1
|
Yildirim N, Lale A, Yazıcı GN, Sunar M, Aktas M, Ozcicek A, Suleyman B, Ozcicek F, Suleyman H. Ameliorative effects of Liv-52 on doxorubicin-induced oxidative damage in rat liver. Biotech Histochem 2022; 97:616-621. [PMID: 35527648 DOI: 10.1080/10520295.2022.2065533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Hepatotoxicity is a common side effect of doxorubicin (Dox) treatment of cancer. Liv-52 is an ayurvedic medicine that is reported to ameliorate liver injury due to oxidative stress. We investigated the effects of Liv-52 on Dox induced oxidative damage to liver tissues of rats using biochemical and histopathological techniques. Thirty male rats were assigned randomly into three equal groups: control (CG), Dox group (DG) Liv-52 + Dox group (LD). Rats in the LD group received 50 mg/kg Liv-52 in distilled water via gastric gavage. Distilled water was given via the same route to the rats in the DG and CG groups. Rats in the LD and DG groups were injected intraperitoneally with 5 mg/kg Dox 1 h after administration of Liv-52 or distilled water. The procedure was repeated daily for 7 days. On day 8, the animals were sacrificed, and serum and tissue biochemical and histopathological assays were performed. The malondialdehyde level was increased significantly in the DG group, while glutathione and superoxide dismutase levels were significantly lower in the DG group compared to the LD and CG groups. The highest levels of alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase were found in the DG group, while the lowest levels were found in the CG group, which exhibited levels similar to those of the LD group. Treatment with Liv-52 prior to Dox treatment reduced the histopathologic changes in the Dox group. Therefore, pre-treatment with Liv-52 protected against Dox induced oxidative stress and hepatotoxicity.
Collapse
Affiliation(s)
- Nilgun Yildirim
- Department of Medical Oncology, Firat University Faculty of Medicine, Elazıg, Turkey
| | - Azmi Lale
- Department of Surgical Oncology, Firat University Faculty of Medicine, Elazıg, Turkey
| | - Gulce Naz Yazıcı
- Department of Histology and Embryology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Mukadder Sunar
- Department of Anatomy, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Mehmet Aktas
- Department of Biochemistry, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Adelet Ozcicek
- Department of Internal Medicine, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Bahadır Suleyman
- Department of Pharmacology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Fatih Ozcicek
- Department of Internal Medicine, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Binali Yıldırım University Faculty of Medicine, Erzincan, Turkey
| |
Collapse
|
2
|
Bayburina GA, Nurgaleeva EA, Samigullina AF, Farshatova ER, Ganeev TI, Agletdinov EFA, Tarasova TV. Antioxidant Activity Of Rat Liver With A Low Resistance To Hypoxia After Systemic Ischemia Reperfusion. RUSSIAN OPEN MEDICAL JOURNAL 2021. [DOI: 10.15275/rusomj.2021.0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objective — To assess the antioxidant activity of rat liver after systemic ischemia reperfusion (IRP). Material and Methods — The study was conducted on 70 male rats. For all animals of the treatment group (n=35) under ether anesthesia, we were stopping stopping systemic circulation for five minutes. After that, the animals were given an external cardiac massage and artificial lung ventilation. We did not perform circulatory arrest after ether anesthesia in animals of the control group (n=35). In all animals, we were measuring the levels of serum hormones (corticosterone, aldosterone), the content of glucocorticoid and mineralocorticoid receptors in liver homogenates, and the activity of enzymes of the antioxidant system (superoxide dismutase and catalase). We were making control measurements on days 1, 3, 5, 7, 14, 21, and 35 after the simulated IRP. Results — On day 1 after simulation of IRP development, the levels of cortisol and aldosterone in the serum of treatment group rats were significantly higher, by 14.3% and 33.5%, respectively, compared with the control group. In response to stress (IRP), we observed the highest concentration of cortisol in the blood of treatment group rats on day 3 (p=0.0002), which decreased afterwards. On day 1 after IRP, there was a reduction in the activity of superoxide dismutase and catalase in treatment group rats, by 50.3% and by 29%, respectively (p<0.0001). The lowest antioxidant activity in the rat liver after IRP was observed on days 3-7. Conclusion — Systemic IRP is associated with pronounced changes in the dynamics of corticosteroid receptors in the liver, which leads to a reduction in the activity of key antioxidant enzymes.
