflammation and fibrosis, respectively. Results Inflammation induced by LPS was significantly accompanied by myocardial fibrosis which was shown by Masson's trichrome staining (P<0.001). In addition, LPS administration enhanced the MDA level while it diminished the activity of anti-oxidant markers such as CAT and SOD (P<0.001 for all cases). In the histological results, Cedrol improved LPS-induced inflammation and cardiac fibrosis (P<0.01 to P<0.001). Cedrol also enhanced CAT and SOD activities, whereas declined MDA level in the cardiac tissue (P<0.01 to P<0.001). Conclusion The current findings proposed that the administration of Cedrol exerted a protective role in LPS-associated heart damage by reducing inflammation, cardiac fibrosis, and oxidative stress.
Collapse
Affiliation(s)
| | - Sabiheh Amirahmadi
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsan Akbarian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matin Sharizina
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Department of Physiology, School of Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Arezoo Rajabian
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohaddeseh Azimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
3
|
Tang H, Qin K, Wang A, Li S, Fang S, Gao W, Lu M, Huang W, Zhang H, Yin Z. 3,3'-diindolylmethane inhibits LPS-induced human chondrocytes apoptosis and extracellular matrix degradation by activating PI3K-Akt-mTOR-mediated autophagy. Front Pharmacol 2022; 13:999851. [PMID: 36438802 PMCID: PMC9684728 DOI: 10.3389/fphar.2022.999851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by articular cartilage destruction. The pathological mechanisms are complex; in particular, inflammation, autophagy, and apoptosis are often involved. 3,3-Diindolylmethane (DIM), a phytoconstituent extracted from cruciferous vegetables, has various effects such as anti-inflammatory, antioxidant and anti-apoptotic. However, the effects of DIM on osteoarthritic chondrocytes remain undetermined. In this study, we simulated a lipopolysaccharide (LPS)-induced osteoarthritis model in human primary chondrocytes. We found that LPS stimulation significantly inhibited autophagy, induced chondrocyte apoptosis and extracellular matrix (ECM) degradation, which could be ameliorated by DIM. DIM inhibited the expression of a disintegrin and metalloproteinase with thrombospondin motif 5 (ADAMTS-5), matrix metalloproteinase 13 (MMP13), cleaved caspase-3, Bax, and p62, and increased the expression level of collagen II, aggrecan, Bcl-2, light chain 3 Ⅱ (LC3 Ⅱ), and beclin-1. Mechanistic studies showed that DIM increased chondrocyte autophagy levels by inhibiting the activation of PI3K/AKT/mTOR pathway. In mice destabilization of the medial meniscus (DMM) model, immunohistochemical analysis showed that DIM inhibited the expression of p-PI3K and cleaved caspase-3, increased the expression of LC3 Ⅱ. Furthermore, DIM relieved joint cartilage degeneration. In conclusion, our findings demonstrate for the first time that DIM inhibits LPS-induced chondrocyte apoptosis and ECM degradation by regulating the PI3K/AKT/mTOR-autophagy axis and delays OA progression in vivo.
