1
|
Choi SH, Kim DY. Regulation of Tumor Microenvironment through YAP/TAZ under Tumor Hypoxia. Cancers (Basel) 2024; 16:3030. [PMID: 39272887 PMCID: PMC11394240 DOI: 10.3390/cancers16173030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In solid tumors such as hepatocellular carcinoma (HCC), hypoxia is one of the important mechanisms of cancer development that closely influences cancer development, survival, and metastasis. The development of treatments for cancer was temporarily revolutionized by immunotherapy but continues to be constrained by limited response rates and the resistance and high costs required for the development of new and innovative strategies. In particular, solid tumors, including HCC, a multi-vascular tumor type, are sensitive to hypoxia and generate many blood vessels for metastasis and development, making it difficult to treat HCC, not only with immunotherapy but also with drugs targeting blood vessels. Therefore, in order to develop a treatment strategy for hypoxic tumors, various mechanisms must be explored and analyzed to treat these impregnable solid tumors. To date, tumor growth mechanisms linked to hypoxia are known to be complex and coexist with various signal pathways, but recently, mechanisms related to the Hippo signal pathway are emerging. Interestingly, Hippo YAP/TAZ, which appear during early tumor and normal tumor growth, and YAP/TAZ, which appear during hypoxia, help tumor growth and proliferation in different directions. Peculiarly, YAP/TAZ, which have different phosphorylation directions in the hypoxic environment of tumors, are involved in cancer proliferation and metastasis in various carcinomas, including HCC. Analyzing the mechanisms that regulate the function and expression of YAP in addition to HIF in the complex hypoxic environment of tumors may lead to a variety of anti-cancer strategies and combining HIF and YAP/TAZ may develop the potential to change the landscape of cancer treatment.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Institute of Health & Environment, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs Inc., Seoul 08826, Republic of Korea
| | - Do Young Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Yonsei Liver Cancer Center, Yonsei Cancer Hospital, Seoul 03722, Republic of Korea
| |
Collapse
|
2
|
Kim CL, Lim SB, Kim DH, Sim YE, Kang LJ, Park SJ, Kim H, Roh TH, Mo JS, Jeong HS. Regulation of Hippo-YAP signaling axis by Isoalantolactone suppresses tumor progression in cholangiocarcinoma. Transl Oncol 2024; 46:101971. [PMID: 38797019 PMCID: PMC11152753 DOI: 10.1016/j.tranon.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating malignancy characterized by aggressive tumor growth and limited treatment options. Dysregulation of the Hippo signaling pathway and its downstream effector, Yes-associated protein (YAP), has been implicated in CCA development and progression. In this study, we investigated the effects of Isoalantolactone (IALT) on CCA cells to elucidate its effect on YAP activity and its potential clinical significance. Our findings demonstrate that IALT exerts cytotoxic effects, induces apoptosis, and modulates YAP signaling in SNU478 cells. We further confirmed the involvement of the canonical Hippo pathway by generating LATS1/LATS2 knockout cells, highlighting the dependence of IALT-mediated apoptosis and YAP phosphorylation on the Hippo-LATS signaling axis. In addition, IALT suppressed cell growth and migration, partially dependent on YAP-TEAD activity. These results provide insights into the therapeutic potential of targeting YAP in CCA and provide a rationale for developing of YAP-targeted therapies for this challenging malignancy.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, South Korea
| | - Su Jung Park
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea
| | - Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea.
