1
|
Saini S, Reddy GL, Gangwar A, Kour H, Nadre GG, Pandian R, Pal S, Nandi U, Sharma R, Sawant SD. Discovery and biological evaluation of nitrofuranyl-pyrazolopyrimidine hybrid conjugates as potent antimicrobial agents targeting Staphylococcus aureus and methicillin-resistant S. aureus. RSC Med Chem 2024:d4md00826j. [PMID: 39829972 PMCID: PMC11740095 DOI: 10.1039/d4md00826j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Nitrofuran and pyrazolopyrimidine-based compounds possess a broad antimicrobial spectrum including Gram-positive and Gram-negative bacteria. In the present work, a series of conjugates of these scaffolds was synthesized and evaluated for antimicrobial activity against Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Many compounds showed MIC values of ≤2 μg ml-1, with compound 35 demonstrating excellent activity (MICs: 0.7 and 0.15 μg ml-1 against S. aureus and MRSA, respectively) and safety up to 50 μg ml-1 in HepG2 cells. Compound 35 also exhibited no hemolytic activity, biofilm eradication, and effectiveness against efflux-pump-overexpressing strains (NorA, TetK, MsrA) without resistance development. It showed synergistic effects with vancomycin (S. aureus) and rifampicin (MRSA). Mechanistic studies revealed that compound 35 exhibits good membrane-targeting abilities, as evidenced by DAPI/PI staining and scanning electron microscopy (SEM). In an intracellular model, it reduced bacterial load efficiently in both S. aureus and MRSA strains. With a strong in vitro profile, compound 35 demonstrated favorable oral pharmacokinetics at 30 mg kg-1 and potent in vivo anti-MRSA activity, highlighting its potential against antibiotic-resistant infections.
Collapse
Affiliation(s)
- Sapna Saini
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - G Lakshma Reddy
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Anjali Gangwar
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Harpreet Kour
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Gajanan G Nadre
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Ramajayan Pandian
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Sunny Pal
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
| | - Utpal Nandi
- Pharmacology Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
- Department of Chemical Sciences, Bose Institute Unified Academic Campus Kolkata - 700 091 India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR - Indian Institute of Integrative Medicine Canal Road Jammu - 180001 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| | - Sanghapal D Sawant
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India
- Organic Chemistry Division, CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune-411008 India
- Academy of Scientific and Innovative Research Ghaziabad - 201002 India
| |
Collapse
|
2
|
Garbo V, Venuti L, Boncori G, Albano C, Condemi A, Natoli G, Frasca Polara V, Billone S, Canduscio LA, Cascio A, Colomba C. Severe Panton-Valentine-Leukocidin-Positive Staphylococcus aureus Infections in Pediatric Age: A Case Report and a Literature Review. Antibiotics (Basel) 2024; 13:1192. [PMID: 39766583 PMCID: PMC11672633 DOI: 10.3390/antibiotics13121192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Infections caused by S. aureus strains encoding Panton-Valentine leukocidin (PVL-SA) have become increasingly relevant in community settings and can cause severe conditions in pediatric populations. We present the pediatric case of an invasive disease caused by PVL-SA and provide a literature review of severe manifestations caused by these strains in children. Methods: A PubMed search (February 2024) found studies that included relevant clinical outcomes, diagnostics, and treatments, excluding cases of asymptomatic infection or in adult populations. A logistical multivariate analysis was used to find predictors of the need for intensive care. Results: A 10-year-old boy came to the attention of our Pediatric Infectious Diseases Unit with fever, chest pain, and tachypnea. A rapid worsening of his clinical conditions was observed, with the development of necrotizing pneumonia, osteomyelitis, deep vein thrombosis (DVT), and multiple abscesses. Blood cultures confirmed the presence of PVL-producing methicillin-resistant S. aureus (MRSA). The initial treatment included linezolid and ceftaroline and was later adjusted to clindamycin, daptomycin, and fosfomycin, with clinical improvement. Discussion: Our review collected 36 articles, including 156 pediatric cases of severe PVL-SA infection. Bacteremia was present in 49% of cases, lung infection in 47%, and osteomyelitis in 37%. The presence of pulmonary localization was predictive of the need for intensive care, O.R. 25.35 (7.46-86.09; p < 0.001). Anti-toxin molecules were used in about half the cases where information on treatment was reported. Our report highlights the capacity of PVL-SA to cause life-threatening complications in children, while also discussing the full range of its clinical spectrum and the most effective therapeutic approaches.
Collapse
Affiliation(s)
- Valeria Garbo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
| | - Laura Venuti
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
| | - Giovanni Boncori
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
| | - Chiara Albano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
| | - Anna Condemi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
| | - Giuseppe Natoli
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Di Cristina, Benfratelli, 90127 Palermo, Italy
| | - Valentina Frasca Polara
- Division of Paediatric Infectious Disease, “G. Di Cristina” Hospital, ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Sebastiano Billone
- Division of Paediatric Infectious Disease, “G. Di Cristina” Hospital, ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Laura Antonella Canduscio
- Division of Paediatric Infectious Disease, “G. Di Cristina” Hospital, ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Antonio Cascio
- Infectious and Tropical Diseases Unit, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Claudia Colomba
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90127 Palermo, Italy (C.C.)
- Division of Paediatric Infectious Disease, “G. Di Cristina” Hospital, ARNAS Civico Di Cristina Benfratelli, 90127 Palermo, Italy
| |
Collapse
|
3
|
Le Moing V, Bonnet É, Cattoir V, Chirouze C, Deconinck L, Duval X, Hoen B, Issa N, Lecomte R, Tattevin P, Tazi A, Vandenesch F, Strady C. Antibiotic therapy and prophylaxis of infective endocarditis - A SPILF-AEPEI position statement on the ESC 2023 guidelines. Infect Dis Now 2024; 55:105011. [PMID: 39561877 DOI: 10.1016/j.idnow.2024.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Vincent Le Moing
- Service de Maladies Infectieuses et Tropicales, CHU de Montpellier, France.
