1
|
Bai J, Chen Y, Zhao G, Gui R. In Vitro and Vivo Experiments Revealing Astragalin Inhibited Lung Adenocarcinoma Development via LINC00582/miR-140-3P/PDPK1. J Biochem Mol Toxicol 2024; 38:e70042. [PMID: 39552470 DOI: 10.1002/jbt.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
This study aimed to explore the mechanism of the development of lung adenocarcinoma (LUAD) treated by astragalin. Transcriptome sequencing was performed to obtain the gene profile of LUAD treated by astragalin. Combining with bioinformatics analysis including differential gene screening, function enrichment analysis (gene ontology and KEGG), and ceRNA construction, we obtained the novel mechanism of lncRNA mediated miRNA/mRNA axis. Then, the cell experiments were performed to examine the role of lncRNA in cell proliferation, migration and invasion, and apoptosis for LUAD treated with astragalin. Moreover, the tumor formation in nude mice was carried out to detect the ceRNA mechanism in LUAD treated by astragalin in vivo. The lncRNA mediated ceRNA network was obtained, that is, LINC00852 LINC00582/miR-140-3p/PDPK1 played an important role in LUAD treated by astragalin. Function experiments indicated that si-LINC00852 inhibited LUAD cell proliferation, migration and invasion, and promoted cell apoptosis via miR-140-3p/PDPK1 (p < 0.05, p < 0.01). The animal experiments further confirmed that si-LINC00852 inhibited tumor growth through miR-140-3p/PDPK1 in vivo. Conversely, this study provides comprehensive insights into the diagnostic and therapeutic implications of LINC00582 in LUAD, LINC00582 mediated miR-140-3p/PDPK1 axis was the novel drug target of astragalin for treating LUAD.
Collapse
Affiliation(s)
- Juncheng Bai
- Department of Pathology, Inner Mongolia University for Nationalities Affiliated Hospital, Tongliao, China
| | - Yuxin Chen
- Department of Pathology, Inner Mongolia University for Nationalities Affiliated Hospital, Tongliao, China
| | - Geyu Zhao
- Department of Pathology, Inner Mongolia University for Nationalities Affiliated Hospital, Tongliao, China
| | - Rong Gui
- Department of Pathology, Inner Mongolia University for Nationalities Affiliated Hospital, Tongliao, China
| |
Collapse
|
2
|
Thapa R, Gupta S, Gupta G, Bhat AA, Smriti, Singla M, Ali H, Singh SK, Dua K, Kashyap MK. Epithelial-mesenchymal transition to mitigate age-related progression in lung cancer. Ageing Res Rev 2024; 102:102576. [PMID: 39515620 DOI: 10.1016/j.arr.2024.102576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a fundamental biological process involved in embryonic development, wound healing, and cancer progression. In lung cancer, EMT is a key regulator of invasion and metastasis, significantly contributing to the fatal progression of the disease. Age-related factors such as cellular senescence, chronic inflammation, and epigenetic alterations exacerbate EMT, accelerating lung cancer development in the elderly. This review describes the complex mechanism among EMT and age-related pathways, highlighting key regulators such as TGF-β, WNT/β-catenin, NOTCH, and Hedgehog signalling. We also discuss the mechanisms by which oxidative stress, mediated through pathways involving NRF2 and ROS, telomere attrition, regulated by telomerase activity and shelterin complex, and immune system dysregulation, driven by alterations in cytokine profiles and immune cell senescence, upregulate or downregulate EMT induction. Additionally, we highlighted pathways of transcription such as SNAIL, TWIST, ZEB, SIRT1, TP53, NF-κB, and miRNAs regulating these processes. Understanding these mechanisms, we highlight potential therapeutic interventions targeting these critical molecules and pathways.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| |
Collapse
|
3
|
Li X, Wang Y, Cheng J, Qiu L, Wang R, Zhang Y, Wang H. METTL3 -mediated m6A modification of circ_0000620 regulates cisplatin sensitivity and apoptosis in lung adenocarcinoma via the MiR-216b-5p/KRAS axis. Cell Signal 2024; 123:111349. [PMID: 39153585 DOI: 10.1016/j.cellsig.2024.111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Circular RNAs (circRNAs) are stable non-coding RNAs characterized by the absence of the conventional 5' cap and 3' polyadenylated tail structure. Its involvement in various aspects of cancers underscores its significance in oncology. Elevated expression of circ_0000620 was observed in both lung adenocarcinoma (LUAD) tissues and cell lines. In vitro, experiments demonstrated that the downregulation of circ_0000620 increased cisplatin sensitivity and promoted cell apoptosis while suppressing malignant characteristics such as cell migration and proliferation. Further investigation into the mechanism underlying the increased expression of circ_0000620 revealed that Methyltransferase 3, N6-Adenosine-Methyltransferase Complex Catalytic Subunit (METTL3) mediates the m6A methylation modification of circ_0000620, thereby promoting its stability and expression. Furthermore, circ_0000620 modulates the miR-216b-5p/KRAS axis to influence apoptosis and cisplatin sensitivity in both A549 and H1299 cell lines. These findings were corroborated by in vivo nude mouse experiments, which showed that knockdown of circ_0000620 inhibited tumor growth and proliferation. In summary, METTL3 plays a role in regulating the stability of circ_0000620 expression, and circ_0000620 exerts its effects on LUAD apoptosis and cisplatin sensitivity through the miR-216b-5p/KRAS signaling pathway.
Collapse
Affiliation(s)
- Xiangmei Li
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yinlu Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Jiuling Cheng
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Liliang Qiu
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Ruiyang Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Yuping Zhang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China
| | - Huaqi Wang
- Department of Respiratory Medicine, Zhengzhou University First Affiliated Hospital, Zhengzhou 450000, China.
