1
|
Sharma P, Giri A, Tripathi PN. Emerging Trends: Neurofilament Biomarkers in Precision Neurology. Neurochem Res 2024; 49:3208-3225. [PMID: 39347854 DOI: 10.1007/s11064-024-04244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024]
Abstract
Neurofilaments are structural proteins found in the cytoplasm of neurons, particularly in axons, providing structural support and stability to the axon. They consist of multiple subunits, including NF-H, NF-M, and NF-L, which form long filaments along the axon's length. Neurofilaments are crucial for maintaining the shape and integrity of neurons, promoting axonal transport, and regulating neuronal function. They are part of the intermediate filament (IF) family, which has approximately 70 tissue-specific genes. This diversity allows for a customizable cytoplasmic meshwork, adapting to the unique structural demands of different tissues and cell types. Neurofilament proteins show increased levels in both cerebrospinal fluid (CSF) and blood after neuroaxonal damage, indicating injury regardless of the underlying etiology. Precise measurement and long-term monitoring of damage are necessary for determining prognosis, assessing disease activity, tracking therapeutic responses, and creating treatments. These investigations contribute to our understanding of the importance of proper NF composition in fundamental neuronal processes and have implications for neurological disorders associated with NF abnormalities along with its alteration in different animal and human models. Here in this review, we have highlighted various neurological disorders such as Alzheimer's, Parkinson's, Huntington's, Dementia, and paved the way to use neurofilament as a marker in managing neurological disorders.
Collapse
Affiliation(s)
- Priti Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India
| | - Aditi Giri
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, India.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
2
|
Stern S, Crisamore K, Schuck R, Pacanowski M. Evaluation of the landscape of pharmacodynamic biomarkers in Niemann-Pick Disease Type C (NPC). Orphanet J Rare Dis 2024; 19:280. [PMID: 39061081 PMCID: PMC11282650 DOI: 10.1186/s13023-024-03233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/27/2024] [Indexed: 07/28/2024] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive, progressive disorder resulting from variants in NPC1 or NPC2 that leads to the accumulation of cholesterol and other lipids in late endosomes and lysosomes. The clinical manifestations of the disease vary by age of onset, and severity is often characterized by neurological involvement. To date, no disease-modifying therapy has been approved by the United States Food and Drug Administration (FDA) and treatment is typically supportive. The lack of robust biomarkers contributes to challenges associated with disease monitoring and quantifying treatment response. In recent years, advancements in detection methods have facilitated the identification of biomarkers in plasma and cerebral spinal fluid from patients with NPC, namely calbindin D, neurofilament light chain, 24(S)hydroxycholesterol, cholestane-triol, trihydroxycholanic acid glycinate, amyloid-β, total and phosphorylated tau, and N-palmitoyl-O-phosphocholine-serine. These biomarkers have been used to support several clinical trials as pharmacodynamic endpoints. Despite the significant advancements in laboratory techniques, translation of those advancements has lagged, and it remains unclear which biomarkers correlate with disease severity and progression, or which biomarkers could inform treatment response. In this review, we assess the landscape of biomarkers currently proposed to guide disease monitoring or indicate treatment response in patients with NPC.
Collapse
Affiliation(s)
- Sydney Stern
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA.
| | - Karryn Crisamore
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Robert Schuck
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| | - Michael Pacanowski
- Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993, USA
| |
Collapse
|
3
|
Antipova V, Heimes D, Seidel K, Schulz J, Schmitt O, Holzmann C, Rolfs A, Bidmon HJ, González de San Román Martín E, Huesgen PF, Amunts K, Keiler J, Hammer N, Witt M, Wree A. Differently increased volumes of multiple brain areas in Npc1 mutant mice following various drug treatments. Front Neuroanat 2024; 18:1430790. [PMID: 39081805 PMCID: PMC11286580 DOI: 10.3389/fnana.2024.1430790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Background Niemann-Pick disease type C1 (NPC1, MIM 257220) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of Npc1-/- displays a rapidly progressing form of Npc1 disease, which is characterized by weight loss, ataxia, and increased cholesterol storage. Npc1-/- mice receiving a combined therapy (COMBI) of miglustat (MIGLU), the neurosteroid allopregnanolone (ALLO) and the cyclic oligosaccharide 2-hydroxypropyl-β-cyclodextrin (HPßCD) showed prevention of Purkinje cell loss, improved motor function and reduced intracellular lipid storage. Although therapy of Npc1-/- mice with COMBI, MIGLU or HPßCD resulted in the prevention of body weight loss, reduced total brain weight was not positively influenced. Methods In order to evaluate alterations of different brain areas caused by pharmacotherapy, fresh volumes (volumes calculated from the volumes determined from paraffin embedded brain slices) of various brain structures in sham- and drug-treated wild type and mutant mice were measured using stereological methods. Results In the wild type mice, the volumes of investigated brain areas were not significantly altered by either therapy. Compared with the respective wild types, fresh volumes of specific brain areas, which were significantly reduced in sham-treated Npc1-/- mice, partly increased after the pharmacotherapies in all treatment strategies; most pronounced differences were found in the CA1 area of the hippocampus and in olfactory structures. Discussion Volumes of brain areas of Npc1-/- mice were not specifically changed in terms of functionality after administering COMBI, MIGLU, or HPßCD. Measurements of fresh volumes of brain areas in Npc1-/- mice could monitor region-specific changes and response to drug treatment that correlated, in part, with behavioral improvements in this mouse model.