| | - Éric Bonnet
- Centre Régional en Antibiothérapie de la Région Occitanie, Toulouse, France
| | - Vincent Cattoir
- Service de Bactériologie-Hygiène Hospitalière, CHU de Rennes, Rennes, France; CNR de la Résistance aux Antibiotiques (laboratoire Associé 'Entérocoques), CHU de Rennes, Rennes, France; Unité Inserm U1230 BRM, Université de Rennes, Rennes, France
| | - Catherine Chirouze
- Université de Franche-Comté, CHU Besançon, UMR-CNRS 6249 Chrono-environnement, Department of Infectious and Tropical Diseases, F-25000 Besançon, France
| | - Laurène Deconinck
- Service des Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, AP-HP
| | - Xavier Duval
- Centre d'Investigation Clinique, Hôpital Bichat-Claude Bernard, Paris, France
| | - Bruno Hoen
- Université de Franche-Comté, CHU Besançon, UMR-CNRS 6249 Chrono-environnement, Department of Infectious and Tropical Diseases, F-25000 Besançon, France
| | - Nahéma Issa
- Service de Médecine Interne et Maladies Infectieuses, Hôpital Saint-André, CHU de Bordeaux, France
| | - Raphaël Lecomte
- Service des Maladies Infectieuses et Tropicales, Hôtel-Dieu, CHU Nantes, France; Centre d'Investigation Clinique, Unité d'Investigation Clinique 1413 INSERM, CHU Nantes, France
| | - Pierre Tattevin
- Service des Maladies Infectieuses et Tropicales, CHU de Rennes, France
| | - Asmaa Tazi
- Service de Bactériologie, Centre National de Référence des Streptocoques, Assistance Publique - Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Site Cochin, Paris, France; Université Paris Cité, Institut Cochin, Inserm U1016, CNRS UMR8104, équipe Bactéries et Périnatalité, Paris, France
| | - François Vandenesch
- Centre National de Référence des Staphylocoques, Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France; CIRI, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS Lyon, Lyon, France
| | - Christophe Strady
- Service des Maladies Infectieuses et Tropicales, Hôpital de Melun-Sénart, France
| |
Collapse
|
4
|
Kumar P, Saini S, Gangwar A, Sharma R, Anal JMH. Antibacterial activity of structurally diverse natural prenylated isobavachalcone derivatives. RSC Adv 2024; 14:32771-32785. [PMID: 39429936 PMCID: PMC11484510 DOI: 10.1039/d4ra05370b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Isobavachalcone (IBC) is a natural prenylated flavonoid containing chalcone and prenyl chain moieties with a wide range of biological and pharmacological properties. In this work, we synthesized structurally diversified derivatives (IBC-2 to IBC-10) from the natural prenylated chalcone IBC isolated from Psoralea corylifolia and assessed their antibacterial potency against the Gram-positive and Gram-negative bacterial strains S. aureus ATCC 29213, MRSA ATCC 15187, E. coli ATCC25922 and P. aeruginosa ATCC 27853. IBC and IBC-2 exhibited a minimum inhibition concentration (MIC) of 5.0 μM against S. aureus ATCC 29213, whereas IBC-3 exhibited a broad-spectrum activity against Gram-positive and Gram-negative pathogens. Cytotoxicity assessments on the murine RAW 264.7 macrophage cell line revealed minimal to moderate cytotoxicity for IBC-2 and IBC-3 with a favorable selectivity index (>10). Time- and concentration-dependent studies further supported the bactericidal nature of the compounds, as IBC, IBC-2, and IBC-3 exhibited concentration-dependent killing of S. aureus in a time-dependent manner. Furthermore, combination studies, SEM analysis, and PI staining suggest that IBC-3's mechanism of action targets the bacteria's cytoplasmic membrane or cell wall. The bioactive compounds displayed promising drug-like characteristics and a favorable pharmacokinetic profile (ADME-Tox), indicating a projected high oral bioavailability. Structure-activity relationships (SARs) drawn from this study reveal that a prenyl chain at the A-ring and hydroxy functional groups attached to the aromatic rings of chalcone scaffolds are responsible for this antibacterial potential, which will be helpful in the future discovery and development of antibiotics from natural products to overcome the antibiotic resistance crisis.
Collapse
Affiliation(s)
- Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sapna Saini
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anjali Gangwar
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Rashmi Sharma
- Infectious Division, CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR- Indian Institute of Integrative Medicine Jammu 180001 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
5
|
Hsu YC, Liu CH, Wu YC, Lai SJ, Lin CJ, Tseng TS. Combatting Antibiotic-Resistant Staphylococcus aureus: Discovery of TST1N-224, a Potent Inhibitor Targeting Response Regulator VraRC, through Pharmacophore-Based Screening and Molecular Characterizations. J Chem Inf Model 2024; 64:6132-6146. [PMID: 39078379 PMCID: PMC11323011 DOI: 10.1021/acs.jcim.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Staphylococcus aureus (S. aureus) is a major global health concern, causing various infections and presenting challenges due to antibiotic resistance. In particular, methicillin-resistant S. aureus, vancomycin-intermediate S. aureus (VISA), and vancomycin-resistant S. aureus pose significant obstacles in treating S. aureus infections. Therefore, the critical need for novel drugs to counter these resistant forms is pressing. Two-component systems (TCSs), integral to bacterial regulation, offer promising targets for disruption. In this study, a comprehensive approach, involving pharmacophore-based inhibitor screening, along with biochemical and biophysical analyses were conducted to identify, characterize, and validate potential inhibitors targeting the response regulator VraRC of S. aureus. The constructed pharmacophore model, Phar-VRPR-N3, demonstrated effectiveness in identifying a potent inhibitor, TST1N-224 (IC50 = 60.2 ± 4.0 μM), against the formation of the VraRC-DNA complex. Notably, TST1N-224 exhibited strong binding to VraRC (KD = 23.4 ± 1.2 μM) using a fast-on-fast-off binding mechanism. Additionally, NMR-based molecular modeling revealed that TST1N-224 predominantly interacts with the α9- and α10-helixes of the DNA-binding domain of VraR, where the interactive and functionally essential residues (N165, K180, S184, and R195) act as hotspots for structure-based inhibitor optimization. Furthermore, TST1N-224 evidently enhanced the susceptibility of VISA to both vancomycin and methicillin. Importantly, TST1N-224 distinguished by 1,2,5,6-tetrathiocane with the 3 and 8 positions modified with ethanesulfonates holds significant potential as a lead compound for the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Ying-Chu Hsu