| |
Collapse
|
4
|
Yu Z, Zhang Y, Wang G, Song S, Su H, Duan W, Wu Y, Zhang Y, Liu X. Identification of competing endogenous RNA networks associated with circRNA and lncRNA in TCDD-induced cleft palate development. Toxicol Lett 2024; 401:71-81. [PMID: 39270811 DOI: 10.1016/j.toxlet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/20/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
2,3,7,8 -tetrachlorodibenzo-p-dioxin (TCDD) is a teratogen that can induce cleft palate formation, a common birth defect. Competing endogenous RNAs (ceRNAs), including circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), indirectly regulate gene expression via sharing microRNAs (miRNAs). Nevertheless, the mechanism by which they act as ceRNAs to regulate palatal development remains to be explored in greater detail. Here, the cleft palate model of C57BL/6 N pregnant mice was constructed by gavage of TCDD (64 ug/kg) on gestation day (GD) 10.5, and the palatal shelves were taken on gestation day (GD) 14.5 for whole-transcriptome sequencing to investigate the underlying mechanisms of the roles of circRNAs and lncRNAs as ceRNAs in cleft palate. Sequencing results revealed that 293 lncRNA, 589 circRNA, 47 miRNA, and 138 messenger RNA (mRNA) were significantly dysregulated, and the cytochrome P450 (CYP) enzymes and the aryl hydrocarbon receptor (AhR) pathway play key roles in the induction of cleft palate upon exposure to TCDD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed the function of TCDD function was mainly related to the metabolic processes of intracellular compounds, including the metabolic processes of cellular aromatic compounds and the metabolism of exogenous drugs by cytochrome P450, etc. Furthermore, quantitative reverse transcription polymerase chain reaction (qRT-PCR) indicated that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks were hypothesized to be a hub involved in palatal development suggesting that the circRNA_1781/miR-30c-1-3p/PKIB and XR_380026.2/miR-1249-3p/DNAH10 ceRNA networks may be critical for palatogenesis, setting the foundation for the investigation of cleft palate.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yaxin Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guoxu Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shuaixing Song
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Hexin Su
- School of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yang Wu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
5
|
Leili FR, Shali N, Sheibani M, Jafarian MJ, Pashizeh F, Gerami R, Iraj F, Lashkarshekan AA. Detailed pathological role of non-coding RNAs (ncRNAs) in regulating drug resistance of glioblastoma, and update. Pathol Res Pract 2024; 263:155590. [PMID: 39326365 DOI: 10.1016/j.prp.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Glioma is a kind of brain tumor that develops in the central nervous system and is classified based on its histology and molecular genetic features. The lifespan of patients does not exceed 22 months. One of the motives for the low effectiveness of glioma treatment is its radioresistance and chemoresistance. Noncoding RNAs (ncRNAs) are a diverse set of transcripts that do not undergo translation to become proteins in glioma. The ncRNAs have been identified as significant regulators of several biological processes in different cell types and tissues, and their abnormal function has been linked to glioma. They are known to impact important occurrences, including carcinogenesis, progression, and enhanced treatment resistance in glioma cells. The ncRNAs control cell proliferation, migration, epithelial-to-mesenchymal transition (EMT), invasion, and drug resistance in glioma cells. The main focus of this study is to inspect the involvement of ncRNAs in the drug resistance of glioma.
Collapse
Affiliation(s)
- Foad Rahmanpour Leili
- Department of Neurology Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Niloofar Shali
- Department of Clinical Biochemistry, School of Medicine, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | - Mehrnaz Sheibani
- Division of Pediatric Neurology, University of Tabriz, Tabriz, Iran
| | | | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | - Reza Gerami
- Department of Radiology, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran.
| | | | | |
Collapse
|
6
|
Jiang C, Shen C, Ni M, Huang L, Hu H, Dai Q, Zhao H, Zhu Z. Molecular mechanisms of cisplatin resistance in ovarian cancer. Genes Dis 2024; 11:101063. [PMID: 39224110 PMCID: PMC11367050 DOI: 10.1016/j.gendis.2023.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 09/04/2024] Open
Abstract
Ovarian cancer is one of the most common malignant tumors of the female reproductive system. The majority of patients with advanced ovarian cancer are mainly treated with cisplatin-based chemotherapy. As the most widely used first-line anti-neoplastic drug, cisplatin produces therapeutic effects through multiple mechanisms. However, during clinical treatment, cisplatin resistance has gradually emerged, representing a challenge for patient outcome improvement. The mechanism of cisplatin resistance, while known to be complex and involve many processes, remains unclear. We hope to provide a new direction for pre-clinical and clinical studies through this review on the mechanism of ovarian cancer cisplatin resistance and methods to overcome drug resistance.
Collapse
Affiliation(s)
- Chenying Jiang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Chenjun Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Maowei Ni
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310005, China
| | - Lili Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Hongtao Hu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Qinhui Dai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Huajun Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| | - Zhihui Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, China
| |
Collapse
|
7
|
Guo F, Li H, Wang J, Wang J, Zhang J, Kong F, Zhang Z, Zong J. MicroRNAs in Hepatocellular Carcinoma: Insights into Regulatory Mechanisms, Clinical Significance, and Therapeutic Potential. Cancer Manag Res 2024; 16:1491-1507. [PMID: 39450194 PMCID: PMC11499618 DOI: 10.2147/cmar.s477698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. Tumor immune microenvironment (TIME), angiogenesis, epithelial-mesenchymal transformation (EMT), invasion, metastasis, metabolism, and drug resistance are the main factors affecting the development and treatment of tumors. MiRNAs play crucial roles in almost all major cellular biological processes. Studies have been carried out on miRNAs as biomarkers and therapeutic targets. Their dysregulation contributes to the progression and prognosis of HCC. This review aims to explore the molecular cascades and corresponding phenotypic changes caused by aberrant miRNA expression and their regulatory mechanisms, summarize and analyze novel biomarkers from somatic fluids (plasma/serum/urine), and highlight the latent capacity of miRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Fenfen Guo
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Hong Li
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jingjing Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jiangfeng Wang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Jinling Zhang
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Fanfang Kong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| | - Zemin Zhang
- Departments of Infectious Disease, Qingdao Women and Children’s Hospital, Qingdao, People’s Republic of China
| | - Jinbao Zong
- Departments of Clinical Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, People’s Republic of China
| |
Collapse
|
8
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
9
|
Yang T, Li Y, Zheng Z, Qu P, Shao Z, Wang J, Ding N, Wang W. Comprehensive analysis of lncRNA-mediated ceRNA network in renal cell carcinoma based on GEO database. Medicine (Baltimore) 2024; 103:e39424. [PMID: 39213211 PMCID: PMC11365686 DOI: 10.1097/md.0000000000039424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Renal cell carcinoma (RCC) ranks among the leading causes of cancer-related mortality. Despite extensive research, the precise etiology and progression of RCC remain incompletely elucidated. Long noncoding RNA (lncRNA) has been identified as competitive endogenous RNA (ceRNA) capable of binding to microRNA (miRNA) sites, thereby modulating the expression of messenger RNAs (mRNA) and target genes. This regulatory network is known to exert a pivotal influence on cancer initiation and progression. However, the specific role and functional significance of the lncRNA-miRNA-mRNA ceRNA network in RCC remain poorly understood. The RCC transcriptome data was obtained from the gene expression omnibus database. The identification of differentially expressed long noncoding RNAs (DElncRNAs), differentially expressed miRNAs, and differentially expressed mRNAs (DEmRNAs) between RCC and corresponding paracancer tissues was performed using the "Limma" package in R 4.3.1 software. We employed a weighted gene co-expression network analysis to identify the key DElncRNAs that are most relevant to RCC. Subsequently, we utilized the encyclopedia of RNA interactomes database to predict the interactions between these DElncRNAs and miRNAs, and the miRDB database to predict the interactions between miRNAs and mRNAs. Therefore, key DElncRNAs were obtained to verify the expression of their related genes in the The Cancer Genome Atlas database and to analyze the prognosis. The construction of RCC-specific lncRNA-miRNA-mRNA ceRNA network was carried out using Cytoscape 3.7.0. A total of 286 DElncRNAs, 56 differentially expressed miRNAs, and 2065 DEmRNAs were identified in RCC. Seven key DElncRNAs (GAS6 antisense RNA 1, myocardial infarction associated transcript, long intergenic nonprotein coding RNA 921, MMP25 antisense RNA 1, Chromosome 22 Open Reading Frame 34, MIR34A host gene, MIR4435-2 host gene) were identified using weighted gene co-expression network analysis and encyclopedia of RNA interactomes databases. Subsequently, a network diagram comprising 217 nodes and 463 edges was constructed based on these key DElncRNAs. The functional analysis of DEmRNAs in the ceRNA network was conducted using Kyoto Encyclopedia of Genes and Genomes and gene ontology. We constructed RCC-specific ceRNA networks and identified the crucial lncRNAs associated with RCC using bioinformatics analysis, which will help us further understand the pathogenesis of this disease.
