1
|
Kim SY, Yoon JH, Jung DH, Kim GH, Kim CH, Lee SK. Fexuprazan safeguards the esophagus from hydrochloric acid-induced damage by suppressing NLRP1/Caspase-1/GSDMD pyroptotic pathway. Front Immunol 2024; 15:1410904. [PMID: 39737189 PMCID: PMC11682960 DOI: 10.3389/fimmu.2024.1410904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/22/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Proton pump inhibitors (PPIs) and potassium-competitive acid blockers (P-CABs) are widely used to manage gastric acid-related disorders by inhibiting hydrochloric acid (HCl) secretion from parietal cells in the stomach. Although PPIs are known to have anti-inflammatory properties beyond their role in inhibiting gastric acid secretion, research on P-CABs is lacking. In this study, we aimed to investigate whether all available P-CABs exhibit anti-inflammatory effects in gastroesophageal reflux-induced esophagitis and to elucidate the underlying mechanisms. Methods Het-1A cells, normal esophageal epithelial cells, were treated with HCl (pH 4) for 30 min. Esomeprazole, a representative PPI, and three currently marketed P-CABs (vonoprazan, tegoprazan, and fexuprazan) were used for pretreatment. Total RNA sequencing was performed using Het-1A cells pretreated with 1% DMSO or fexuprazan, followed by exposure to HCl. Pyroptosis was measured using lactate dehydrogenase (LDH) release and Annexin V-FITC/PI staining. Western blotting, qRT-PCR, and ELISA were used to determine the expression of the related genes. Results Pretreatment with esomeprazole, vonoprazan, tegoprazan, and fexuprazan significantly inhibited the HCl-induced pro-inflammatory cytokines, including IL-6, IL-8, IL-1β, and TNF-α. Fexuprazan and vonoprazan significantly attenuated the HCl-induced pyroptosis rate, as assessed by elevated LDH release and Annexin V-FITC/PI staining, whereas esomeprazole and tegoprazan did not. RNA sequencing revealed that NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) was significantly reduced in Het-1A cells pretreated with fexuprazan compared to those treated with DMSO. Fexuprazan and vonoprazan markedly reduced the HCl-induced transcriptional and translational expression of genes involved in the pyroptosis pathway, including NLRP1, Caspase-1, gasdermin D, and IL-1β. Notably, fexuprazan reduced the HCl-induced increase in pyroptosis and IL-1β using siRNA, even in the presence of NLRP1 knockdown. Fexuprazan, tested on inflammatory THP-1 macrophage cells, significantly reduced NLRP1 expression and inhibited lipopolysaccharide-induced pyroptosis. Conclusion Our findings reveal that all p-CABs exhibit anti-inflammatory properties, while fexuprazan inhibits inflammation and pyroptosis of esophageal cells caused by the gastric acid. Therefore, it is presumed to have additional benefits in gastroesophageal reflux disease in addition to suppressing gastric acid secretion.
Collapse
Affiliation(s)
- Seo Yeon Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-Ho Yoon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Da Hyun Jung
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ga Hee Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Pharmacology, BK21 PLUS Project for Medical Science, Brain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Kil Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Xie J, Liang X, Xie F, Huang C, Lin Z, Xie S, Yang F, Zheng F, Geng L, Xu W, Gong S, Xiang L. Rabeprazole suppressed gastric intestinal metaplasia through activation of GPX4-mediated ferroptosis. Front Pharmacol 2024; 15:1409001. [PMID: 39575386 PMCID: PMC11578692 DOI: 10.3389/fphar.2024.1409001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/20/2024] [Indexed: 11/24/2024] Open
Abstract
Background Gastric intestinal metaplasia is a common pathological feature in patients with Helicobacter pylori (H. pylori) infection. Rabeprazole was widely used as the first-line regimen for H. pylori infectious treatment. The objective of this study is to explore the mechanism of rabeprazole in gastric intestinal metaplasia treatment. Methods Real-time PCR, Western blotting (WB) and ROS analysis were conducted to confirm that rabeprazole could induce ferroptosis to suppress gastric intestinal metaplasia. Cellular fraction, luciferase and chromatin immunoprecipitation (ChIP) were used to identify the mechanism underlying rabeprazole modulated ferroptosis. Results Herein, we found rabeprazole treatment led to inhibit CDX2 and MUC2 expression, alleviating gastric intestinal metaplasia, which was attributed to enhanced ferroptosis characterized by decreased GPX4 expression. Inhibition of ferroptosis by ferrostatin-1 (Fer-1) could reverse decreased CDX2 and MUC2 expression caused by rabeprazole. Mechanically, Rabeprazole could inhibit CREB phosphorylation and nuclear translocation, which further decreased the binding of CREB to GPX4 promoter, reducing GPX4 transactivity. Moreover, endogenous PKA interacted with CREB, and this interaction was drastically destroyed in response to rabeprazole treatment. Most importantly, enhanced ferroptosis was observed in H. pylori-infected gastric intestinal metaplasia in comparison to HC control. Conclusion These findings suggested that rabeprazole induced ferroptosis to reduce CDX2 expression in gastric epithelial cells through PKA/CREB cascade signaling, implying that targeting ferroptosis could be a promising strategy in improving gastric intestinal metaplasia during H. pylori-infected patients.