Collapse
Affiliation(s)
- Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Key Laboratory of Microbiology and Parasitology of Anhui Province, The Key Laboratory of Zoonoses of High Institutions in Anhui, Anhui Medical University, Hefei, China
| | - Kunpeng Qin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Sheng Fang
- Department of Orthopedics, The Second People’s Hospital of Hefei, Hefei, China
| | - Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Lu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
4
|
Baradaran Rahimi V, Momeni-Moghaddam MA, Chini MG, Saviano A, Maione F, Bifulco G, Rahmanian-Devin P, Jebalbarezy A, Askari VR. Carnosol Attenuates LPS-Induced Inflammation of Cardiomyoblasts by Inhibiting NF- κB: A Mechanistic in Vitro and in Silico Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7969422. [PMID: 35571740 PMCID: PMC9095375 DOI: 10.1155/2022/7969422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/15/2022] [Indexed: 01/03/2023]
Abstract
Carnosol possesses several beneficial pharmacological properties. However, its role in lipopolysaccharide (LPS) induced inflammation and cardiomyocyte cell line (H9C2) has never been investigated. Therefore, the effect of carnosol and an NF-κB inhibitor BAY 11-7082 was examined, and the underlying role of the NF-κB-dependent inflammatory pathway was analyzed as the target enzyme. Cell viability, inflammatory cytokines levels (tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and prostaglandin E 2 (PGE2)), and related gene expression (TNF-α, IL-1β, IL-6, and cyclooxygenase-2 (COX-2)) were analyzed by ELISA and real-time PCR. In addition, docking studies analyzed carnosol's molecular interactions and binding modes to NF-κB and IKK. We report that LPS caused the reduction of cell viability while enhancing both cytokines protein and mRNA levels (P < 0.001, for all cases). However, the BAY 11-7082 pretreatment of the cells and carnosol increased cell viability and reduced cytokine protein and mRNA levels (P < 0.001 vs. LPS, for all cases). Furthermore, our in silico analyses also supported the modulation of NF-κB and IKK by carnosol. This evidence highlights the defensive effects of carnosol against sepsis-induced myocardial dysfunction and, contextually, paved the rationale for the next in vitro and in vivo studies aimed to precisely describe its mechanism(s) of action.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, Pesche, Isernia I-86090, Italy
| | - Anella Saviano
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Francesco Maione
- Immuno Pharma Lab, Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, Fisciano, Salerno 84084, Italy
| | - Pouria Rahmanian-Devin
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Jebalbarezy
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Zhou H, Huang Z, Huang H, Song C, Chang J. Synthesis of bisindolylmethane, bispyrrolylmethane, and indolylpyrrolylmethane derivatives via reductive heteroarylation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Alshanwani AR, Mohamed AM, Faddah LM, Shaheen S, Arafah MM, Hagar H, Alhusaini AM, Alharbi FMB, AlHarthii A, Badr AM. Cyanocobalamin and/or calcitriol mitigate renal damage-mediated by tamoxifen in rats: Implication of caspase-3/NF-κB signaling pathways. Life Sci 2021; 277:119512. [PMID: 33862116 DOI: 10.1016/j.lfs.2021.119512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
AIM Tamoxifen (TAMO) is a chemotherapeutic drug used for the treatment of breast cancer. Nevertheless, there is a lack of information available in regarding its nephrotoxicity. The purpose of this work was to investigate the impact of cyanocobalamin (COB) and/or calcitriol (CAL) injections on TAMO-induced nephrotoxicity. MAIN METHODS Animals were allocated into five groups as follows: normal control group; TAMO (45 mg/kg) administered group; TAMO+COB (6mg/kg, i.p) treated group; TAMO+CAL (0.3 μg/kg, i.p) treated group; TAMO+COB+CAL combination groups. KEY FINDINGS Renal injury induced by TAMO was confirmed by the alteration in renal function parameters in the serum (urea and creatinine), as well as in the urine (creatinine clearance, total protein and albumin). These results were supported by histopathological examination. Upregulation of renal inflammatory parameters; tumor necrosis factor (TNF)-α, interleukin (IL)-6, C-reactive protein (CRP); and transforming growth factor (TGF)-β1 as well as in protein expression of nuclear factor-kappa B (NF-κB) and cleaved caspase-3 were observed to a greater extent in the TAMO-treated rats compared with the control. Renal fibrosis was also evidenced by a elevation in renal L-hydroxyproline level as well as by histomorphological collagen deposition in TAMO-treated groups compared to the control group. Administration of COB and/or CAL concurrently with TAMO significantly ameliorated the deviation in the above-studied parameters and improved the histopathological renal picture. SIGNIFICANCE Inhibition of NF-κβ-mediated inflammation and caspase-3-induced apoptosis are possible renoprotective mechanisms of COB and/or CAL against TAMO nephrotoxicity, which was more noticeable in the TAMO group treated with the combination of the two vitamins in question.
Collapse
Affiliation(s)
- Aliah R Alshanwani
- College of Medicine, Physiology Department, King Saud University, Saudi Arabia.