- Division
of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation ChiaYi Christian Hospital, Chiayi 600566, Taiwan
| | - Ching-Hui Liu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Yi-Chen Wu
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Shu-Jung Lai
- Graduate
Institute of Biomedical Sciences, China
Medical University, Taichung 404333, Taiwan
- Research
Center for Cancer Biology, China Medical
University, Taichung 404333, Taiwan
| | - Chi-Jan Lin
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| | - Tien-Sheng Tseng
- Institute
of Molecular Biology, National Chung Hsing University, Taichung 40202, Taiwan
| |
Collapse
|
6
|
Muraglia M, Schiavone BIP, Rosato A, Clodoveo ML, Corbo F. Antimicrobial Synergistic Effects of Linezolid and Vancomycin with a Small Synthesized 2-Mercaptobenzothiazole Derivative: A Challenge for MRSA Solving. Molecules 2023; 28:6348. [PMID: 37687173 PMCID: PMC10489997 DOI: 10.3390/molecules28176348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) emerged as one of the leading causes of persistent human infections and makes it difficult to treat bacteremia, especially with biofilm formation. In this work, we investigated the in vitro synergism between Linezolid (LNZ) and Vancomycin (VAN) with a 2-mercaptobenzothiazole derivative, resulting in a new small-molecule antibacterial compound that we named BTZ2e, on several clinical MRSA, MRSE (methicillin-resistant Staphylococcus epidermidis) and control (ATCC Collection) strains in their planktonic and biofilms cultures. The broth microdilution method evaluated the susceptibility of planktonic cells to each investigated antibiotic combined with BTZ2e. The biofilm's metabolic activity was studied with the XTT reduction assay. As a result, in this study, biofilm formation was significantly suppressed by the BTZ2e treatment. In terms of minimal biofilm inhibitory concentration (MBIC), BTZ2e revealed an MBIC50 value of 32 μg/mL against methicillin-susceptible S. aureus (MSSA) and 16 μg/mL against methicillin-resistant S. aureus ATCC 43300 biofilms. An inhibition range of 32 μg/mL and 256 μg/mL was registered for the clinical isolates. Interestingly, a synergistic effect (FICI ≤ 0.5) was encountered for the combination of BTZ2e with LNZ and VAN on several planktonic and sessile strains. In particular, the best result against planktonic cells emerged as a result of the synergistic association between LNZ and BTZ2e, while against sessile cells, the best synergistic association resulted from VAN and BTZ2e. The consistent results indicate BTZ2e as a promising adjuvant against multi-resistant strains such as MRSA and MRSE.
Collapse
Affiliation(s)
- Marilena Muraglia
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “A. Moro”, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy; (B.I.P.S.); (A.R.); (F.C.)
| | - Brigida Immacolata Pia Schiavone
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “A. Moro”, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy; (B.I.P.S.); (A.R.); (F.C.)
| | - Antonio Rosato
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “A. Moro”, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy; (B.I.P.S.); (A.R.); (F.C.)
| | - Maria Lisa Clodoveo
- Dipartimento Interdisciplinare di Medicina, Università degli Studi di Bari “A. Moro”, Piazza Giulio Cesare 11, 70124 Bari, Italy;
| | - Filomena Corbo
- Dipartimento di Farmacia-Scienze del Farmaco, Università Degli Studi di Bari “A. Moro”, Campus Universitario E. Quagliarello Via Orabona 4, 70125 Bari, Italy; (B.I.P.S.); (A.R.); (F.C.)
| |
Collapse
|
7
|
Giugliano R, Della Sala G, Buonocore C, Zannella C, Tedesco P, Palma Esposito F, Ragozzino C, Chianese A, Morone MV, Mazzella V, Núñez-Pons L, Folliero V, Franci G, De Filippis A, Galdiero M, de Pascale D. New Imidazolium Alkaloids with Broad Spectrum of Action from the Marine Bacterium Shewanella aquimarina. Pharmaceutics 2023; 15:2139. [PMID: 37631353 PMCID: PMC10458398 DOI: 10.3390/pharmaceutics15082139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The continuous outbreak of drug-resistant bacterial and viral infections imposes the need to search for new drug candidates. Natural products from marine bacteria still inspire the design of pharmaceuticals. Indeed, marine bacteria have unique metabolic flexibility to inhabit each ecological niche, thus expanding their biosynthetic ability to assemble unprecedented molecules. The One-Strain-Many-Compounds approach and tandem mass spectrometry allowed the discovery of a Shewanella aquimarina strain as a source of novel imidazolium alkaloids via molecular networking. The alkaloid mixture was shown to exert bioactivities such as: (a) antibacterial activity against antibiotic-resistant Staphylococcus aureus clinical isolates at 100 µg/mL, (b) synergistic effects with tigecycline and linezolid, (c) restoration of MRSA sensitivity to fosfomycin, and (d) interference with the biofilm formation of S. aureus 6538 and MRSA. Moreover, the mixture showed antiviral activity against viruses with and without envelopes. Indeed, it inhibited the entry of coronavirus HcoV-229E and herpes simplex viruses into human cells and inactivated poliovirus PV-1 in post-infection assay at 200 µg/mL. Finally, at the same concentration, the fraction showed anthelminthic activity against Caenorhabditis elegans, causing 99% mortality after 48 h. The broad-spectrum activities of these compounds are partially due to their biosurfactant behavior and make them promising candidates for breaking down drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Rosa Giugliano
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Gerardo Della Sala
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carmine Buonocore
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Pietro Tedesco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Fortunato Palma Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| | - Costanza Ragozzino
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Valerio Mazzella
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Ischia Marine Centre, Ischia, 80077 Naples, Italy;
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
| | - Laura Núñez-Pons
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy;
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Veronica Folliero
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (V.F.); (G.F.)