| |
Collapse
|
3
|
Gao Y, Gong Y, Lu J, Hao H, Shi X. Targeting YAP1 to improve the efficacy of immune checkpoint inhibitors in liver cancer: mechanism and strategy. Front Immunol 2024; 15:1377722. [PMID: 38550587 PMCID: PMC10972981 DOI: 10.3389/fimmu.2024.1377722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
Liver cancer is the third leading of tumor death, including hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Immune checkpoint inhibitors (ICIs) are yielding much for sufferers to hope for patients, but only some patients with advanced liver tumor respond. Recent research showed that tumor microenvironment (TME) is critical for the effectiveness of ICIs in advanced liver tumor. Meanwhile, metabolic reprogramming of liver tumor leads to immunosuppression in TME. These suggest that regulating the abnormal metabolism of liver tumor cells and firing up TME to turn "cold tumor" into "hot tumor" are potential strategies to improve the therapeutic effect of ICIs in liver tumor. Previous studies have found that YAP1 is a potential target to improve the efficacy of anti-PD-1 in HCC. Here, we review that YAP1 promotes immunosuppression of TME, mainly due to the overstimulation of cytokines in TME by YAP1. Subsequently, we studied the effects of YAP1 on metabolic reprogramming in liver tumor cells, including glycolysis, gluconeogenesis, lipid metabolism, arachidonic acid metabolism, and amino acid metabolism. Lastly, we summarized the existing drugs targeting YAP1 in the treatment of liver tumor, including some medicines from natural sources, which have the potential to improve the efficacy of ICIs in the treatment of liver tumor. This review contributed to the application of targeted YAP1 for combined therapy with ICIs in liver tumor patients.
Collapse
Affiliation(s)
- Yuting Gao
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Yi Gong
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Junlan Lu
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Huiqin Hao
- Chinese Medicine Gene Expression Regulation Laboratory, State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Taiyuan, China
- Basic Laboratory of Integrated Traditional Chinese and Western, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Xinli Shi
- Laboratory of Integrated Medicine Tumor Immunology, Shanxi University of Chinese Medicine, Taiyuan, China
| |
Collapse
|
4
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
5
|
Qu N, Luan T, Liu N, Kong C, Xu L, Yu H, Kang Y, Han Y. Hepatocyte nuclear factor 4 a (HNF4α): A perspective in cancer. Biomed Pharmacother 2023; 169:115923. [PMID: 38000355 DOI: 10.1016/j.biopha.2023.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
HNF4α, a transcription factor, plays a vital role in regulating functional genes and biological processes. Its alternative splicing leads to various transcript variants encoding different isoforms. The spotlight has shifted towards the extensive discussion on tumors interplayed withHNF4α abnormalities. Aberrant HNF4α expression has emerged as sentinel markers of epigenetic shifts, casting reverberations upon downstream target genes and intricate signaling pathways, most notably with cancer. This review provides a comprehensive overview of HNF4α's involvement in tumor progression and metastasis, elucidating its role and underlying mechanisms.
Collapse
Affiliation(s)
- Ningxin Qu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ting Luan
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Naiquan Liu
- The Nephrological Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Chenhui Kong
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Le Xu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Yu
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Kang
- The Pathology Dept, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Han
- The Breast Oncology Dept., Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
6
|
Nutsch K, Song L, Chen E, Hull M, Chatterjee AK, Chen JJ, Bollong MJ. A covalent inhibitor of the YAP-TEAD transcriptional complex identified by high-throughput screening. RSC Chem Biol 2023; 4:894-905. [PMID: 37920398 PMCID: PMC10619132 DOI: 10.1039/d3cb00044c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/19/2023] [Indexed: 11/04/2023] Open
Abstract
Yes-associated protein (YAP), the master transcriptional effector downstream of the Hippo pathway, regulates essential cell growth and regenerative processes in animals. However, the activation of YAP observed in cancers drives cellular proliferation, metastasis, chemoresistance, and immune suppression, making it of key interest in developing precision therapeutics for oncology. As such, pharmacological inhibition of YAP by targeting its essential co-regulators, TEA domain transcription factors (TEADs) would likely promote tumor clearance in sensitive tumor types. From a fluorescence polarization-based high throughput screen of over 800 000 diverse small molecules, here we report the identification of a pyrazolopyrimidine-based scaffold that inhibits association of YAP and TEADs. Medicinal chemistry-based optimization identified mCMY020, a potent, covalent inhibitor of TEAD transcriptional activity that occupies a conserved, central palmitoylation site on TEADs.