| | - Azza M Mohamed
- Therapeutic Chemistry Department, National Research Center, Cairo, Egypt; Biochemistry Department, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Laila M Faddah
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sameerah Shaheen
- College of Medicine, Anatomy Department, Stem Cell Unit, King Saud University, Riyadh, Saudi Arabia
| | - Maha M Arafah
- Pathology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Hagar
- College of Medicine, Physiology Department, King Saud University, Saudi Arabia; College of Pharmacy, Pharmacology and Toxicology Department, Zagazig University, Zagazig, Egypt
| | - Ahlam M Alhusaini
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fatima M B Alharbi
- College of Science, Biochemistry Department, King Saud University, Riyadh, Saudi Arabia
| | - Alaa AlHarthii
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amira M Badr
- Pharmacology and Toxicology Department, Faculty of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Chen DD, Wang HW, Cai XJ. Transcription factor Sp1 ameliorates sepsis-induced myocardial injury via ZFAS1/Notch signaling in H9C2 cells. Cytokine 2021; 140:155426. [PMID: 33517197 DOI: 10.1016/j.cyto.2021.155426] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate whether Sp1 can ameliorate sepsis-induced myocardial injury and explore the potential molecular mechanism. METHODS The embryonic cardiomyocyte cell line H9C2 and primary cultured mouse neonatal cardiomyocytes (CMNCs) were treated with LPS or phosphate-buffered saline (PBS). A mouse model of LPS-induced sepsis was established using male C57BL/6J mice and their cardiomyocytes were collected. Real-time reverse transcription-PCR (qRT-PCR) assay was used to detect the expression levels of Sp1 and ZFAS1 in cardiomyocytes. Western blotting analysis was used to assess the protein expression levels of Sp1, apoptosis-associated proteins and Notch signaling pathway related proteins. Luciferase assay was used to detect the interaction between Sp1 and ZFAS1. Cell transfection was used to generate H9C2 cells with overexpressed or knocked down of Sp1 or ZFAS1. MTT assay and flow cytometry analysis were used to test the cell proliferation and cell apoptosis ratio. RESULTS Our data revealed that the expressions of ZFAS1 and Sp1 were significantly reduced in LPS-treated H9C2 cells and primary CMNCs. The downregulation of ZFAS1 and Sp1 were also found in cardiomyocytes obtained from LPS-challenged mice. LPS induced H9C2 cell apoptosis and depressed cell proliferation was ameliorated by ZFAS1 overexpression and aggravated by ZFAS1 knockdown. Mechanistically, Luciferase assay indicated that Sp1 could bind to ZFAS1, and positively regulated ZFAS1 expression. Moreover, Notch signaling pathway participates in H9C2 cell apoptosis mediated by Sp1. CONCLUSION The present study demonstrates that Sp1 regulates LPS-induced cardiomyocyte apoptosis via ZFAS1/Notch signaling pathway, which may serve as therapeutic targets for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
- Dan-Dan Chen
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, Haikou 570208, PR China
| | - Hong-Wu Wang
- Department of Critical Care Medicine, Haikou Hospital, Xiangya Medical College, Central South University, Haikou 570208, PR China
| | - Xing-Jun Cai
- Department of Respiratory and Critical Care Medicine, Hainan General Hospital, Haikou 570311, PR China.
| |
Collapse
|
8
|
Wu X, Liu J, Chen C, Huang Z, Zang Y, Chen J, Dong L, Zhang J, Ding Z. 3,3'-Diindolylmethane alleviates acute atopic dermatitis by regulating T cell differentiation in a mouse model. Mol Immunol 2020; 130:104-112. [PMID: 33309306 DOI: 10.1016/j.molimm.2020.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/24/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022]
Abstract
Atopic dermatitis is a severe, chronic relapsing inflammatory disease of the skin with family clustering. It is characterized into acute phase, which is dominated by T helper 2-type immune responses, and chronic phase, which is dominated by T helper 1-type immune responses. Studies have shown that 3,3'-diindolylmethane not only has antitumor effects but also can relieve symptoms of inflammatory diseases by inhibiting the nuclear factor-κB signaling pathway and regulating T cell differentiation. To study the effect of 3,3'-diindolylmethane on atopic dermatitis and the underlying mechanism, a mouse model of acute atopic dermatitis was established using 2,4-dinitrofluorobenzene. After intraperitoneal injection of 3,3'-diindolylmethane, skin erythema and edema in mice were significantly alleviated. Furthermore, 3,3'-diindolylmethane reduced immune activation, probably by inhibiting the secretion of thymic stromal lymphopoietin by keratinocytes. 3,3'-Diindolylmethane also promoted the differentiation of regulatory T cells and inhibited the activation of T helper 2 and T helper 17 cells to reduce atopic dermatitis-related immune responses. However, it showed no significant effect on the differentiation of T helper 1 cells. These results indicate that 3,3'-diindolylmethane has a significant inhibitory effect on T helper 2 cells in the acute phase of atopic dermatitis. Our findings may provide not only more insights into the pathological mechanism of AD, but also a new candidate medicine for it.