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (R.G.); (C.Z.); (A.C.); (M.V.M.); (A.D.F.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Acton, 55, 80133 Naples, Italy; (G.D.S.); (C.B.); (P.T.); (F.P.E.); (C.R.)
| |
Collapse
|
8
|
AbdAlhafiz AI, Elleboudy NS, Aboshanab KM, Aboulwafa MM, Hassouna NA. Phenotypic and genotypic characterization of linezolid resistance and the effect of antibiotic combinations on methicillin-resistant Staphylococcus aureus clinical isolates. Ann Clin Microbiol Antimicrob 2023; 22:23. [PMID: 37013561 PMCID: PMC10069030 DOI: 10.1186/s12941-023-00574-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 03/12/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Methicillin-Resistant Staphylococcus aureus (MRSA) causes life-threatening infections, with narrow therapeutic options including: vancomycin and linezolid. Accordingly, this study aimed to characterize phenotypically and genotypically, the most relevant means of linezolid resistance among some MRSA clinical isolates. METHODS A total of 159 methicillin-resistant clinical isolates were collected, of which 146 were indentified microscopically and biochemically as MRSA. Both biofilm formation and efflux pump activity were assessed for linezolid-resistant MRSA (LR-MRSA) using the microtiter plate and carbonyl cyanide 3-chlorophenylhydrazone (CCCP) methods, respectively. Linezolid resistance was further characterized by polymerase chain reaction (PCR) amplification and sequencing of domain V of 23 S rRNA; rplC; rplD;and rplV genes. Meanwhile, some resistance genes were investigated: cfr; cfr(B); optrA; msrA;mecA; and vanA genes. To combat LR-MRSA, the effect of combining linezolid with each of 6 different antimicrobials was investigated using the checkerboard assay. RESULTS Out of the collected MRSA isolates (n = 146), 5.48% (n = 8) were LR-MRSA and 18.49% (n = 27) were vancomycin-resistant (VRSA). It is worth noting that all LR-MRSA isolates were also vancomycin-resistant. All LR-MRSA isolates were biofilm producers (r = 0.915, p = 0.001), while efflux pumps upregulation showed no significant contribution to development of resistance (t = 1.374, p = 0.212). Both mecA and vanA genes were detected in 92.45% (n = 147) and 6.92% (n = 11) of methicillin-resistant isolates, respectively. In LR-MRSA isolates, some 23 S rRNA domain V mutations were observed: A2338T and C2610G (in 5 isolates); T2504C and G2528C (in 2 isolates); and G2576T (in 1 isolate). Amino acids substitutions were detected: in L3 protein (rplC gene) of (3 isolates) and in L4 protein (rplD gene) of (4 isolates). In addition, cfr(B) gene was detected (in 3 isolates). In 5 isolates, synergism was recorded when linezolid was combined with chloramphenicol, erythromycin, or ciprofloxacin. Reversal of linezolid resistance was observed in some LR-MRSA isolates when linezolid was combined with gentamicin or vancomycin. CONCLUSIONS LR-MRSA biofilm producers' phenotypes evolved in the clinical settings in Egypt. Various antibiotic combinations with linezolid were evaluated in vitro and showed synergistic effects.
Collapse
Affiliation(s)
- Asmaa I AbdAlhafiz
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Nooran S Elleboudy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohammad M Aboulwafa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
- Faculty of Pharmacy, King Salman International University, South Sinai, Ras-Sudr, Egypt.
| | - Nadia A Hassouna
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
García de la Mària C, Cañas MA, Fernández-Pittol M, Dahl A, García-González J, Hernández-Meneses M, Cuervo G, Moreno A, Miró JM, Marco F. Emerging issues on Staphylococcus aureus endocarditis and the role in therapy of daptomycin plus fosfomycin. Expert Rev Anti Infect Ther 2023; 21:281-293. [PMID: 36744387 DOI: 10.1080/14787210.2023.2174969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Methicillin-resistant and -susceptible Staphylococcus aureus (MRSA/MSSA) infections are a major global health-care problem. Bacteremia with S. aureus exhibits high rates of morbidity and mortality and can cause complicated infections such as infective endocarditis (IE). The emerging resistance profile of S. aureus is worrisome, and several international agencies have appealed for new treatment approaches to be developed. AREAS COVERED Daptomycin presents a rapid bactericidal effect against MRSA and has been considered at least as effective as vancomycin in treating MRSA bacteremia. However, therapy failure is often related to deep-seated infections, e.g. endocarditis, with high bacterial inocula and daptomycin regimens <10 mg/kg/day. Current antibiotic options for treating invasive S. aureus infections have limitations in monotherapy. Daptomycin in combination with other antibiotics, e.g. fosfomycin, may be effective in improving clinical outcomes in patients with MRSA IE. EXPERT OPINION Exploring therapeutic combinations has shown fosfomycin to have a unique mechanism of action and to be the most effective option in preventing the onset of resistance to and optimizing the efficacy of daptomycin, suggesting the synergistic combination of fosfomycin with daptomycin is a useful alternative treatment option for MSSA or MRSA IE.
Collapse
Affiliation(s)
- Cristina García de la Mària
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Maria-Alexandra Cañas
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | | | - Anders Dahl
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Javier García-González
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Marta Hernández-Meneses
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Guillermo Cuervo
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Asunción Moreno
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain
| | - Jose M Miró
- Infectious Diseases Service, Hospital Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS). University of Barcelona, Barcelona, Spain.,CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc Marco
- Microbiology Department, Centre Diagnòstic Biomèdic (CDB) Hospital Clínic, Barcelona, Spain.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Marino A, Stracquadanio S, Campanella E, Munafò A, Gussio M, Ceccarelli M, Bernardini R, Nunnari G, Cacopardo B. Intravenous Fosfomycin: A Potential Good Partner for Cefiderocol. Clinical Experience and Considerations. Antibiotics (Basel) 2022; 12:antibiotics12010049. [PMID: 36671250 PMCID: PMC9854867 DOI: 10.3390/antibiotics12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Multidrug resistant Gram-negative bacteremia represents a therapeutic challenge clinicians have to deal with. This concern becomes more difficult when causing germs are represented by carbapenem resistant Acinetobacter baumannii or difficult-to-treat Pseudomonas aeruginosa. Few antibiotics are available against these cumbersome bacteria, although literature data are not conclusive, especially for Acinetobacter. Cefiderocol could represent a valid antibiotic choice, being a molecule with an innovative mechanism of action capable of overcoming common resistance pathways, whereas intravenous fosfomycin may be an appropriate partner either enhancing cefiderocol activity or avoiding resistance development. Here we report two patients with MDR Gram negative bacteremia who were successfully treated with a cefiderocol/fosfomycin combination.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Correspondence:
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Antonio Munafò
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Maria Gussio
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| | - Renato Bernardini
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy
| | - Bruno Cacopardo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, ARNAS, Garibaldi Hospital, University of Catania, 95123 Catania, Italy
| |
Collapse
|
11
|
Saravolatz LD, Pawlak J. In vitro activity of fosfomycin alone and in combination against Staphylococcus aureus with reduced susceptibility or resistance to methicillin, vancomycin, daptomycin or linezolid. J Antimicrob Chemother 2022; 78:238-241. [PMID: 36374572 DOI: 10.1093/jac/dkac380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES To evaluate the activity of fosfomycin against a group of MRSA strains, including isolates with reduced susceptibility or resistance to vancomycin, daptomycin, linezolid and ceftaroline and to determine the effect of combining various combinations of antimicrobial agents used in the therapy of serious Gram-positive infections. METHODS Broth microdilution testing was used to determine the MICs of fosfomycin, vancomycin, daptomycin, linezolid, ceftaroline and cefazolin. Isolates were selected for further evaluations to determine in vitro synergy between fosfomycin and select antimicrobial agents using chequerboard broth microdilution testing. Fosfomycin was tested in combination with vancomycin, linezolid, daptomycin, ceftaroline and cefazolin. RESULTS Fosfomycin maintained activity against 100% of strains of vancomycin-resistant Staphylococcus aureus (VRSA) and linezolid-resistant S. aureus (LRSA), 86% of VISA and 95% of daptomycin-resistant S. aureus (DRSA) strains. The combination of fosfomycin with ceftaroline consistently demonstrated synergy among all 18 isolates against the strains tested. The next most potent combination regimen was linezolid with fosfomycin, which demonstrated synergy in 16 of the 18 strains. Daptomycin demonstrated synergy in only 7 of the 18 strains tested when combined with fosfomycin. Cefazolin demonstrated synergy in 6 of 6 strains and vancomycin demonstrated no interaction in 6 of 6 strains tested. CONCLUSIONS Fosfomycin demonstrated excellent activity against MRSA as well as isolates with resistance or reduced activity to other anti-MRSA drugs including vancomycin, daptomycin and linezolid. When combined with linezolid or daptomycin, fosfomycin demonstrated synergy for all or most strains tested. Thus, these combinations may have potential clinical utility when treating patients with serious infections caused by MRSA.
Collapse
Affiliation(s)
- Louis D Saravolatz
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Joan Pawlak
- Ascension St. John Hospital, Grosse Pointe Woods, MI, USA.,Thomas Mackey Center for Infectious Disease Research, Grosse Pointe Woods, MI, USA.,Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| |
Collapse
|
12
|
Antonello RM, Canetti D, Riccardi N. Daptomycin synergistic properties from in vitro and in vivo studies: a systematic review. J Antimicrob Chemother 2022; 78:52-77. [PMID: 36227704 DOI: 10.1093/jac/dkac346] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/21/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Daptomycin is a bactericidal lipopeptide antibiotic approved for the treatment of systemic infections (i.e. skin and soft tissue infections, bloodstream infections, infective endocarditis) caused by Gram-positive cocci. It is often prescribed in association with a partner drug to increase its bactericidal effect and to prevent the emergence of resistant strains during treatment; however, its synergistic properties are still under evaluation. METHODS We performed a systematic review to offer clinicians an updated overview of daptomycin synergistic properties from in vitro and in vivo studies. Moreover, we reported all in vitro and in vivo data evaluating daptomycin in combination with other antibiotic agents, subdivided by antibiotic classes, and a summary graph presenting the most favourable combinations at a glance. RESULTS A total of 92 studies and 1087 isolates (723 Staphylococcus aureus, 68 Staphylococcus epidermidis, 179 Enterococcus faecium, 105 Enterococcus faecalis, 12 Enterococcus durans) were included. Synergism accounted for 30.9% of total interactions, while indifferent effect was the most frequently observed interaction (41.9%). Antagonistic effect accounted for 0.7% of total interactions. The highest synergistic rates against S. aureus were observed with daptomycin in combination with fosfomycin (55.6%). For S. epidermidis and Enterococcus spp., the most effective combinations were daptomycin plus ceftobiprole (50%) and daptomycin plus fosfomycin (63.6%) or rifampicin (62.8%), respectively. FUTURE PERSPECTIVES We believe this systematic review could be useful for the future updates of guidelines on systemic infections where daptomycin plays a key role.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50121, Italy
| | - Diana Canetti
- Department of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Niccolò Riccardi
- Department of Clinical and Experimental Medicine, Infectious Diseases Unit, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Pisa 56124, Italy
| |
Collapse
|
13
|
Darwish R, Almaaytah A, Salama A. The design and evaluation of the antimicrobial activity of a novel conjugated penta-ultrashort antimicrobial peptide in combination with conventional antibiotics against sensitive and resistant strains of S. aureus and E. coli. Res Pharm Sci 2022; 17:612-620. [PMID: 36704429 PMCID: PMC9872186 DOI: 10.4103/1735-5362.359429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 01/28/2023] Open
Abstract
Background and purpose Antimicrobial resistance still constitutes a major health concern to the global human population. The development of new classes of antimicrobial agents is urgently needed to thwart the continuous emergence of highly resistant microbial pathogens. Experimental approach In this study, we have rationally designed a novel conjugated ultrashort antimicrobial peptide. The peptide named naprolyginine was challenged against representative strains of wild-type and multidrug-resistant bacteria individually or in combination with individual antibiotics by employing standard antimicrobial and checkerboard assays. Findings / Results Our results displayed that the peptide exhibits potent synergistic antimicrobial activity against resistant strains of gram-positive and gram-negative bacteria when combined with individual antibiotics. Additionally, the peptide was evaluated for its hemolytic activity against human red blood cells and displayed negligible toxicity. Conclusion and implications Naprolyginine could prove to be a promising candidate for antimicrobial drug development.