Collapse
Affiliation(s)
- Veronica Antipova
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | - Diana Heimes
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Katharina Seidel
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Klinik für Frauenheilkunde und Geburtshilfe, Dietrich-Bonhoeffer-Klinikum, Neubrandenburg, Germany
| | - Jennifer Schulz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Oliver Schmitt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Carsten Holzmann
- Institute of Medical Genetics, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| | - Arndt Rolfs
- Medical Faculty, University of Rostock, Rostock, Germany
| | - Hans-Jürgen Bidmon
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | | | - Pitter F. Huesgen
- Central Institute of Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
- Institut für Biologie II, AG Funktional Proteomics, Freiburg, Germany
| | - Katrin Amunts
- Institute of Neurosciences and Medicine, Structural and Functional Organisation of the Brain (INM-1), Forschungszentrum Jülich, Jülich, Germany
- C. and O. Vogt Institute for Brain Research, University Hospital Düsseldorf, University Düsseldorf, Düsseldorf, Germany
| | - Jonas Keiler
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
| | - Niels Hammer
- Division of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
- Department of Orthopedic and Trauma Surgery, University of Leipzig, Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Martin Witt
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Department of Anatomy, Technische Universität Dresden, Dresden, Germany
- Department of Anatomy, Institute of Biostructural Basics of Medical Sciences, Poznan Medical University, Poznan, Poland
| | - Andreas Wree
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany
- Centre of Transdisciplinary Neuroscience Rostock, Rostock, Germany
| |
Collapse
|
4
|
Guan L, Jia Z, Xu K, Yang M, Li X, Qiao L, Liu Y, Lin J. Npc1 gene mutation abnormally activates the classical Wnt signalling pathway in mouse kidneys and promotes renal fibrosis. Anim Genet 2024; 55:99-109. [PMID: 38087834 DOI: 10.1111/age.13381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2024]
Abstract
Niemann-Pick disease type C1 (NPC1) is a lysosomal lipid storage disease caused by NPC1 gene mutation. Our previous study found that, compared with wild-type (Npc1+/+ ) mice, the renal volume and weight of Npc1 gene mutant (Npc1-/- ) mice were significantly reduced. We speculate that Npc1 gene mutations may affect the basic structure of the kidneys of Npc1-/- mice, and thus affect their function. Therefore, we randomly selected postnatal Day 28 (P28) and P56 Npc1+/+ and Npc1-/- mice, and observed the renal structure and pathological changes by haematoxylin-eosin staining. The level of renal fibrosis was detected by immunofluorescence histochemical techniques, and western blotting was used to detect the expression levels of apoptosis-related proteins and canonical Wnt signalling pathway related proteins. The results showed that compared with Npc1+/+ mice, the kidneys of P28 and P56 Npc1-/- mice underwent apoptosis and fibrosis; furthermore, there were obvious vacuoles in the cytoplasm of renal tubular epithelial cells of P56 Npc1-/- mice, the cell bodies were loose and foam-like, and the canonical Wnt signalling pathway was abnormally activated. These results showed that Npc1 gene mutation can cause pathological changes in the kidneys of mice. As age increased, vacuoles developed in the cytoplasm of renal tubular epithelial cells, and apoptosis of renal cells, abnormal activation of the Wnt signalling pathway, and promotion of renal fibrosis increased.