Collapse
Affiliation(s)
- Tianci Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Yixuan Li
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhouhang Zheng
- The Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, China
| | - Wei Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
10
|
Carvalho Silva R, Martini P, Hohoff C, Mattevi S, Bortolomasi M, Abate M, Menesello V, Gennarelli M, Baune BT, Minelli A. Unraveling epigenomic signatures and effectiveness of electroconvulsive therapy in treatment-resistant depression patients: a prospective longitudinal study. Clin Epigenetics 2024; 16:93. [PMID: 39020437 PMCID: PMC11256624 DOI: 10.1186/s13148-024-01704-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) benefits patients with treatment-resistant depression (TRD), but the underlying biological processes are unclear. We conducted an epigenome-wide association study in 32 TRD patients undergoing ECT to depict ECT-associated methylation changes. Illness severity and ECT outcomes were assessed with the Montgomery-Åsberg Depression Rating Scale at baseline (T0) and 1 month after its end (T1). Methylation was profiled at T0 and T1 with the Illumina Infinium Methylation EPIC BeadChip array. RESULTS Longitudinal T0-T1 analyses showed 3 differentially methylated probes (DMPs) with nominal p values ≤ 10-5, with 2 annotated in the genes CYB5B and PVRL4. Including covariates, we found 4 DMPs for symptoms variation, annotated in FAM20C, EPB41, OTUB1 and ADARB1, and 3 DMPs for response status, with 2 annotated in IQCE and FAM20C. Regional analysis revealed 54 differentially methylated regions (DMRs) with nominal p value area ≤ 0.05, with 9 presenting adjusted p-value area ≤ 0.10, annotated in MCF2L, SLC25A24, RUNX3, MIR637, FOXK2, FAM180B, POU6F1, ALS2CL and CCRL2. Considering covariates, we found 21 DMRs for symptoms variation and 26 DMRs for response (nominal p value area ≤ 0.05), with 4 presenting adjusted p-value area ≤ 0.10 for response, annotated in SNORD34, NLRP6, GALNT2 and SFT2D3. None remained significant after false discovery rate correction. Notably, ADARB1 variants are associated with suicide attempt in patients with psychiatric disorders, and SLC25A24 relates to conduct disorder. Several DMPs and DMRs are annotated in genes associated with inflammatory/immune processes. Longitudinal analyses on females (n = 22) revealed statistically significant DMRs (adjusted p value area ≤ 0.05) and trend-significant DMRs (adjusted p value area ≤ 0.07) for symptoms variation and response status, annotated in genes related to psychiatric disorders (ZFP57, POLD4, TRIM10, GAS7, ADORA2A, TOLLIP), trauma exposure (RIPOR2) and inflammatory/immune responses (LAT, DLX4, POLD4, FAM30A, H19). Pathway analysis on females revealed enrichment for transcriptional activity, growth factors, DNA maintenance, and immune pathways including IRF7 and IRF2. CONCLUSION Although no significant results were found for the whole cohort, the study provides insights into ECT-associated methylation changes, highlighting DMPs and DMRs related to ECT outcomes. Analyses on females revealed significant DMRs and pathways related to psychiatric disorders and inflammatory/immune processes.
Collapse
Affiliation(s)
- Rosana Carvalho Silva
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Paolo Martini
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Christa Hohoff
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
| | - Stefania Mattevi
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | | | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara", Verona, Italy
| | - Valentina Menesello
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Massimo Gennarelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Bernhard T Baune
- Department of Psychiatry and Psychotherapy, University of Münster, Münster, Germany
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Alessandra Minelli
- Department of Molecular and Translational Medicine, Biology and Genetic Division, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
11
|
Tao W, Lu Y, Xiao R, Zhang J, Hu P, Zhao N, Peng W, Qian K, Liu F. LncRNA HMOX1 alleviates renal ischemia-reperfusion-induced ferroptotic injury via the miR-3587/HMOX1 axis. Cell Signal 2024; 119:111165. [PMID: 38583746 DOI: 10.1016/j.cellsig.2024.111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) play significant roles in renal ischemia reperfusion (RIR) injury. However, the specific mechanisms by which lncRNAs regulate ferroptosis in renal tubular epithelial cells remain largely unknown. The objective of this study was to investigate the biological function of lncRNA heme oxygenase 1 (lnc-HMOX1) in RIR and its potential molecular mechanism. Our findings demonstrated that the expression of HMOX1-related lnc-HMOX1 was reduced in renal tubular epithelial cells treated with hypoxia-reoxygenation (HR). Furthermore, the over-expression of lnc-HMOX1 mitigated ferroptotic injury in renal tubular epithelial cells in vivo and in vitro. Mechanistically, lnc-HMOX1, as a competitive endogenous RNA (ceRNA), promoted the expression of HMOX1 by sponging miR-3587. Furthermore, the inhibition of HMOX1 effectively impeded the aforementioned effects exerted by lnc-HMOX1. Ultimately, the inhibitory or mimic action of miR-3587 reversed the promoting or refraining influence of silenced or over-expressed lnc-HMOX1 on ferroptotic injury during HR. In summary, our findings contribute to a comprehensive comprehension of the mechanism underlying ferroptotic injury mediated by lnc-HMOX1 during RIR. Significantly, we identified a novel lnc-HMOX1-miR-3587-HMOX1 axis, which holds promise as a potential therapeutic target for RIR injury.