Collapse
Affiliation(s)
- Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| | - Lirui Song
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | - Emily Chen
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | - Mitchell Hull
- Calibr, A Division of Scripps Research La Jolla CA 92037 USA
| | | | | | - Michael J Bollong
- Department of Chemistry, The Scripps Research Institute La Jolla CA 92037 USA
| |
Collapse
|
7
|
Yang Y, Zhang Y, Cao J, Su Z, Li F, Zhang P, Zhang B, Liu R, Zhang L, Xie J, Li J, Zhang J, Chen X, Hong A. FGFR4 and EZH2 inhibitors synergistically induce hepatocellular carcinoma apoptosis via repressing YAP signaling. J Exp Clin Cancer Res 2023; 42:96. [PMID: 37085881 PMCID: PMC10122280 DOI: 10.1186/s13046-023-02659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/30/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and lethal cancers worldwide, but current treatment options remain limited and cause serious life-threatening side effects. Aberrant FGFR4 signaling has been validated as an oncogenic driver of HCC, and EZH2, the catalytic subunit of the PRC2 complex, is a potential factor that contributes to acquired drug resistance in many tumors, including HCC. However, the functional relationship between these two carcinogenic factors, especially their significance for HCC treatment, remains unclear. In this study, we systematically evaluated the feasibility of a combination therapy targeting FGFR4 and EZH2 for HCC. METHODS RNA sequencing data of patients with Liver hepatocellular carcinoma (LIHC) from The Cancer Genome Atlas (TCGA) were analyzed to determine FGFR4 and EZH2 expression and their interaction with prognosis. Moreover, the HCC cell lines, zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors were treated with FGFR4 inhibitor (Roblitinib) and/or EZH2 inhibitor (CPI-169) and then subjected to cell proliferation, viability, apoptosis, and tumor growth analyses to evaluate the feasibility of combination therapy for HCC both in vitro and in vivo. Furthermore, RNA-Seq was performed in combination with ChIP-Seq data analysis to investigate the critical mechanism underlying the combination treatment with Roblitinib and CPI-169. RESULTS EZH2 accumulated through the non-canonical NF-kB signaling in response to FGFR4 inhibitor treatment, and the elevated EZH2 levels led to the antagonism of HCC against Roblitinib (FGFR4 inhibitor). Notably, knockdown of EZH2 sensitized HCC cells to Roblitinib, while the combination treatment of Roblitinib and CPI-169 (EZH2 inhibitor) synergistically induced the HCC cell apoptosis in vitro and suppressed the zebrafish/mouse HCC xenografts and zebrafish HCC primary tumors development in vivo. Moreover, Roblitinib and CPI-169 synergistically inhibited HCC development via repressing YAP signaling. CONCLUSIONS Collectively, our study highlighted the potential of the therapeutic combination of FGFR4 and EZH2 inhibitors, which would provide new references for the further development of clinical treatment strategies for HCC.
Collapse
Affiliation(s)
- Yiqi Yang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| | - Yibo Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jieqiong Cao
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China
| | - Zijian Su
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Fu Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Peiguang Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Bihui Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Rongzhan Liu
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Linhao Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Junye Xie
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jingsheng Li
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Jinting Zhang
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China
| | - Xiaojia Chen
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China.
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China.
| | - An Hong
- Institute of Biomedicine & Department of Cell Biology, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Ji'nan University, Guangzhou, 510632, China.
- The First Affiliated Hospital, Ji'nan University, Guangzhou, 510630, China.
| |
Collapse
|
8
|
Quiroz Reyes AG, Lozano Sepulveda SA, Martinez-Acuña N, Islas JF, Gonzalez PD, Heredia Torres TG, Perez JR, Garza Treviño EN. Cancer Stem Cell and Hepatic Stellate Cells in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231163677. [PMID: 36938618 PMCID: PMC10028642 DOI: 10.1177/15330338231163677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common liver cancer. It is highly lethal and has high recurrence. Death among HCC patients occur mainly due to tumor progression, recurrence, metastasis, and chemoresistance. Cancer stem cells (CSCs) are cell subpopulations within the tumor that promote invasion, recurrence, metastasis, and drug resistance. Hepatic stellate cells (HSCs) are important components of the tumor microenvironment (TME) responsible for primary secretory ECM proteins during liver injury and inflammation. These cells promote fibrogenesis, infiltrate the tumor stroma, and contribute to HCC development. Interactions between HSC and CSC and their microenvironment help promote carcinogenesis through different mechanisms. This review summarizes the roles of CSCs and HSCs in establishing the TME in primary liver tumors and describes their involvement in HCC chemoresistance.