Collapse
|
3
|
Krepkova LV, Babenko AN, Saybel' OL, Lupanova IA, Kuzina OS, Job KM, Sherwin CM, Enioutina EY. Valuable Hepatoprotective Plants - How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front Pharmacol 2021; 12:738504. [PMID: 34867345 PMCID: PMC8637540 DOI: 10.3389/fphar.2021.738504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Humans used plants for thousand of years as food, drugs, or fuel to keep homes warm. People commonly used fruits and roots, and other parts of the plant were often wasted. This review aims to discuss the potential of rational stem-to-stern use of three highly versatile and valuable plants with hepatoprotective properties. Milk thistle (Silybum marianum L. Gaertn.), artichoke (Cynara cardunculus), and chicory (Cichorium intybus L.) have well-characterized hepatoprotective properties. These plants have been chosen since liver diseases are significant diseases of concern worldwide, and all parts of plants can be potentially utilized. Artichoke and chicory are commonly used as food or dietary supplements and less often as phytodrugs. Various dietary supplements and phytodrugs prepared from milk thistle (MT) fruits/seeds are well-known to consumers as remedies supporting liver functions. However, using these plants as functional food, farm animal feed, is not well-described in the literature. We also discuss bioactive constituents present in various parts of these plants, their pharmacological properties. Distinct parts of MT, artichoke, and chicory can be used to prepare remedies and food for humans and animals. Unused plant parts are potentially wasted. To achieve waste-free use of these and many other plants, the scientific community needs to analyze the complex use of plants and propose strategies for waste-free technologies. The government must stimulate companies to utilize by-products. Another problem associated with plant use as a food or source of phytodrug is the overharvesting of wild plants. Consequently, there is a need to use more active cultivation techniques for plants.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga L Saybel'
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Irina A Lupanova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga S Kuzina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children's Hospital, Wright State University, Dayton, OH, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Bilici S, Yazici GN, Altuner D, Aggul AG, Suleyman H. Effect of Sunitinib on Liver Oxidative and Proinflammatory Damage Induced by Ischemia-Reperfusion in Rats. Transplant Proc 2021; 53:2140-2146. [PMID: 34417031 DOI: 10.1016/j.transproceed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury is defined as a complex pathologic process that begins with the oxygen deprivation of tissue, continues with the production of reactive oxygen radicals (ROS), and expands with an inflammatory response. This study investigates the protective effects of sunitinib, an anticancer drug with demonstrated antioxidant and anti-inflammatory activity, against liver IR damage. Our study aims to investigate the biochemical and histopathologic effects of sunitinib on IR-induced liver damage in rats. METHODS Albino Wistar male rats were divided into 3 groups: liver IR control (IR), 25 mg/kg sunitinib + liver IR (S+IR), and sham operation (SHAM). RESULTS In the liver tissue of the IR group, oxidant and proinflammatory cytokine levels such as malondialdehyde, nuclear factor κ B, tumor necrosis factor-α, and interleukin-1β increased compared with the SHAM and S+IR groups. In addition, antioxidant levels such as total glutathione, glutathione reductase, and glutathione peroxidase were found to be significantly lower in the IR group than in the SHAM and S+IR groups. Although severe histopathologic damage was observed in the IR group, it was evaluated as mild in the S+IR group. The results obtained suggest that sunitinib may be helpful in the treatment of liver IR injury.
Collapse
Affiliation(s)
- Sami Bilici
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Gokhan Aggul
- Department of Biochemistry, Faculty of Pharmacy, Ibrahim Cecen University, Agri, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
5
|
Sherif IO, Al-Shaalan NH. Alleviation of remote lung injury following liver ischemia/reperfusion: Possible protective role of vildagliptin. Int Immunopharmacol 2021; 91:107305. [PMID: 33388732 DOI: 10.1016/j.intimp.2020.107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Lung injury is a serious condition encountered following hepatic ischemia/reperfusion (IR). This study aimed to explore whether a dipeptidyl peptidase-4 inhibitor agent vildagliptin (V) could alleviate the lung injury caused by hepatic IR in a rat model and if so elucidate its molecular protective mechanism. Three groups of rats were used. Sham group: received normal saline and exposed to a sham operation, IR group: received normal saline and subjected to the operation of hepatic I (45 min)/ R (180 min), V+IR group: received for 10 days intraperitoneal injection of V (10 mg/kg/day). After reperfusion, liver and lung were collected for biochemical and histological evaluation. Hepatic IR exhibited significant elevation in serum alanine aminotransferase (ALT), alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) enzyme levels, serum and lung malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) in addition to lung nitric oxide (NO) levels, hypoxia-inducible factor 1-alpha (HIF-1α) mRNA and protein levels, hepatocyte growth factor (HGF) mRNA expression, and inducible nitric oxide synthase (iNOS) mRNA and protein expressions in lung tissue along with a marked reduction in the serum and lung content of catalase in comparison to the sham group. Moreover, liver and lung injury in the IR group was detected by histopathological examination. Vildagliptin ameliorated markedly the biochemical changes as well as liver and lung architecture in comparison to the IR group. Vildagliptin mitigated the induced lung injury by hepatic IR via suppression of oxidative stress markers, pro-inflammatory cytokine TNF-α as well as the HIF1-α/iNOS/HGF expressions in lung tissue.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|