Collapse
Affiliation(s)
- Wenqiang Tao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Medical Innovation Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Yuanhua Lu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Xiao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Jianguo Zhang
- Department of Critical Care Medicine, Linyi People's Hospital, Linyi 276034, China
| | - Ping Hu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Ning Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Wei Peng
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Kejian Qian
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Jiangxi Medical Center for Critical Public Health Events, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330052, China.
| |
Collapse
|
12
|
Shi Z, Yang S, Shen C, Shao J, Zhou F, Liu H, Zhou G. LAMP2A regulates cisplatin resistance in colorectal cancer through mediating autophagy. J Cancer Res Clin Oncol 2024; 150:242. [PMID: 38717639 PMCID: PMC11078844 DOI: 10.1007/s00432-024-05775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Drug resistance is an important constraint on clinical outcomes in advanced cancers. LAMP2A is a limiting protein in molecular chaperone-mediated autophagy. This study was aimed to explore LAMP2A function in cisplatin (cis-diamminedichloroplatinum, DDP) resistance colorectal cancer (CRC) to seek new ideas for CRC clinical treatment. METHODS In this study, LAMP2A expression was analyzed by molecular experimental techniques,such as qRT-PCR and western blot. Then, LAMP2A in cells was interfered by cell transfection experiments. Subsequently, the function of LAMP2A on proliferation, migration, invasion, DDP sensitivity, and autophagy of CRC/DDP cells were further investigated by a series of experiments, such as CCK-8, transwell, and western blot. RESULTS We revealed that LAMP2A was clearly augmented in DDP-resistant CRC and was related to poor patient prognosis. Functionally, LAMP2A insertion remarkably CRC/DDP proliferation, migration, invasion ability and DDP resistance by strengthen autophagy. In contrast, LAMP2A knockdown limited the proliferation, migration, and invasion while heightened cellular sensitivity to DDP by restraining autophagy in CRC/DDP cells. Furthermore, LAMP2A silencing was able to curb tumor formation and enhance sensitivity to DDP in vivo. CONCLUSION In summary, LAMP2A boosted malignant progression and DDP resistance in CRC/DDP cells through mediating autophagy. Clarifying LAMP2A function in DDP resistance is promising to seek cancer therapies biomarkers targeting LAMP2A activity.
Collapse
Affiliation(s)
- Zhiliang Shi
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Shuting Yang
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Chenglong Shen
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Jiazhe Shao
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Fang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Haichen Liu
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China
| | - Guoqiang Zhou
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Changshu, 215500, Jiangsu Province, China.
- Department of Gastrointestinal Surgery, Affiliated Changshu Hospital to Nantong University, Changshu No. 2 Hospital, Suzhou, 215000, Jiangsu Province, China.
| |
Collapse
|
13
|
Chen T, Li Z, Chen J, Xu Z. Circ_0000877 accelerates proliferation and immune escape of non-small cell lung cancer cells by regulating microRNA-637/E2F2 axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:2980-2992. [PMID: 38317501 DOI: 10.1002/tox.24172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Recently, circular RNA (circRNA) has become a vital targeted therapy gene for non-small-cell lung cancer (NSCLC) cells. CircRNA_0000877 (Circ_0000877) has been researched in diffuse large B-cell lymphoma (DLBCL). However, whether circ_0000877 regulated NSCLC cell progression is still poorly investigated. The research attempted to investigate the influence of circ_0000877 in NSCLC. METHODS Circ_0000877 levels in NSCLC tissues and cell lines were determined applying RT-qPCR. Cell functions were evaluated by CCK-8, EdU, flow cytometry, ELISA, and western blot. Gene interactions were predicted by Cirular RNA interactome database and Target Scan website and certified by dual-luciferase reporter, RIP, and RNA pull-down assays. Finally, mice experimental model was established to explore the effects of circ_0000877 on tumor growth in vivo. RESULTS The elevated trend of circ_0000877 expression was discovered in NSCLC tissues compared to para-carcinoma tissues. The clinicopathological data uncovered that up-regulated circ_0000877 was linked to tumor size, differentiation, and TNM stages of NSCLC patients. Knockdown of circ_0000877 inhibited the proliferation, triggered apoptosis, and prohibited immune escape in NSCLC cells. It was certified that miR-637 was directly interacted with circ_0000877 and targeted by E2F2. Overexpressed E2F2 strongly overturned the functions of circ_0000877 knockdown in NSCLC cells. Mice experimental data demonstrated that circ_0000877 knockdown suppressed tumor growth in vivo. CONCLUSION The research demonstrated that circ_0000877 exhibited the promotive effect on NSCLC cells proliferation and immune escape by regulating miR-637/E2F2 axis.
Collapse
Affiliation(s)
- Ting'an Chen
- Department of Pathology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Zhengdong Li
- Precision Medical Centre, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Junzhu Chen
- Department of Pathology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Zhe Xu
- Guangyuan Central Hospital, Guangyuan, Sichuan, China
| |
Collapse
|
14
|
Wang L, Wang X, Zhu X, Zhong L, Jiang Q, Wang Y, Tang Q, Li Q, Zhang C, Wang H, Zou D. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer 2024; 23:66. [PMID: 38539161 PMCID: PMC10976737 DOI: 10.1186/s12943-024-01967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/22/2024] [Indexed: 04/05/2024] Open
Abstract
Ovarian cancer is the leading cause of gynecological cancer-related death. Drug resistance is the bottleneck in ovarian cancer treatment. The increasing use of novel drugs in clinical practice poses challenges for the treatment of drug-resistant ovarian cancer. Continuing to classify drug resistance according to drug type without understanding the underlying mechanisms is unsuitable for current clinical practice. We reviewed the literature regarding various drug resistance mechanisms in ovarian cancer and found that the main resistance mechanisms are as follows: abnormalities in transmembrane transport, alterations in DNA damage repair, dysregulation of cancer-associated signaling pathways, and epigenetic modifications. DNA methylation, histone modifications and noncoding RNA activity, three key classes of epigenetic modifications, constitute pivotal mechanisms of drug resistance. One drug can have multiple resistance mechanisms. Moreover, common chemotherapies and targeted drugs may have cross (overlapping) resistance mechanisms. MicroRNAs (miRNAs) can interfere with and thus regulate the abovementioned pathways. A subclass of miRNAs, "epi-miRNAs", can modulate epigenetic regulators to impact therapeutic responses. Thus, we also reviewed the regulatory influence of miRNAs on resistance mechanisms. Moreover, we summarized recent phase I/II clinical trials of novel drugs for ovarian cancer based on the abovementioned resistance mechanisms. A multitude of new therapies are under evaluation, and the preliminary results are encouraging. This review provides new insight into the classification of drug resistance mechanisms in ovarian cancer and may facilitate in the successful treatment of resistant ovarian cancer.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xin Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xueping Zhu
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Zhong
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qingxiu Jiang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Ya Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Tang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiaoling Li
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Cong Zhang
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
- Biological and Pharmaceutical Engineering, School of Medicine, Chongqing University, Chongqing, China
| | - Haixia Wang
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| | - Dongling Zou
- Department of Gynecologic Oncology, Chongqing University Cancer Hospital & Chongqing Cancer Institute & Chongqing Cancer Hospital, Chongqing, China.