Collapse
Affiliation(s)
- Xianxian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Jinxuan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Chaoqin Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Zhen Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Yuhui Zang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Jiangning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China
| | - Junfeng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China; Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Hankou Road 22, Nanjing, 210093, Jiangsu, China.
| | - Zhi Ding
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, Jiangsu, China; Changzhou High-Tech Research Institute of Nanjing University, Changzhou, 213164, China.
| |
Collapse
|
9
|
Wu B, Wang G, Xin L, Li Q, Lu X, Su Y, Huang P. Network pharmacology-based therapeutic mechanism of Kuanxiong aerosol for angina pectoris. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113079. [PMID: 32526337 DOI: 10.1016/j.jep.2020.113079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuanxiong aerosol has been reported to be an effective and safe clinical treatment for angina pectoris (AP). AIM OF THE STUDY To explore the potential pharmacological mechanism of Kuanxiong aerosol by combined methods of network pharmacology prediction and experimental verification. MATERIALS AND METHODS Networks of Kuanxiong aerosol-associated targets and AP-related genes were constructed through STRING database. Potential targets and pathway enrichment analysis related to the therapeutic efficacy of Kuanxiong aerosol were identified using Cytoscape and Database for Annotation, Visualization and Integrated Discovery (DAVID). To explore the mechanism of action of Kuanxiong aerosol, its in vitro effects on myocardial hypoxia, inflammatory cytokines, and oxidative injury, and its in vivo pharmacological effects on myocardial ischemia and cardiac fibrosis were studied in rat models. RESULTS Network pharmacology analysis revealed that the potential targets mainly include the Fas ligand (FASLG), interleukin 4 (IL4), and catalase (CAT), which mediated the processes of apoptosis, and cellular responses to hypoxia, lipopolysaccharide (LPS), reactive oxygen species (ROS), and mechanical stimulus. Multiple pathways, such as the hypoxia-inducible factor 1 (HIF1) and tumor necrosis factor (TNF) pathways were found to be closely related to the pharmacological protective mechanism of Kuanxiong aerosol against AP. In addition, Kuanxiong aerosol suppressed the hypoxia, LPS, and hydrogen peroxide (H2O2)-induced injuries of H9c2 cardiomyocytes through the regulation of HIF1A, suppressed expression of IL6 and TNF, and antioxidant property. In the rat model of myocardial ischemia, Kuanxiong aerosol was found to lower the creatine kinase (CK), creatine kinase-myocardial band (CK-MB), and lactate dehydrogenase (LDH) levels, without altering the hemodynamic function. Kuanxiong aerosol was capable of attenuating cardiac fibrosis and improving cardiac function in a cardiac fibrosis rat model. CONCLUSIONS This study revealed that the pharmacological mechanisms of Kuanxiong aerosol for AP therapy were related to anti-myocardial ischemia, anti-inflammation, and anti-oxidation via a non-hemodynamic manner, indicating that Kuanxiong aerosol is a preferable drug clinically for AP treatment due to its both preventive and protective effects.