Collapse
Affiliation(s)
- Rula Darwish
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, 11942, Amman, Jordan,Corresponding authors: R. Darwish, Tel: +962-795558089, Fax: +962-65355000 A. Almaaytah, Tel: +962-777658820, Fax: +962-65355000
| | - Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan,Corresponding authors: R. Darwish, Tel: +962-795558089, Fax: +962-65355000 A. Almaaytah, Tel: +962-777658820, Fax: +962-65355000
| | - Ali Salama
- Faculty of Pharmacy, Middle East University, Amman, Jordan
| |
Collapse
|
14
|
Does a New Antibiotic Scheme Improve the Outcome of Staphylococcus aureus-Caused Acute Prosthetic Joint Infections (PJI) Treated with Debridement, Antibiotics and Implant Retention (DAIR)? Antibiotics (Basel) 2022; 11:antibiotics11070922. [PMID: 35884176 PMCID: PMC9312051 DOI: 10.3390/antibiotics11070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
One of the most commonly used treatments for acute prosthetic joint infection (PJI) is DAIR (debridement, antibiotics and implant retention), which comprises the debridement and the retention of the implant, followed by antibiotic treatment. The efficacy of DAIR remains unclear, as the literature has demonstrated variable success rates, ranging from 26% to 92%. The Staphylococcus aureus is one of the most closely related causative microorganisms, especially with acute and late-acute PJI; it has been identified as one of the most significant predictors of DAIR failure. The current guidelines consider the use of vancomycin as the therapy of choice, but it requires the close control of possible side effects. The aim of this study is to determine if a new combination of antibiotics (a highly bactericidal initial combination followed by an antibiofilm scheme) decreases the failure of DAIR-treated acute prosthetic joint infection (PJI) caused by Staphylococcus aureus. A retrospective analysis of cases of orthopedic infections during a nine-year period (2011–2019) was performed. A total of 45 acute PJI cases caused by S. aureus were diagnosed. The results of two antibiotic schemes were compared: a novel scheme comprising 5 days of daptomycin (10 mg/kg/24 h) + cloxacillin (2 g/6 h) followed by levofloxacin (500 mg/24 h) + rifampicin (600 mg/24 h), versus a traditional, less bactericidal scheme of vancomycin (1000 mg/12 h) plus rifampicin (600 mg/24 h) or levofloxacin (500 mg/24 h) plus rifampicin (600 mg/24 h). Twenty-two out of the twenty-four patients treated with the new scheme (91.6%) were free of infection after 24.8 months of mean follow-up, whereas fourteen out of twenty-one patients (66.6%) were free of infection after 46.6 months of follow-up. This difference was statistically significant (p = 0.036). Demographic comparisons demonstrated homogeneous features, except the Charlson score, which was higher in the novel scheme group (p = 0.047). The combination of high-dose daptomycin and cloxacillin, followed by levofloxacin plus rifampicin, together with surgical treatment, shows better results when compared with other antibiotic schemes for treating acute PJI caused by S. aureus in which DAIR was performed.
Collapse
|
15
|
Recent Developments in Methicillin-Resistant Staphylococcus aureus (MRSA) Treatment: A Review. Antibiotics (Basel) 2022; 11:antibiotics11050606. [PMID: 35625250 PMCID: PMC9137690 DOI: 10.3390/antibiotics11050606] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a Gram-positive bacterium that may cause life-threatening diseases and some minor infections in living organisms. However, it shows notorious effects when it becomes resistant to antibiotics. Strain variants of bacteria, viruses, fungi, and parasites that have become resistant to existing multiple antimicrobials are termed as superbugs. Methicillin is a semisynthetic antibiotic drug that was used to inhibit staphylococci pathogens. The S. aureus resistant to methicillin is known as methicillin-resistant Staphylococcus aureus (MRSA), which became a superbug due to its defiant activity against the antibiotics and medications most commonly used to treat major and minor infections. Successful MRSA infection management involves rapid identification of the infected site, culture and susceptibility tests, evidence-based treatment, and appropriate preventive protocols. This review describes the clinical management of MRSA pathogenesis, recent developments in rapid diagnosis, and antimicrobial treatment choices for MRSA.
Collapse
|
16
|
Hong XB, Yu ZL, Fu HB, Cai ZH, Chen J. Daptomycin and linezolid for severe methicillin-resistant Staphylococcus aureus psoas abscess and bacteremia: A case report and review of the literature. World J Clin Cases 2022; 10:2550-2558. [PMID: 35434080 PMCID: PMC8968589 DOI: 10.12998/wjcc.v10.i8.2550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Vancomycin remains a first-line treatment drug as per the treatment guidelines for methicillin-resistant Staphylococcus aureus (MRSA) bacteremia. However, a number of gram-positive cocci have developed resistance to several drugs, including glycopeptides. Therefore, there is an urgent need for effective and innovative antibacterial drugs to treat patients with infections caused by drug-resistant bacteria.
CASE SUMMARY A 24-year-old male was admitted to hospital owing to lumbago, fever, and hematuria. Computed tomography (CT) results showed an abscess in the psoas major muscle of the patient. Repeated abscess drainage and blood culture suggested MRSA, and vancomycin was initiated. However, after day 10, CT scans showed abscesses in the lungs and legs of the patient. Therefore, treatment was switched to daptomycin. Linezolid was also added considering inflammation in the lungs. After 10 d of the dual-drug anti-MRSA treatment, culture of the abscess drainage turned negative for MRSA. On day 28, the patient was discharged without any complications.
CONCLUSION This case indicates that daptomycin combined with linezolid is an effective remedy for bacteremia caused by MRSA with pulmonary complications.
Collapse
Affiliation(s)
- Xiao-Bing Hong
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Lin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Hong-Bo Fu
- Department of Pharmacy, The Second Affiliated Hospital of Shantou University of Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Hong Cai
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, Guangdong Province, China
| |
Collapse
|
17
|
Abstract
Many of the most common disinfectant and sanitizer products are formulations of multiple antimicrobial compounds. Products claiming to contain synergistic formulations are common, although there is often little supporting evidence. The antimicrobial interactions of all pairwise combinations of common disinfectants (benzalkonium chloride, didecyldimethylammonium chloride, polyhexamethylene biguanide, chlorocresol, and bronopol) were classified via checkerboard assay and validated by time-kill analyses. Combinations were tested against Acinetobacter baumannii NCTC 12156, Enterococcus faecalis NCTC 13379, Klebsiella pneumoniae NCTC 13443, and Staphylococcus aureus NCTC 13143. Synergistic interactions were identified only for the combinations of chlorocresol with benzalkonium chloride and chlorocresol with polyhexamethylene biguanide. Synergism was not ubiquitously demonstrated against all species tested and was on the borderline of the synergism threshold. These data demonstrate that synergism between disinfectants is uncommon and circumstantial. Most of the antimicrobial interactions tested were characterized as additive. We suggest that this is due to the broad, nonspecific mechanisms associated with disinfectants not providing an opportunity for the combined activities of these compounds to exceed the sum of their parts.