- Chongqing Specialized Medical Research Center of Ovarian Cancer, Chongqing, China.
- Organoid Transformational Research Center, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China.
| |
Collapse
|
15
|
Cao SQ, Xue ST, Li WJ, Hu GS, Wu ZG, Zheng JC, Zhang SL, Lin X, Chen C, Liu W, Zheng B. CircHIPK3 regulates fatty acid metabolism through miR-637/FASN axis to promote esophageal squamous cell carcinoma. Cell Death Discov 2024; 10:110. [PMID: 38431720 PMCID: PMC10908791 DOI: 10.1038/s41420-024-01881-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024] Open
Abstract
The oncogenic role of circRNA in cancers including esophageal cancer (EC) has been well studied. However, whether and how circRNAs are involved in cancer cell metabolic processes remains largely unknown. Here, we reported that circRNA, circHIPK3, is highly expressed in ESCC cell lines and tissues. Knockdown of circHIPK3 significantly restrained cell proliferation, colony formation, migration, and invasion in vitro and inhibited tumor growth in vivo. Mechanistically, circHIPK3 was found to act as a ceRNA by sponging miR-637 to regulate FASN expression and fatty acid metabolism in ESCC cells. Anti-sense oligonucleotide (ASO) targeting circHIPK3 substantially inhibited ESCC both in vitro and in vivo. Therefore, these results uncover a modulatory axis constituting of circHIPK3/miR-637/FASN may be a potential biomarker and therapeutic target for ESCC in the clinic.
Collapse
Affiliation(s)
- Shi-Qiang Cao
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Song-Tao Xue
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wen-Juan Li
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Guo-Sheng Hu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China
| | - Zhi-Gang Wu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Jian-Cong Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Shu-Liang Zhang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Xiao Lin
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Wen Liu
- State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
- Xiang An Biomedicine Laboratory, School of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian, 361102, China.
| | - Bin Zheng
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Fujian Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
16
|
Almalki WH, Almujri SS. The dual roles of circRNAs in Wnt/β-Catenin signaling and cancer progression. Pathol Res Pract 2024; 255:155132. [PMID: 38335783 DOI: 10.1016/j.prp.2024.155132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Cancer, a complex pathophysiological condition, arises from the abnormal proliferation and survival of cells due to genetic mutations. Dysregulation of cell cycle control, apoptosis, and genomic stability contribute to uncontrolled growth and metastasis. Tumor heterogeneity, microenvironmental influences, and immune evasion further complicate cancer dynamics. The intricate interplay between circular RNAs (circRNAs) and the Wnt/β-Catenin signalling pathway has emerged as a pivotal axis in the landscape of cancer biology. The Wnt/β-Catenin pathway, a critical regulator of cell fate and proliferation, is frequently dysregulated in various cancers. CircRNAs, a class of non-coding RNAs with closed-loop structures, have garnered increasing attention for their diverse regulatory functions. This review systematically explores the intricate crosstalk between circRNAs and the Wnt/β-Catenin pathway, shedding light on their collective impact on cancer initiation and progression. The review explores the diverse mechanisms through which circRNAs modulate the Wnt/β-Catenin pathway, including sponging microRNAs, interacting with RNA-binding proteins, and influencing the expression of key components in the pathway. Furthermore, the review highlights specific circRNAs implicated in various cancer types, elucidating their roles as either oncogenic or tumour-suppressive players in the context of Wnt/β-Catenin signaling. The intricate regulatory networks formed by circRNAs in conjunction with the Wnt/β-Catenin pathway are discussed, providing insights into potential therapeutic targets and diagnostic biomarkers. This comprehensive review delves into the multifaceted roles of circRNAs in orchestrating tumorigenesis through their regulatory influence on the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
17
|
Wu X, Wang S, Wu X, Chen Q, Cheng J, Qi Z. Analysis of m 6A-related lncRNAs for prognostic and immunotherapeutic response in hepatocellular carcinoma. J Cancer 2024; 15:2045-2065. [PMID: 38434979 PMCID: PMC10905389 DOI: 10.7150/jca.92128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/27/2024] [Indexed: 03/05/2024] Open
Abstract
Background: RNA methylation modifications are important post-translational modifications that are regulated in an epigenetic manner. Recently, N6-methyladenosine (m6A) RNA modifications have emerged as potential epigenetic markers in tumor biology. Methods: Gene expression and clinicopathological data of LIHC were obtained from the cancer genome atlas (TCGA) database. The relationship between long non-coding RNAs (lncRNAs) and m6A-related genes was determined by gene expression analysis using Perl and R software. Co-expression network of m6A-lncRNA was constructed, and the relevant lncRNAs associated with prognosis were identified using univariate Cox regression analysis. These lncRNAs were then divided into two clusters (cluster 1 and cluster 2) to determine the differences in survival, pathoclinical parameters, and immune cell infiltration between the different lncRNA subtypes. The least absolute shrinkage and selection operator (LASSO) was carried out for regression analysis and prognostic model. The HCC patients were randomly divided into a train group and a test group. According to the median risk score of the model, HCC patients were divided into high-risk and low-risk groups. We built models using the train group and confirmed them through the test group. The m6A-lncRNAs derived from the models were analyzed for the tumor mutational burden (TMB), immune evasion and immune function using R software. AL355574.1 was identified as an important m6A-associated lncRNA and selected for further investigation. Finally, in vitro experiments were conducted to confirm the effect of AL355574.1 on the biological function of HCC and the possible biological mechanisms. Huh7 and HepG2 cells were transfected with AL355574.1 siRNA and cell proliferation ability was measured by CCK-8, EdU and colony formation assays. Wound healing and transwell assays were used to determine the cell migration capacity. The expression levels of MMP-2, MMP-9, E-cadherin, N-cadherin and Akt/mTOR phosphorylation were all determined by Western blotting. Results: The lncRNAs with significant prognostic value were classified into two subtypes by a consistent clustering analysis. We found that the clinical features, immune cell infiltration and tumor microenvironment (TME) were significantly different between the lncRNA subtypes. Our analysis revealed significant correlations between these different lncRNA subtypes and immune infiltrating and stromal cells. We created the final risk profile using LASSO regression, which notably included three lncRNAs (AL355574.1, AL158166.1, TMCC1-AS1). A prognostic signature consisting of the three lncRNAs was constructed, and the model showed excellent prognostic predictive ability. The overall survival (OS) of the low-risk cohort was significantly higher than that of the high-risk cohort in both the train and test group. Both risk score [hazard ratio (HR)=1.062; P<0.001] and stage (HR=1.647; P< 0.001) were considered independent indicators of HCC prognosis by univariate and multivariate Cox regression analysis. In Huh7 and HepG2 cells, AL355574.1 knockdown inhibited cell proliferation and migration, suppressed the protein expression levels of MMP-2, MMP-9, N-cadherin and Akt/mTOR phosphorylation, but promoted the protein expression levels of E-cadherin. Conclusions: This study established a predictive model for the OS of HCC patients, and these OS-related m6A-lncRNAs, especially AL355574.1 may play a potential role in the progression of HCC. In vitro experiments also showed that AL355574.1 could enhance the expression of MMPs and EMT through the Akt/mTOR signaling pathway, thereby affected the proliferation and migration of HCC. This provides a new perspective on the anticancer molecular mechanism of AL355574.1 in HCC.