Collapse
Affiliation(s)
- Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xinhua Liang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangfang Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Canxin Huang
- School of Second Clinical Medicine, Guangzhou Medical University, Guangzhou, China
| | - Zijun Lin
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Shuping Xie
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fangying Yang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fengfeng Zheng
- Department of Infectious Diseases, The Affiliate Hospital of Putian University, Putian, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wanfu Xu
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Xiang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
4
|
Lin Y, Liu K, Lu F, Zhai C, Cheng F. Programmed cell death in Helicobacter pylori infection and related gastric cancer. Front Cell Infect Microbiol 2024; 14:1416819. [PMID: 39145306 PMCID: PMC11322058 DOI: 10.3389/fcimb.2024.1416819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Programmed cell death (PCD) plays a crucial role in maintaining the normal structure and function of the digestive tract in the body. Infection with Helicobacter pylori (H. pylori) is an important factor leading to gastric damage, promoting the Correa cascade and accelerating the transition from gastritis to gastric cancer. Recent research has shown that several PCD signaling pathways are abnormally activated during H. pylori infection, and the dysfunction of PCD is thought to contribute to the development of gastric cancer and interfere with treatment. With the deepening of studies on H. pylori infection in terms of PCD, exploring the interaction mechanisms between H. pylori and the body in different PCD pathways may become an important research direction for the future treatment of H. pylori infection and H. pylori-related gastric cancer. In addition, biologically active compounds that can inhibit or induce PCD may serve as key elements for the treatment of this disease. In this review, we briefly describe the process of PCD, discuss the interaction between different PCD signaling pathways and the mechanisms of H. pylori infection or H. pylori-related gastric cancer, and summarize the active molecules that may play a therapeutic role in each PCD pathway during this process, with the expectation of providing a more comprehensive understanding of the role of PCD in H. pylori infection.
Collapse
Affiliation(s)
- Yukun Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kunjing Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Changming Zhai
- Department of Rheumatism, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Fafeng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Mohamed AO, Abd-Elghaffar SK, Mousa RA, Kamel AA. Aloe vera gel confers therapeutic effect by reducing pyroptosis in ethanol-induced gastric ulcer rat model: Role of NLRP3/GSDMD signaling pathway. Mol Biol Rep 2024; 51:401. [PMID: 38457071 PMCID: PMC10923956 DOI: 10.1007/s11033-024-09329-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Gastric ulcer (GU) is a common gastrointestinal tract illness. Aloe vera has anti-inflammatory, antioxidant, and healing characteristics. This research sought to explore the therapeutic impact of Aloe vera gel on ethanol-provoked GU in rats and to elucidate the underlying mechanisms involved. METHODS An ethanol-induced GU rat model was constructed using forty male Wistar rats distributed at random into four groups: control, ulcer, pantoprazole, and Aloe vera. Gross evaluation of the stomach, ulcer index (UI), inhibition index, and gastric pH estimation were analyzed. Gastric malondialdehyde (MDA) and reduced glutathione (GSH) were determined using the spectrophotometric method, and serum gastrin level was measured by an enzyme-linked immunosorbent assay. Gastric nucleotide-binding domain, leucine-rich repeat, and pyrin domain PYD containing protein 3 (NLRP3) and gasdermin D (GSDMD) mRNA expression levels were estimated by quantitative real-time PCR. Finally, the histopathological examination of the glandular part of stomach tissue was done. RESULTS The ulcer group revealed a significant increase in MDA, gastrin, NLRP3, and GSDMD and a decrease in gastric pH and GSH compared to the control group. Gross investigations of the ulcer group revealed a hemorrhagic lesion in the stomach and an increase in UI. Also, histopathological results for this group showed severe epithelial loss, haemorrhage, inflammatory cell infiltration, and blood vessel congestion. However, Aloe vera treatment improved the gross, biochemical, molecular, and histopathological alterations induced by ethanol when compared to the ulcer group. CONCLUSIONS Aloe vera exerted antiulcer activities through modulation of oxidant/antioxidant status, anti-secretory properties, and mitigation of pyroptosis.