Collapse
|
18
|
Zinner SH, Alieva KN, Golikova MV, Strukova EN, Portnoy YA, Firsov AA. Anti-mutant efficacy of antibiotic combinations: in vitro model studies with linezolid and daptomycin. J Antimicrob Chemother 2021; 76:1832-1839. [PMID: 33907810 DOI: 10.1093/jac/dkab095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/02/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVES To explore whether linezolid/daptomycin combinations can restrict Staphylococcus aureus resistance and if this restriction is associated with changes in the mutant prevention concentrations (MPCs) of the antibiotics in combination, the enrichment of resistant mutants was studied in an in vitro dynamic model. METHODS Two MRSA strains, vancomycin-intermediate resistant ATCC 700699 and vancomycin-susceptible 2061 (both susceptible to linezolid and daptomycin), and their linezolid-resistant mutants selected by passaging on antibiotic-containing medium were used in the study. MPCs of antibiotics in combination were determined at a linezolid-to-daptomycin concentration ratio (1:2) that corresponds to the ratio of 24 h AUCs (AUC24s) actually used in the pharmacokinetic simulations. Each S. aureus strain was supplemented with respective linezolid-resistant mutants (mutation frequency 10-8) and treated with twice-daily linezolid and once-daily daptomycin, alone and in combination, simulated at therapeutic and sub-therapeutic AUC24s. RESULTS Numbers of linezolid-resistant mutants increased at therapeutic and sub-therapeutic AUC24s, whereas daptomycin-resistant mutants were enriched only at sub-therapeutic AUC24 in single drug treatments. Linezolid/daptomycin combinations prevented the enrichment of linezolid-resistant S. aureus and restricted the enrichment of daptomycin-resistant mutants. The pronounced anti-mutant effects of the combinations were attributed to lengthening the time above MPC of both linezolid and daptomycin as their MPCs were lowered. CONCLUSIONS The present study suggests that (i) the inhibition of S. aureus resistant mutants using linezolid/daptomycin combinations can be predicted by MPCs determined at pharmacokinetically derived antibiotic concentration ratios and (ii) T>MPC is a reliable predictor of the anti-mutant efficacy of antibiotic combinations as studied using in vitro dynamic models.
Collapse
Affiliation(s)
- Stephen H Zinner
- Harvard Medical School; Department of Medicine, Mount Auburn Hospital, 330 Mount Auburn Street, Cambridge, MA 02138, USA
| | - Kamilla N Alieva
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Maria V Golikova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Elena N Strukova
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Yury A Portnoy
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| | - Alexander A Firsov
- Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, 11 Bolshaya Pirogovskaya Street, Moscow 119021, Russia
| |
Collapse
|
19
|
Updates on Combination Therapy for Methicillin-Resistant Staphylococcus aureus Bacteremia. Curr Infect Dis Rep 2020. [DOI: 10.1007/s11908-020-00737-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Verification of a Novel Approach to Predicting Effects of Antibiotic Combinations: In Vitro Dynamic Model Study with Daptomycin and Gentamicin against Staphylococcus aureus. Antibiotics (Basel) 2020; 9:antibiotics9090538. [PMID: 32854240 PMCID: PMC7557373 DOI: 10.3390/antibiotics9090538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
To explore whether susceptibility testing with antibiotic combinations at pharmacokinetically derived concentration ratios is predictive of the antimicrobial effect, a Staphylococcus aureus strain was exposed to daptomycin and gentamicin alone or in combination in multiple dosing experiments. The susceptibility of the S. aureus strain to daptomycin and gentamicin in combination was tested at concentration ratios equal to the ratios of 24 h areas under the concentration–time curve (AUC24s) of antibiotics simulated in an in vitro dynamic model in five-day treatments. The MICs of daptomycin and gentamicin decreased in the presence of each other; this led to an increase in the antibiotic AUC24/MIC ratios and the antibacterial effects. Effects of single and combined treatments were plotted against the AUC24/MIC ratios of daptomycin or gentamicin, and a significant sigmoid relationship was obtained. Similarly, when the effects of single and combined treatments were related to the total exposure of both drugs (the sum of AUC24/MIC ratios (∑AUC24/MIC)), a significant sigmoid relationship was obtained. These findings suggest that (1) the effects of antibiotic combinations can be predicted by AUC24/MICs using MICs of each antibacterial determined at pharmacokinetically derived concentration ratios; (2) ∑AUC24/MIC is a reliable predictor of the antibacterial effects of antibiotic combinations.
Collapse
|
21
|
Lee YC, Chen PY, Wang JT, Chang SC. Prevalence of fosfomycin resistance and gene mutations in clinical isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Resist Infect Control 2020; 9:135. [PMID: 32807239 PMCID: PMC7430020 DOI: 10.1186/s13756-020-00790-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
Background Fosfomycin exhibits excellent in vitro activity against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Increasing fosfomycin resistance among clinical MRSA isolates was reported previously, but little is known about the relative abundance of Fosfomycin resistance genes in MRSA isolates circulating in Taiwan. Methods All MRSA isolates, collected in 2002 and 2012 by the Taiwan Surveillance of Antimicrobial Resistance (TSAR) program, were used in this study. Susceptibility to various antimicrobial agents, including fosfomycin, was determined by broth microdilution. Genetic determinants of fosfomycin resistance, including fosB carriage and murA, glpT and uhpT mutations, were investigated using PCR and sequencing of amplicons. Staphylococcal protein A (spa) typing was also performed to determine the genetic relatedness of MRSA isolates. Results A total of 969 MRSA strains, 495 in the year 2002 and 474 in the year 2012, were analyzed. The overall in vitro susceptibility was 8.2% to erythromycin, 18.0% to clindamycin, 29.0% to tetracycline, 44.6% to ciprofloxacin, 57.5% to trimethoprim/sulfamethoxazole, 86.9% to rifampicin, 92.9% to fosfomycin and 100% to linezolid and vancomycin. A significant increase in the fosfomycin resistance rate was observed from 3.4% in 2002 to 11.0% in 2012. Of 68 fosfomycin-resistant MRSA isolates, several genetic backgrounds probably contributing to fosfomycin resistance were identified. Twelve isolates harbored the fosB gene, and various mutations in murA, uhpT, and glpT genes were noted in 11, 59, and 66 isolates, respectively. The most prevalent gene mutations were found in the combination of uhpT and glpT genes (58 isolates). The vast majority of the fosfomycin-resistant MRSA isolates belonged to spa type t002. Conclusions An increased fosfomycin resistance rate of MRSA isolates was observed in our present study, mostly due to mutations in the glpT and uhpT genes. Clonal spread probably contributed to the increased fosfomycin resistance.