Collapse
Affiliation(s)
- Xingwei Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Clinical Laboratory, Traditional Chinese Hospital of Lu'an, Anhui University of Chinese Medicine, Lu'an 237000, Anhui, P.R. China
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Pathology, Fuyang People's Hospital, Anhui Medical University, Fuyang, Anhui, 236000, P.R. China
| | - Xiaoming Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Thyroid and Breast Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Qianyi Chen
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Jin Cheng
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Department of Gastroenterology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, 241002, P.R. China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
- Anhui Province Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| |
Collapse
|
18
|
Li X, Sun S, Zhang H. RNA sequencing reveals differential long noncoding RNA expression profiles in bacterial and viral meningitis in children. BMC Med Genomics 2024; 17:50. [PMID: 38347610 PMCID: PMC10863080 DOI: 10.1186/s12920-024-01820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND We aimed to investigate the involvement of long non-coding RNA (lncRNA) in bacterial and viral meningitis in children. METHODS The peripheral blood of five bacterial meningitis patients, five viral meningitis samples, and five healthy individuals were collected for RNA sequencing. Then, the differentially expressed lncRNA and mRNA were detected in bacterial meningitis vs. controls, viral meningitis vs. healthy samples, and bacterial vs. viral meningitis patients. Besides, co-expression and the competing endogenous RNA (ceRNA) networks were constructed. Receiver operating characteristic curve (ROC) analysis was performed. RESULTS Compared with the control group, 2 lncRNAs and 32 mRNAs were identified in bacterial meningitis patients, and 115 lncRNAs and 54 mRNAs were detected in viral meningitis. Compared with bacterial meningitis, 165 lncRNAs and 765 mRNAs were identified in viral meningitis. 2 lncRNAs and 31 mRNAs were specific to bacterial meningitis, and 115 lncRNAs and 53 mRNAs were specific to viral meningitis. The function enrichment results indicated that these mRNAs were involved in innate immune response, inflammatory response, and immune system process. A total of 8 and 1401 co-expression relationships were respectively found in bacterial and viral meningitis groups. The ceRNA networks contained 1 lncRNA-mRNA pair and 4 miRNA-mRNA pairs in viral meningitis group. GPR68 and KIF5C, identified in bacterial meningitis co-expression analysis, had an area under the curve (AUC) of 1.00, while the AUC of OR52K2 and CCR5 is 0.883 and 0.698, respectively. CONCLUSIONS Our research is the first to profile the lncRNAs in bacterial and viral meningitis in children and may provide new insight into understanding meningitis regulatory mechanisms.
Collapse
Affiliation(s)
- Xin Li
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Hebei Medical University, No. 215 West Heping Street, Shijiazhuang, Hebei, 050000, China
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China
| | - Suzhen Sun
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China
| | - Huifeng Zhang
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Hebei Medical University, No. 215 West Heping Street, Shijiazhuang, Hebei, 050000, China.
- First Department of Neurology, Hebei Children's Hospital, Hebei Children's Hospital Affiliated to Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
19
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
20
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
21
|
Shen J, Su X, Pan M, Wang Z, Ke Y, Wang Q, Dong J, Duan S. Current insights into the oncogenic roles of lncRNA LINC00355. CANCER INNOVATION 2023; 2:448-462. [PMID: 38125763 PMCID: PMC10730005 DOI: 10.1002/cai2.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 12/23/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of nonprotein-coding transcripts that are longer than 200 nucleotides. LINC00355 is a lncRNA located on chromosome 13q21.31 and is consistently upregulated in various cancers. It regulates the expression of downstream genes at both transcriptional and posttranscriptional levels, including eight microRNAs (miR-15a-5p, miR-34b-5p, miR-424-5p, miR-1225, miR-217-5p, miR-6777-3p, miR-195, and miR-466) and three protein-coding genes (ITGA2, RAD18, and UBE3C). LINC00355 plays a role in regulating various biological processes such as cell cycle progression, proliferation, apoptosis, epithelial-mesenchymal transition, invasion, and metastasis of cancer cells. It is involved in the regulation of the Wnt/β-catenin signaling pathway and p53 signaling pathway. Upregulation of LINC00355 has been identified as a high-risk factor in cancer patients and its increased expression is associated with poorer overall survival, recurrence-free survival, and disease-free survival. LINC00355 upregulation has been linked to several unfavorable clinical characteristics, including advanced tumor node metastasis and World Health Organization stages, reduced Karnofsky Performance Scale scores, increased tumor size, greater depth of invasion, and more extensive lymph node metastasis. LINC00355 induces chemotherapy resistance in cancer cells by regulating five downstream genes, namely HMGA2, ABCB1, ITGA2, WNT10B, and CCNE1 genes. In summary, LINC00355 is a potential oncogene with great potential as a diagnostic marker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Ming Pan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yufei Ke
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Jingyin Dong
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
22
|
Padilla-Banks E, Jefferson WN, Papas BN, Suen AA, Xu X, Carreon DV, Willson CJ, Quist EM, Williams CJ. Developmental estrogen exposure in mice disrupts uterine epithelial cell differentiation and causes adenocarcinoma via Wnt/β-catenin and PI3K/AKT signaling. PLoS Biol 2023; 21:e3002334. [PMID: 37856394 PMCID: PMC10586657 DOI: 10.1371/journal.pbio.3002334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Tissue development entails genetically programmed differentiation of immature cell types to mature, fully differentiated cells. Exposure during development to non-mutagenic environmental factors can contribute to cancer risk, but the underlying mechanisms are not understood. We used a mouse model of endometrial adenocarcinoma that results from brief developmental exposure to an estrogenic chemical, diethylstilbestrol (DES), to determine causative factors. Single-cell RNA sequencing (scRNAseq) and spatial transcriptomics of adult control uteri revealed novel markers of uterine epithelial stem cells (EpSCs), identified distinct luminal and glandular progenitor cell (PC) populations, and defined glandular and luminal epithelium (LE) cell differentiation trajectories. Neonatal DES exposure disrupted uterine epithelial cell differentiation, resulting in a failure to generate an EpSC population or distinguishable glandular and luminal progenitors or mature cells. Instead, the DES-exposed epithelial cells were characterized by a single proliferating PC population and widespread activation of Wnt/β-catenin signaling. The underlying endometrial stromal cells had dramatic increases in inflammatory signaling pathways and oxidative stress. Together, these changes activated phosphoinositide 3-kinase/AKT serine-threonine kinase signaling and malignant transformation of cells that were marked by phospho-AKT and the cancer-associated protein olfactomedin 4. Here, we defined a mechanistic pathway from developmental exposure to an endocrine disrupting chemical to the development of adult-onset cancer. These findings provide an explanation for how human cancers, which are often associated with abnormal activation of PI3K/AKT signaling, could result from exposure to environmental insults during development.