Collapse
Affiliation(s)
- Bihan Wu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lei Xin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qunying Li
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiao Lu
- Hangzhou Supor South Ocean Pharmaceutical Co., Ltd., Hangzhou, 311225, China
| | - Yan Su
- Hangzhou Supor South Ocean Pharmaceutical Co., Ltd., Hangzhou, 311225, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
10
|
Zhu WJ, Gong JF, Song MP. Synthesis of Chiral Bis(3-indolyl)methanes Bearing a Trifluoromethylated All-Carbon Quaternary Stereocenter via Nickel-Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction. J Org Chem 2020; 85:9525-9537. [PMID: 32628848 DOI: 10.1021/acs.joc.0c00336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bis(3-indolyl)methanes are well-known natural products with a broad range of important biological functions including cancer cell growth inhibition and antimicrobial activity. Incorporation of a trifluoromethyl group is known to have a profound effect on the parent compound's biological activities. Here, an efficient method for the synthesis of chiral trifluoromethylated bis(3-indolyl)methanes via a catalytic asymmetric Friedel-Crafts (F-C) alkylation reaction has been established. Both enantiomers of the catalysis products can be obtained by tuning the chiral substituents of the catalyst. With 5 mol % of the Ni(II)/(imidazoline-oxazoline) complex as the catalyst, the F-C reaction of indoles with β-CF3-β-(3-indolyl)nitroalkenes proceeded well to afford a series of chiral bis(3-indolyl)methanes bearing a trifluoromethylated all-carbon quaternary stereocenter in generally good yields with excellent enantioselectivities (up to 98% yield and 94% ee). Furthermore, by interchanging the indole moieties of the two reactants, indole vs β-CF3-β-(3-indolyl)nitroalkene in the F-C reaction, both enantiomers of a given trifluoromethylated bis(3-indolyl)methane were obtained with high enantioselectivities (89-94% ee) upon removal of the indole N-protecting group in the F-C products. The current work represents the first general catalytic enantioselective approach to the important class of trifluoromethylated bis(3-indolyl)methanes.
Collapse
Affiliation(s)
- Wen-Jing Zhu
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jun-Fang Gong
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Mao-Ping Song
- College of Chemistry, Henan Key Laboratory of Chemical Biology and Organic Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
11
|
Hu H, Fu Y, Li M, Xia H, Liu Y, Sun X, Hu Y, Song F, Cheng X, Li P, Wu Y. Interleukin-35 pretreatment attenuates lipopolysaccharide-induced heart injury by inhibition of inflammation, apoptosis and fibrotic reactions. Int Immunopharmacol 2020; 86:106725. [PMID: 32679538 DOI: 10.1016/j.intimp.2020.106725] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Previous studies have demonstrated that targeting inflammation is a promising strategy for treating lipopolysaccharide (LPS)-induced sepsis and related heart injury. Interleukin-35 (IL-35), which consists of two subunits, Epstein-Barr virus-induced gene 3 (EBI3) and p35, is an immunosuppressive cytokine of the IL-12 family and exhibits strong anti-inflammatory activity. However, the role of IL-35 in LPS-induced heart injury reains obscure. In this study, we explored the role of IL-35 in heart injury induced by LPS and its potential mechanisms. Mice were treated with a plasmid encoding IL-35 (pIL-35) and then injected intraperitoneally (ip) with LPS (10 mg/kg). Cardiac function was assessed by echocardiography 12 h later. LPS apparently decreased the expression of EBI3 and p35 and caused cardiac dysfunction and pathological changes, which were significantly improved by pIL-35 pretreatment. Moreover, pIL-35 pretreatment significantly decreased the levels of cardiac proinflammatory cytokines including TNF-α, IL-6, and IL-1β, and the NLRP3 inflammasome. Furthermore, decreased number of apoptotic myocardial cells, increased BCL-2 levels and decreased BAX levels inhibited apoptosis, and LPS-induced upregulation of the expression of cardiac pro-fibrotic genes (MMP2 and MMP9) and fibrotic factor (Collagen type I) was inhibited. Further investigation indicated that pIL-35 pretreatment might suppressed the activation of the cardiac NF-κBp65 and TGF-β1/Smad2/3 signaling pathways in LPS-treated mice. Similar cardioprotective effects of IL-35 pretreatment were observed in mouse myocardial fibroblasts challenged with LPS in vitro. In summary, IL-35 pretreatment can attenuate cardiac inflammation, apoptosis, and fibrotic reactions induced by LPS, implicating IL-35 as a promising therapeutic target in sepsis-related cardiac injury.