Collapse
Affiliation(s)
- Yi-Chien Lee
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Pao-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan.,Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tsu-Nan County, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei, Taiwan.
| |
Collapse
|
22
|
Antonello RM, Principe L, Maraolo AE, Viaggi V, Pol R, Fabbiani M, Montagnani F, Lovecchio A, Luzzati R, Di Bella S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics (Basel) 2020; 9:antibiotics9080500. [PMID: 32785114 PMCID: PMC7460049 DOI: 10.3390/antibiotics9080500] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/31/2022] Open
Abstract
Fosfomycin is being increasingly prescribed for multidrug-resistant bacterial infections. In patients with systemic involvement, intravenous fosfomycin is usually administered as a partner drug, as part of an antibiotic regimen. Hence, the knowledge of fosfomycin pharmacodynamic interactions (synergistic, additive, indifferent and antagonistic effect) is fundamental for a proper clinical management of severe bacterial infections. We performed a systematic review to point out fosfomycin’s synergistic properties, when administered with other antibiotics, in order to help clinicians to maximize drug efficacy optimizing its use in clinical practice. Interactions were more frequently additive or indifferent (65.4%). Synergism accounted for 33.7% of total interactions, while antagonism occurred sporadically (0.9%). Clinically significant synergistic interactions were mostly distributed in combination with penicillins (51%), carbapenems (43%), chloramphenicol (39%) and cephalosporins (33%) in Enterobactaerales; with linezolid (74%), tetracyclines (72%) and daptomycin (56%) in Staphylococcus aureus; with chloramphenicol (53%), aminoglycosides (43%) and cephalosporins (36%) against Pseudomonas aeruginosa; with daptomycin (97%) in Enterococcus spp. and with sulbactam (75%) and penicillins (60%) and in Acinetobacter spp. fosfomycin-based antibiotic associations benefit from increase in the bactericidal effect and prevention of antimicrobial resistances. Taken together, the presence of synergistic interactions and the nearly total absence of antagonisms, make fosfomycin a good partner drug in clinical practice.
Collapse
Affiliation(s)
- Roberta Maria Antonello
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | | | - Alberto Enrico Maraolo
- First Division of Infectious Diseases, Cotugno Hospital, AORN dei Colli, 80131 Naples, Italy;
| | | | - Riccardo Pol
- Department of Infectious Diseases, Udine University, 33100 Udine, Italy;
| | - Massimiliano Fabbiani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
| | - Francesca Montagnani
- Department of Medical Sciences, Tropical and Infectious Diseases Unit, University Hospital of Siena, 53100 Siena, Italy; (M.F.); (F.M.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Antonio Lovecchio
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Roberto Luzzati
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
| | - Stefano Di Bella
- Clinical Department of Medical, Surgical and Health Sciences, Trieste University, 34127 Trieste, Italy; (R.M.A.); (A.L.); (R.L.)
- Correspondence:
| |
Collapse
|
23
|
Valderrama MJ, Alfaro M, Rodríguez-Avial I, Baos E, Rodríguez-Avial C, Culebras E. Synergy of Linezolid with Several Antimicrobial Agents against Linezolid-Methicillin-Resistant Staphylococcal Strains. Antibiotics (Basel) 2020; 9:E496. [PMID: 32784878 PMCID: PMC7460281 DOI: 10.3390/antibiotics9080496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/22/2022] Open
Abstract
Linezolid is a synthetic oxazolydinone active against multi-resistant Gram-positive cocci that inhibits proteins synthesis by interacting with the 50S ribosomal subunit. Although linezolid-resistant strains are infrequent, several outbreaks have been recently described, associated with prolonged treatment with the antibiotic. As an alternative to monotherapy, the combination of different antibiotics is a commonly used option to prevent the selection of resistant strains. In this work, we evaluated combinations of linezolid with classic and new aminoglycosides (amikacin, gentamicin and plazomicin), carbapenems (doripenem, imipenem and meropenem) and fosfomycin on several linezolid- and methicillin-resistant strains of Staphylococcus aureus and S. epidermidis, isolated in a hospital intensive care unit in Madrid, Spain. Using checkerboard and time-kill assays, interesting synergistic effects were encountered for the combination of linezolid with imipenem in all the staphylococcal strains, and for linezolid-doripenem in S.epidermidis isolates. The combination of plazomicin seemed to also have a good synergistic or partially synergistic activity against most of the isolates. None of the combinations assayed showed an antagonistic effect.
Collapse
Affiliation(s)
- María-José Valderrama
- Departamento de Genética, Fisiología y Microbiología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María Alfaro
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
| | | | - Elvira Baos
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
| | | | - Esther Culebras
- Hospital Clínico San Carlos, 28040 Madrid, Spain; (M.A.); (I.R.-A.); (E.B.); (E.C.)
- Departamento de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| |
Collapse
|
24
|
Predicting the antistaphylococcal effects of daptomycin-rifampicin combinations in an in vitro dynamic model. J Antibiot (Tokyo) 2019; 73:101-107. [PMID: 31624338 DOI: 10.1038/s41429-019-0249-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 11/09/2022]
Abstract
To predict the effects of combined use of antibiotics on their pharmacodynamics, the susceptibility of Staphylococcus aureus to daptomycin-rifampicin combinations was tested at concentration ratios equal to the ratios of daptomycin and rifampicin 24-h areas under the concentration-time curve (AUC24s) simulated in an in vitro dynamic model. In combination with rifampicin, daptomycin MICs decreased 2- to 31-fold, whereas rifampicin MICs were similar with or without daptomycin. The enhanced susceptibility of S. aureus to daptomycin combined with rifampicin resulted in both an increase of the actual AUC24/MIC ratios and also more pronounced antibacterial effects compared with single treatments. The areas between the control growth and time-kill curves (ABBCs) determined in combined and single daptomycin treatments were plotted against AUC24/MIC on the same graph (r2 0.90). These findings suggest that the effects of daptomycin-rifampicin combinations can be predicted by AUC24/MICs of daptomycin using its MIC determined at pharmacokinetically derived daptomycin-to-rifampicin concentration ratios.
Collapse
|