Collapse
Affiliation(s)
- Amany O Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- School of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Rehab A Mousa
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Amira A Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| |
Collapse
|
6
|
Li L, Liao A. Application of pyroptosis score in the treatment and prognosis evaluation of gastric cancer. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1882-1889. [PMID: 38448382 PMCID: PMC10930744 DOI: 10.11817/j.issn.1672-7347.2023.230258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 03/08/2024]
Abstract
Pyroptosis is a kind of proinflammatory programmed cell death mediated by inflammasome. It affects the occurrence and development of gastric cancer through different ways, showing dual effects. On the one hand, inflammasome-mediated inflammatory response is highly likely to participate in the formation and development of early tumors; on the other hand, drugs can inhibit the deterioration process of tumor proliferation, invasion and metastasis through activating the pathways of inflammasome and pyroptosis. Recently, many agents based on pyroptosis have been found to inhibit gastric cancer by promoting the secondary pyroptosis pathway, regulating NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and inhibiting caspase-1. The establishment of cell pyrodeath models can predict the prognosis of gastric cancer patients. Most of the models show that gastric cancer patients with high pyroptosis level have better prognosis and longer overall survival. Pyroptosis scores can also be used to predict the response of gastric cancer patients to immunotherapy and to screen potential anti-gastric cancer drugs. Therefore, in-depth understanding of the potential mechanism of pyroptosis affecting the progression of gastric cancer and the role of pyroptosis score in the treatment and prognosis assessment of gastric cancer will be helpful to find a new and effective method for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Luyun Li
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| | - Aijun Liao
- Department of Gastroenterology, First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang Hunan 421001, China.
| |
Collapse
|
7
|
Sharaf G, El Morsy EM, El-Sayed EK. Augmented nephroprotective effect of liraglutide and rabeprazole via inhibition of OCT2 transporter in cisplatin-induced nephrotoxicity in rats. Life Sci 2023; 321:121609. [PMID: 36958435 DOI: 10.1016/j.lfs.2023.121609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
AIMS Cisplatin, a widely used anticancer treatment, has a marked nephrotoxic effect. This nephrotoxic effect is linked to the triggering of oxidative stress, inflammation, activation of mitogen-activated protein kinase (MAPK) pathway as well as apoptosis. The purpose of the present research was to examine the possible ameliorative effect of liraglutide and/or rabeprazole on cisplatin-induced nephrotoxicity in rats and to underline the potential molecular pathways involved. MAIN METHODS Rats were divided into five groups: Control, cisplatin, liraglutide (200 μg/kg/day, i.p), rabeprazole (10 mg/kg/day, orally) and liraglutide + rabeprazole combination groups. All treatments were given for 7 days. Cisplatin was given as a single dose (7 mg/kg, i.p) at day 4 to induce nephrotoxicity in all groups except the control group. KEY FINDINGS Treatment with liraglutide and/or rabeprazole prior to cisplatin maintained the function and morphology of kidney via decreasing cisplatin renal uptake by significant inhibition of OCT2. Besides, they showed a significant increase in GLP-1 receptor expression. Liraglutide and/or rabeprazole significantly attenuated the levels of TNF-α. ICAM, NF-κB, and downregulated MAPK pathway proteins such as JNK, and ERK1/2. Moreover, they maintained oxidant antioxidant balance by decreasing MDA level and increasing GSH level and CAT activity. Additionally, liraglutide and/or rabeprazole exhibited antiapoptotic effect evidenced by the decreased caspase-3 level and Bax expression and the increased Bcl-2 expression. SIGNIFICANCE The current study showed that both liraglutide and rabeprazole exerted a nephroprotective effect against cisplatin-induced renal toxicity in rats. Interestingly, co-treatment with both drugs showed an augmented effect.
Collapse
Affiliation(s)
- Gehad Sharaf
- Nasr Hospital Health Insurance, Helwan, Cairo, Egypt.
| | - E M El Morsy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| | - Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
| |
Collapse
|
8
|
Qiang R, Li Y, Dai X, Lv W. NLRP3 inflammasome in digestive diseases: From mechanism to therapy. Front Immunol 2022; 13:978190. [PMID: 36389791 PMCID: PMC9644028 DOI: 10.3389/fimmu.2022.978190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 09/05/2023] Open
Abstract
Digestive system diseases remain a formidable challenge to human health. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most characteristic multimeric protein complex and is involved in a wide range of digestive diseases as intracellular innate immune sensors. It has emerged as a research hotspot in recent years. In this context, we provide a comprehensive review of NLRP3 inflammasome priming and activation in the pathogenesis of digestive diseases, including clinical and preclinical studies. Moreover, the scientific evidence of small-molecule chemical drugs, biologics, and phytochemicals, which acts on different steps of the NLRP3 inflammasome, is reviewed. Above all, deep interrogation of the NLRP3 inflammasome is a better insight of the pathomechanism of digestive diseases. We believe that the NLRP3 inflammasome will hold promise as a novel valuable target and research direction for treating digestive disorders.