Collapse
Affiliation(s)
- Huan Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Fu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Meng Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Huasong Xia
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yue Liu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaopei Sun
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Fulin Song
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xiaoshu Cheng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ping Li
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
12
|
Munakarmi S, Chand L, Shin HB, Jang KY, Jeong YJ. Indole-3-Carbinol Derivative DIM Mitigates Carbon Tetrachloride-Induced Acute Liver Injury in Mice by Inhibiting Inflammatory Response, Apoptosis and Regulating Oxidative Stress. Int J Mol Sci 2020; 21:E2048. [PMID: 32192079 PMCID: PMC7139345 DOI: 10.3390/ijms21062048] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a metabolic product of indole-3-carbinol extracted from cruciferous vegetables exhibits anti-inflammatory and anti-cancer properties. Earlier, the product has been demonstrated to possess anti-fibrotic properties; however, its protective effects on liver injury have not been clearly elucidated. In this study, we postulated the effects and molecular mechanisms of action of DIM on carbon tetrachloride (CCl4)-induced liver injury in mice. Acute liver injury was induced by a single intraperitoneal administration of CCl4 (1 ml/kg) into mice. DIM was injected via subcutaneous route for three days at various doses (2.5, 5 and 10 mg/kg) before CCl4 injection. Mice were sacrificed and serum was collected for quantification of serum transaminases. The liver was collected and weighed. Treatment with DIM significantly reduced serum transaminases levels (AST and ALT), tumor necrosis factor-α (TNF-α) and reactive oxygen species (ROS). CCl4- induced apoptosis was inhibited by DIM treatment by the reduction in the levels of cleaved caspase-3 and Bcl2 associated X protein (Bax). DIM treated mice significantly restored Cytochrome P450 2E1, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression in CCl4 treated mice. In addition, DIM downregulated overexpression of hepatic nuclear factor kappa B (NF-κB) and inhibited CCl4 mediated apoptosis. Our results suggest that the protective effects of DIM against CCl4- induced liver injury are due to the inhibition of ROS, reduction of pro-inflammatory mediators and apoptosis.
Collapse
Affiliation(s)
- Suvesh Munakarmi
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Lokendra Chand
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
| | - Hyun Beak Shin
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Kyu Yun Jang
- Department of Pathology, Chonbuk National University Hospital, Jeonju 54907, Korea;
| | - Yeon Jun Jeong
- Laboratory of Liver Regeneration, Biomedical Research Institute, Chonbuk National University Medical School, Jeonju 54907, Korea; (S.M.); (L.C.)
- Department of Surgery, Chonbuk National University Hospital, Jeonju 54907, Korea;
| |
Collapse
|
13
|
Lin H, Wang W, Lee M, Meng Q, Ren H. Current Status of Septic Cardiomyopathy: Basic Science and Clinical Progress. Front Pharmacol 2020; 11:210. [PMID: 32194424 PMCID: PMC7062914 DOI: 10.3389/fphar.2020.00210] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/14/2020] [Indexed: 12/27/2022] Open
Abstract
Septic cardiomyopathy (SCM) is a complication that is sepsis-associated cardiovascular failure. In the last few decades, there is progress in diagnosis and treatment despite the lack of consistent diagnostic criteria. According to current studies, several hypotheses about pathogenic mechanisms have been revealed to elucidate the pathophysiological characteristics of SCM. The objective of this manuscript is to review literature from the past 5 years to provide an overview of current knowledge on pathogenesis, diagnosis and treatment in SCM.
Collapse
Affiliation(s)
- Huan Lin
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Wenting Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | | | - Qinghe Meng
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongsheng Ren
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
14
|
Li F, Zhang J, Lin M, Su X, Li C, Wang H, Li B, Chen R, Kang J. Anti-inflammatory terpenes from Schefflera rubriflora C. J. Tseng & G. Hoo with their TNF-α and IL-6 inhibitory activities. PHYTOCHEMISTRY 2019; 163:23-32. [PMID: 30986687 DOI: 10.1016/j.phytochem.2019.03.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
The 95% ethanol extract and its EtOAc and n-BuOH fractions obtained from the leaves and twigs of Schefflera rubriflora C. J. Tseng & G. Hoo showed significant inhibitory activities (33.6%, 35.7% and 40.6%, respectively) against croton oil-induced ear inflammation in mice. Bioactivity-guided isolation and separation gave eight previously undescribed terpenes or terpene glycosides. Structural elucidation was based on UV, IR, and NMR spectroscopy, MS, experimental and calculated ECD data, and Mosher's method. To identify anti-inflammatory components from the extract, all the compounds were evaluated for tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6) inhibitory activities. Four undescribed compounds inhibited mRNA expression of TNF-α and IL-6 with IC50 values of 15.3-52.4 μM.
Collapse
Affiliation(s)
- Fenghua Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jian Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| | - Mingbao Lin
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Xianming Su
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Changkang Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Hongqing Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Baoming Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Ruoyun Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| | - Jie Kang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Xiannongtan Street, Beijing 100050, China.
| |
Collapse
|