Collapse
Affiliation(s)
- Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Wendy N. Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Brian N. Papas
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Alisa A. Suen
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Xin Xu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Diana V. Carreon
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Cynthia J. Willson
- Inotiv-RTP, Research Triangle Park, North Carolina, United States of America
| | - Erin M. Quist
- Experimental Pathology Laboratories, Research Triangle Park, North Carolina, United States of America
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
23
|
Wang M, Cheng L, Xiang Q, Gao Z, Ding Y, Xie H, Chen X, Yu P, Shen L. Evaluation the role of cuproptosis-related genes in the pathogenesis, diagnosis and molecular subtypes identification of atherosclerosis. Heliyon 2023; 9:e21158. [PMID: 37928399 PMCID: PMC10622704 DOI: 10.1016/j.heliyon.2023.e21158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Background At present, the pathogenesis of atherosclerosis has not been fully elucidated, and the diagnosis and treatment face great challenges. Cuproptosis is a novel cell death pattern that might be involved in the development of atherosclerosis. However, no research has reported the correlation between cuproptosis and atherosclerosis. Methods The differential cuproptosis-related genes (CRGs) between atherosclerosis group and control group (A-CRGs) were discovered via differential expression analysis. The correlation analysis, PPI network analysis, GO, KEGG and GSEA analysis were performed to investigate the function of A-CRGs. The differences of biological function between atherosclerosis group and control group were investigated via immune infiltration analysis and GSVA. The LASSO regression, nomogram and machine learning models were constructed to predict atherosclerosis risk. The atherosclerosis molecular subtypes clusters were discovered via unsupervised cluster analysis. Subsequently, we used the above research methods to analyze the differential CRGs between clusters (M-CRGs) and evaluate the molecular subtypes identification performance of M-CRGs. Finally, we verified the diagnostic value for atherosclerosis and role in cuproptosis of these CRGs through the validation set and in vitro experiments. Results Five A-CRGs were identified and they were mainly related to the biological function of copper ion metabolism and immune inflammatory response. The diagnostic models and nomogram of atherosclerosis based on 5 A-CRGs indicated that these genes had well diagnostic value. A total of two molecular subtypes clusters were obtained in the atherosclerosis group. There were many differences in biological functions between these two molecular subtypes clusters, such as mitochondrial outer membrane permeabilization and primary immunodeficiency. In addition, 3 M-CRGs were identified in the 2 clusters. Machine learning models and nomogram constructed based on M-CRGs showed that these genes had well molecular subtypes identification efficacy. In the end, the results of in vitro experiment and validation set confirmed the diagnostic value for atherosclerosis and role in cuproptosis of these genes. Conclusion The cuproptosis may be a potential pathogenesis of atherosclerosis and CRGs may be promising markers for the diagnosis and molecular subtypes identification of atherosclerosis.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haitao Xie
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
24
|
Gupta J, Ahmed AT, Tayyib NA, Zabibah RS, Shomurodov Q, Kadheim MN, Alsaikhan F, Ramaiah P, Chinnasamy L, Samarghandian S. A state-of-art of underlying molecular mechanisms and pharmacological interventions/nanotherapeutics for cisplatin resistance in gastric cancer. Biomed Pharmacother 2023; 166:115337. [PMID: 37659203 DOI: 10.1016/j.biopha.2023.115337] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
The fourth common reason of death among patients is gastric cancer (GC) and it is a dominant tumor type in Ease Asia. One of the problems in GC therapy is chemoresistance. Cisplatin (CP) is a platinum compound that causes DNA damage in reducing tumor progression and viability of cancer cells. However, due to hyperactivation of drug efflux pumps, dysregulation of genes and interactions in tumor microenvironment, tumor cells can develop resistance to CP chemotherapy. The current review focuses on the CP resistance emergence in GC cells with emphasizing on molecular pathways, pharmacological compounds for reversing chemoresistance and the role of nanostructures. Changes in cell death mechanisms such as upregulation of pro-survival autophagy can prevent CP-mediated apoptosis that results in drug resistance. Moreover, increase in metastasis via EMT induction induces CP resistance. Dysregulation of molecular pathways such as PTEN, PI3K/Akt, Nrf2 and others result in changes in CP response of GC cells. Non-coding RNAs determine CP response of GC cells and application of pharmacological compounds with activity distinct of CP can result in sensitivity in tumor cells. Due to efficacy of exosomes in transferring bioactive molecules such as RNA and DNA molecules among GC cells, exosomes can also result in CP resistance. One of the newest progresses in overcoming CP resistance in GC is application of nanoplatforms for delivery of CP in GC therapy that they can increase accumulation of CP at tumor site and by suppressing carcinogenic factors and overcoming biological barriers, they increase CP toxicity on cancer cells.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U.P., India
| | | | - Nahla A Tayyib
- Faculty of Nursing, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Qakhramon Shomurodov
- Department of Maxillofacial Surgery, Tashkent State Dental Institute, Tashkent, Uzbekistan; Department of Scientific Affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Mostafai N Kadheim
- Department of Dentistry, Kut University College, Kut, Wasit 52001, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad 10022 Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | | | | | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, the Islamic Republic of Iran.
| |
Collapse
|
25
|
Zhu H, Zhang P, Shi J, Kou D, Bai X. Exosome-delivered circRPS5 inhibits the progression of melanoma via regulating the miR-151a/NPTX1 axis. PLoS One 2023; 18:e0287347. [PMID: 37384727 PMCID: PMC10310028 DOI: 10.1371/journal.pone.0287347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/04/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to exert critical functions in tumorigenesis and development. However, the underlying mechanism by which circRNAs regulate melanoma progression remain to be elucidated. METHODS The differentially expressed circRNAs were first identified by circRNA-seq, and circRNAs were validated via qRT-PCR and Sanger sequencing. Then, the impact of circRPS5, miR-151a and NPTX1 expression on the progression of melanoma cell were determined by gain- and loss-of-function assays. The relationship between circRPS5, miR-151a, and NPTX1 was predicted by StarBase website and authenticated by luciferase reporter assay. The melanoma cells-derived exosomes were characterized using nanoparticle tracking analysis (NTA) and western blot. RESULTS CircRPS5 was significantly downregulated in melanoma tissues and cell lines. Functionally, circRPS5 suppressed the proliferation, migration, and invasion of melanoma cells, and induced cell cycle arrest and apoptosis in vitro. Mechanistically, circRPS5 harbor miR-151a, acting as miRNA sponge, and then miR-151a targeted the 3'-UTR of NPTX1. Finally, circRPS5 was mainly incorporated into exosomes to inhibit the progression of melanoma cells. CONCLUSIONS This finding reveal circRPS5 suppressed the progression of melanoma through miR-151a/NPTX1 pathway, and may provide a promising therapeutic strategies for melanoma.