Collapse
Affiliation(s)
- Lihong Guan
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Noninvasive Neuromodulation, Xinxiang, Henan, China
| | - Zisen Jia
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Keli Xu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minlin Yang
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoying Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Liang Qiao
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yanli Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
| | - Juntang Lin
- Stem Cells and Biotherapy Engineering Research Center of Henan, National Joint Engineering Laboratory of Stem Cells and Biotherapy, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, Henan, China
- Henan International Joint Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
5
|
Cawley NX, Giddens S, Farhat NM, Luke RA, Scott KEJ, Mohamed HO, Dang Do A, Berry-Kravis E, Cologna SM, Liu F, Porter FD. Elevated cerebrospinal fluid ubiquitin C-terminal hydrolase-L1 levels correlate with phenotypic severity and therapeutic response in Niemann-Pick disease, type C1. Mol Genet Metab 2023; 140:107656. [PMID: 37517328 PMCID: PMC10803635 DOI: 10.1016/j.ymgme.2023.107656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Niemann-Pick disease, type C1 (NPC1) is an ultrarare, recessive disorder due to pathological variants of NPC1. The NPC1 phenotype is characterized by progressive cerebellar ataxia and cognitive impairment. Although classically a childhood/adolescent disease, NPC1 is heterogeneous with respect to the age of onset of neurological signs and symptoms. While miglustat has shown to be clinically effective, there are currently no FDA approved drugs to treat NPC1. Identification and characterization of biomarkers may provide tools to facilitate therapeutic trials. Ubiquitin C-terminal hydrolase-L1 (UCHL1) is a protein which is highly expressed by neurons and is a biomarker of neuronal damage. We thus measured cerebrospinal fluid (CSF) levels of UCHL1 in individuals with NPC1. METHODS CSF levels of UCHL1 were measured using a Quanterix Neuroplex 4 assay in 94 individuals with NPC1 and 35 age-appropriate comparison samples. Cross-sectional and longitudinal CSF UCHL1 levels were then evaluated for correlation with phenotypic measures and treatment status. RESULTS CSF UCHL1 levels were markedly elevated (3.3-fold) in individuals with NPC1 relative to comparison samples. The CSF UCHL1 levels showed statistically significant (adj p < 0.0001), moderate, positive correlations with both the 17- and 5-domain NPC Neurological Severity Scores and the Annual Severity Increment Scores. Miglustat treatment significantly decreased (adj p < 0.0001) CSF UCHL1 levels by 30% (95% CI 17-40%). CONCLUSIONS CSF UCHL1 levels are elevated in NPC1, increase with increasing clinical severity and decrease in response to therapy with miglustat. Based on these data, UCHL1 may be a useful biomarker to monitor disease progression and therapeutic response in individuals with NPC1.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Spencer Giddens
- Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN, USA
| | - Nicole M Farhat
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rachel A Luke
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Katelin E J Scott
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hibaaq O Mohamed
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - An Dang Do
- Unit on Cellular Stress in Development and Diseases, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Stephanie M Cologna
- Department of Chemistry and Laboratory of Integrative Neuroscience, University of Illinois Chicago, Chicago, IL, USA
| | - Fang Liu
- Applied and Computational Mathematics and Statistics, University of Notre Dame, South Bend, IN, USA
| | - Forbes D Porter
- Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Dang Do AN, Sleat DE, Campbell K, Johnson NL, Zheng H, Wassif CA, Dale RK, Porter FD. Cerebrospinal Fluid Protein Biomarker Discovery in CLN3. J Proteome Res 2023; 22:2493-2508. [PMID: 37338096 PMCID: PMC11095826 DOI: 10.1021/acs.jproteome.3c00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Syndromic CLN3-Batten is a fatal, pediatric, neurodegenerative disease caused by variants in CLN3, which encodes the endolysosomal transmembrane CLN3 protein. No approved treatment for CLN3 is currently available. The protracted and asynchronous disease presentation complicates the evaluation of potential therapies using clinical disease progression parameters. Biomarkers as surrogates to measure the progression and effect of potential therapeutics are needed. We performed proteomic discovery studies using cerebrospinal fluid (CSF) samples from 28 CLN3-affected and 32 age-similar non-CLN3 individuals. Proximal extension assay (PEA) of 1467 proteins and untargeted data-dependent mass spectrometry [MS; MassIVE FTP server (ftp://MSV000090147@massive.ucsd.edu)] were used to generate orthogonal lists of protein marker candidates. At an adjusted p-value of <0.1 and threshold CLN3/non-CLN3 fold-change ratio of 1.5, PEA identified 54 and MS identified 233 candidate biomarkers. Some of these (NEFL, CHIT1) have been previously linked with other neurologic conditions. Others (CLPS, FAM217B, QRICH2, KRT16, ZNF333) appear to be novel. Both methods identified 25 candidate biomarkers, including CHIT1, NELL1, and ISLR2 which had absolute fold-change ratios >2. NELL1 and ISLR2 regulate axonal development in neurons and are intriguing new candidates for further investigation in CLN3. In addition to identifying candidate proteins for CLN3 research, this study provides a comparison of two large-scale proteomic discovery methods in CSF.
Collapse
Affiliation(s)
- An N. Dang Do
- Unit on Cellular Stress in Development and Diseases, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - David E. Sleat
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
- Department of Biochemistry and Molecular Biology, Robert-Wood Johnson Medical School, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Nicholas L. Johnson
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Rutgers Biomedical Health Sciences, Piscataway, New Jersey 08854, United States
| | - Christopher A. Wassif
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Forbes D. Porter
- Section on Molecular Dysmorphology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|