Collapse
Affiliation(s)
- Rui Qiang
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | - Yanbo Li
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| | | | - Wenliang Lv
- *Correspondence: Rui Qiang, ; Yanbo Li, ; Wenliang Lv,
| |
Collapse
|
9
|
Xia Q, Lyu C, Li F, Pang B, Guo X, Ren H, Xing Y, Chen Z. Candidate Drugs Screening for Behcet’s Disease Based on Bioinformatics Analysis and Mouse Experiments. Front Immunol 2022; 13:895869. [PMID: 35799784 PMCID: PMC9253297 DOI: 10.3389/fimmu.2022.895869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBehcet’s disease (BD) is a chronic immune disease that involves multiple systems. As the pathogenesis of BD is not clear, and new treatments are needed, we used bioinformatics to identify potential drugs and validated them in mouse models.MethodsBehcet’s disease-related target genes and proteins were screened in the PubMed and UVEOGENE databases. The biological functions and pathways of the target genes were analyzed in detail by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was constructed by the STRING database, and hub genes were identified by the Cytoscape plug-in CytoHubba. Gene-drug interactions were identified from the DGIdb database. Experimental autoimmune uveitis (EAU) mice were used as an animal model for drug validation.ResultsA total of 249 target genes and proteins with significant differences in BD were screened, and the results of functional enrichment analysis suggested that these genes and proteins were more located on the cell membrane, involved in regulating the production of cytokines and affecting the activity of cytokines. They mainly regulated “Cytokine- Cytokine receptor interaction”, “Inflammatory bowel disease (IBD)” and “IL-17 signaling Pathway”. In addition, 10 hub genes were obtained through PPI network construction and CytoHubba analysis, among which the top 3 hub genes were closely related to BD. The DGIdb analysis enriched seven drugs acting together on the top 3 hub genes, four of which were confirmed for the treatment of BD or its complications. There is no evidence in the research to support the results in omeprazole, rabeprazole, and celastrol. However, animal experiments showed that rabeprazole and celastrol reduced anterior chamber inflammation and retinal inflammation in EAU mice.ConclusionsThe functional analysis of genes and proteins related to BD, identification of hub genes, and validation of potential drugs provide new insights into the disease mechanism and potential for the treatment of BD.
Collapse
Affiliation(s)
- Qinyun Xia
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chujun Lyu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Li
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Binbin Pang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Guo
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - He Ren
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yiqiao Xing, ; Zhen Chen,
| | - Zhen Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yiqiao Xing, ; Zhen Chen,
| |
Collapse
|
10
|
Vitronectin, a Novel Urinary Proteomic Biomarker, Promotes Cell Pyroptosis in Juvenile Systemic Lupus Erythematosus. Mediators Inflamm 2022; 2022:8447675. [PMID: 35462789 PMCID: PMC9020974 DOI: 10.1155/2022/8447675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 02/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Identifying new markers of juvenile systemic lupus erythematosus (JSLE) is critical event to predict patient stratification and prognosis. The aim of the present study is to analyze alteration of urinary protein expression and screen potential valuable biomarkers in juvenile systemic lupus erythematosus (JSLE). Methods The urine was collected from the patients with or without JSLE and detected by mass spectrometry to analyze proteomic changes. ELISA was used to verify the Vitronectin (VTN) changes in a new set of patients. The clinical correlation was performed to analyze between VTN and clinical pathological parameters. WB and ELISA were used to analyze VTN-mediated cell pyroptosis. Results Herein, we have identified a group of 105 differentially expressed proteins with ≥1.3-fold upregulation or ≤0.77-fold downregulation in JSLE patients. These proteins were involved in several important biological processes, including acute phase inflammatory responses, complement activation, hemostasis, and immune system regulation through Gene Ontology and functional enrichment analysis. Interestingly, urinary ephrin type-A receptor 4 (EPHA4) and VTN were significantly reduced in both inactive and active JSLE patients, and VTN treatment in THP-1 derived macrophages led to a significant increased cell pyroptosis by activation of Nod-like receptor family protein 3 (NLRP3) inflammasomes, resulting in caspase-1 activation, cleaved gasdermin D (GSDMD), and IL-18 secretion. Most importantly, the urinary VTN was also linearly correlated with clinical characteristics of JSLE, implying that VTN could be a specific diagnostic biomarker to distinguish inactive and active JSLE. Conclusion This study provided a novel role of VTN in pyroptosis in JSLE through the urinary proteomic profile for JSLE, which could be a nonintrusive monitoring strategy in clinical diagnosis.
Collapse
|