Collapse
Affiliation(s)
- Adriana G Quiroz Reyes
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Sonia A Lozano Sepulveda
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Natalia Martinez-Acuña
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jose F Islas
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Paulina Delgado Gonzalez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Tania Guadalupe Heredia Torres
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Jorge Roacho Perez
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Elsa N Garza Treviño
- Facultad de Medicina, Department of Biochemistry and Molecular Medicine, 27771Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
9
|
Ballout F, Lu H, Chen L, Sriramajayam K, Que J, Meng Z, Wang TC, Giordano S, Zaika A, McDonald O, Peng D, El-Rifai W. APE1 redox function is required for activation of Yes-associated protein 1 under reflux conditions in Barrett's-associated esophageal adenocarcinomas. J Exp Clin Cancer Res 2022; 41:264. [PMID: 36045416 PMCID: PMC9434868 DOI: 10.1186/s13046-022-02472-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) is characterized by poor prognosis and low survival rate. Chronic gastroesophageal reflux disease (GERD) is the main risk factor for the development of Barrett's esophagus (BE), a preneoplastic metaplastic condition, and its progression to EAC. Yes-associated protein 1 (YAP1) activation mediates stem-like properties under cellular stress. The role of acidic bile salts (ABS) in promoting YAP1 activation under reflux conditions remains unexplored. METHODS A combination of EAC cell lines, transgenic mice, and patient-derived xenografts were utilized in this study. mRNA expression and protein levels of APE1 and YAP1 were evaluated by qRT-PCR, western blot, and immunohistochemistry. YAP1 activation was confirmed by immunofluorescence staining and luciferase transcriptional activity reporter assay. The functional role and mechanism of regulation of YAP1 by APE1 was determined by sphere formation assay, siRNA mediated knockdown, redox-specific inhibition, and co-immunoprecipitation assays. RESULTS We showed that YAP1 signaling is activated in BE and EAC cells following exposure to ABS, the mimicry of reflux conditions in patients with GERD. This induction was consistent with APE1 upregulation in response to ABS. YAP1 activation was confirmed by its nuclear accumulation with corresponding up-regulation of YAP1 target genes. APE1 silencing inhibited YAP1 protein induction and reduced its nuclear expression and transcriptional activity, following ABS treatment. Further investigation revealed that APE1-redox-specific inhibition (E3330) or APE1 redox-deficient mutant (C65A) abrogated ABS-mediated YAP1 activation, indicating an APE1 redox-dependent mechanism. APE1 silencing or E3330 treatment reduced YAP1 protein levels and diminished the number and size of EAC spheroids. Mechanistically, we demonstrated that APE1 regulated YAP1 stability through interaction with β-TrCP ubiquitinase, whereas APE1-redox-specific inhibition induced YAP1 poly-ubiquitination promoting its degradation. CONCLUSION Our findings established a novel function of APE1 in EAC progression elucidating druggable molecular vulnerabilities via targeting APE1 or YAP1 for the treatment of EAC.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Kannappan Sriramajayam
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Jianwen Que
- Department of Medicine, Columbia University, New York, NY, 10027, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Timothy C Wang
- Department of Medicine and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino and Candiolo Cancer Institute, FPO-IRCCS, 10060, Candiolo, Italy
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Oliver McDonald
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Rosenstiel Med Science Bldg., 1600 NW 10th Ave, Room 4007, Miami, FL, 33136-1015, USA.
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|