Collapse
Affiliation(s)
- Haijun Zhu
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pan Zhang
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Shi
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Deqiang Kou
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinping Bai
- Department of Plastic Surgery, The Central Hospital of Wuhan, Tong ji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Li F, Zhou C, Li S, Wang J, Li M, Mu H. Bioinformatic analysis of differentially expressed profiles of lncRNAs and miRNAs with their related ceRNA network in endometrial cancer. Medicine (Baltimore) 2023; 102:e32573. [PMID: 36701720 PMCID: PMC9857477 DOI: 10.1097/md.0000000000032573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Increasing evidence suggests that long non-coding riboneucleic acids (lncRNAs), as competing endogenous RNA (ceRNA), play a key role in the initiation, invasion, and metastasis of cancer. As a new hypothesis, the lncRNA-micro RNA (miRNA)-messenger RNA (mRNA), ceRNA regulatory network has been successfully constructed in a variety of cancers. However, lncRNA, which plays a ceRNA function in endometrial cancer (EC), is still poorly understood. In this study, we downloaded EC expression profiling from The Cancer Genome Atlas database and used the R software "edgeR" package to analyze the differentially expressed genes between EC and normal endometrium samples. Then, differentially expressed (DE) lncRNAs, miRNAs and mRNAs were selected to construct a lncRNA-miRNA-mRNA prognosis-related regulatory network based on interaction information. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed on the genes in the network to predict the potential underlying mechanisms and functions of lncRNAs in EC. Kaplan-Meier method and the log-rank test were used for survival analysis. Based on the "ceRNA hypothesis," we constructed a co-expression network of mRNA and lncRNA genes mediated by miRNA in the process of tumor genesis. Furthermore, we successfully constructed a dysregulated lncRNA-associated ceRNA network containing 96 DElncRNAs, 27 DEmiRNAs, and 74 DEmRNAs. Through Kaplan-Meier curve analysis, we found that 9 lncRNAs, 3 miRNAs, and 12 mRNAs were significantly correlated with the overall survival rate of patients among all lncRNAs, miRNAs, and mRNAs involved in ceRNA (P < .05). Our research provides a new perspective for the interaction among lncRNAs, miRNAs, and mRNA and lays the foundation for further research on the mechanism of lncRNAs in the occurrence of EC.
Collapse
Affiliation(s)
- Fengfan Li
- The First Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Chunlei Zhou
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Shuxuan Li
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Jingyu Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Ming Li
- Department of Gynecology, Peking University Second Hospital, Beijing, China
| | - Hong Mu
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- * Correspondence: Hong Mu, Tianjin First Central Hospital, No. 24 Fukang Road, Nankai District, Tianjin 300190, China (e-mail: )
| |
Collapse
|
27
|
Balkrishna A, Mittal R, Arya V. Tumor Suppressive Role of MicroRNAs in Triple Negative Breast Cancer. Curr Pharm Des 2023; 29:3357-3367. [PMID: 38037837 DOI: 10.2174/0113816128272489231124095922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023]
Abstract
Triple-negative breast cancers are highly aggressive, a heterogeneous form of breast cancer with a high re-occurrence rate that further lacks an efficient treatment strategy and prognostic marker. The tumor microenvironment of the disease comprises cancer-associated fibroblasts, cancer stem cells, immunological molecules, epithelial-mesenchymal transition, and a metastatic microenvironment that contributes to disease progression and metastasis to distant sites. Emerging evidence indicated that miRNA clusters would be of clinical utility as they exert an oncogenic or tumor suppressor role in TNBC. The present review article aims to highlight the therapeutic significance of miRNA in targeting the above-mentioned signaling cascades and modulating the intracellular crosstalk in the tumor microenvironment of TNBC. Prognostic implications of miRNAs to depict disease-free survival, distant metastasis-free survival, relapse-free survival, and overall survival outcome were also unveiled.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| |
Collapse
|
28
|
Mo H, Wang X, Ji G, Liang X, Yang Y, Sun W, Jia X, Xu L, Qiao Y, Zhou H, Zhao W, Fu S, Zhang X. The effect of SNPs in lncRNA as ceRNA on the risk and prognosis of hepatocellular carcinoma. BMC Genomics 2022; 23:769. [DOI: 10.1186/s12864-022-09010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Most susceptible loci of hepatocellular carcinoma (HCC) identified by genome-wide association studies (GWAS) are located in non-coding regions, and the mechanism of action remains unclear. The objective of this study was to explore the association of single nucleotide polymorphisms (SNPs) on long non-coding RNAs (lncRNAs) that affect competing endogenous RNAs (ceRNA) regulation mechanism with the risk and prognosis of HCC.
Methods
Based on a set of bioinformatics strategies, eight lncRNA genes that affect HCC through the mechanism of lncRNA-mediated ceRNA were systematically screened, and 15 SNPs that affect microRNA (miRNA) binding in these lncRNA genes were annotated. Genotyping was performed in 800 HCC cases and 801 healthy controls to examine associations of these SNPs with HCC in a northeastern Chinese Han population.
Results
The GG, GC and GG + GC genotypes of HOTAIR rs7958904 were associated with a 0.65, 0.59 and 0.63-fold decreased HCC risk, respectively. In addition, HCC patients with PVT1 rs3931282 AA + GA genotypes were less prone to develop late-stage cancers in a stratified analysis of clinical characteristics. When stratified by clinical biochemical indexes, rs1134492 and rs10589312 in PVT1 and rs84557 in EGFR-AS1 showed significant associations with aspartate aminotransferase (AST), alanine aminotransferase (ALT) or AST/ALT ratio in HCC patients. Furthermore, we constructed potential ceRNA regulatory axes that might be affected by five positive SNPs to explain the causes of these genetic associations.
Conclusions
HOTAIR rs7958904, PVT1 rs3931282, rs1134492 and rs10589312, and EGFR-AS1 rs84557 might be predictors for HCC risk or prognosis. Our results provide new insights into how SNPs on lncRNA-mediated ceRNAs confer interindividual differences to occurrence and progression of HCC.
Collapse
|