1
|
Romero-Alfano I, Prats E, Ortiz Almirall X, Raldúa D, Gómez-Canela C. Analyzing the neurotoxic effects of anatoxin-a and saxitoxin in zebrafish larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107088. [PMID: 39265222 DOI: 10.1016/j.aquatox.2024.107088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Global warming due to climate change, as well as freshwater eutrophication caused by anthropogenic activities are responsible, among other factors, for an increasing occurrence of harmful algal blooms (HABs) in aquatic systems. These can lead to the generation of cyanotoxins, secondary metabolites coming from cyanobacteria, producing adverse effects in living organisms including death. This research aims to study the effects that two neurotoxins, anatoxin-a (ATX-a) and saxitoxin (STX), have on living organisms. Once the stability of both compounds in water was determined for a 24 h period using ultra-high-performance liquid chromatography coupled to a triple quadrupole mass spectrometer (UPLC-MS/MS), zebrafish larvae were exposed to different levels of toxins (1 ng L-1, 10 ng L-1, 100 ng L-1 and 1 μg L-1) during 24 h. Behavioral studies including vibrational startle response (VSR), habituation to vibrational stimuli, basal locomotor activity (BLM) and visual motor response (VMR) were performed using Danio Vision system, and neurotransmitters (NTs) from 15-head pools of control and exposed zebrafish larvae were extracted and analyzed by UPLC-MS/MS. Both compounds induced hypolocomotion in the individuals, while 10 and 100 ng L-1 of ATX-a significantly increased methionine (120 % and 126 %, respectively) and glutamate levels (118 % and 129 %, respectively). Saxitoxin enhanced 3-metoxytyramine (3-MT) levels at 1 ng L-1 by 185 %. The findings of this study show that both studied cyanotoxins influence the behavior of zebrafish larvae as well as their metabolism.
Collapse
Affiliation(s)
- Irene Romero-Alfano
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Eva Prats
- Research and Development Center, CID-CSIC, Jordi Girona 18, 08034 Barcelona, Spain
| | - Xavier Ortiz Almirall
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Demetrio Raldúa
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain.
| |
Collapse
|
2
|
Mohammad SN, Pinto AAG, Silva RAD, Suffredini IB, Tournier AL, Cartwright SJ, Yunes JS, Bonamin LV. Environmental Homeopathy: Homeopathic Potencies Regulate the Toxicity and Growth of Raphidiopsis raciborskii (cyanobacteria) and can be Tracked Physico-Chemically. Part 1: Biological Results. HOMEOPATHY 2024. [PMID: 38710226 DOI: 10.1055/s-0044-1780526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Cyanobacteria are microorganisms found in many parts of the world and several genera, such as Raphidiopsis raciborskii, are producers of cyanotoxins. Homeopathic potencies have been found to modulate toxicity in different biological models, and the present study endeavors to discover whether this might also be the case with cyanobacteria. OBJECTIVES Our objective was to investigate the possible effects of homeopathic potencies on the resilience of Artemia franciscana (brine shrimp) embryos to saxitoxin (STX; cyanotoxin) and on controlling the growth of R. raciborskii in vitro. METHOD A. franciscana cysts were cultivated in seawater in 96-well plates to evaluate the hatching rate and vitality, plus the gene expression of heat shock proteins (HSPs), after being challenged with R. raciborskii extract containing 2.5 µg/L of STX and treated with different homeopathic potencies. Untreated wells were used as controls ("base-line"). Potencies were chosen from a screening process based on seven selected homeopathic preparations according to the similitude of STX symptoms (Sulphur, Zincum metallicum, Nitric acidum, Plumbum metallicum, Mercurius solubilis, Phosphoric acidum, Isotherapic from R. raciborskii extract; all at 6cH, 30cH and 200cH). Cultures of R. raciborskii maintained in an artificial seawater medium were equally treated with screened homeopathic potencies selected from the same list but specifically for their growth control as a function of time. RESULTS A 15% lower rate of hatching of A. franciscana cysts was observed after treatment with Nitric acidum 6cH in comparison with baseline (p = 0.05). A complete toxicity reversal was seen after treatment with Isotherapic 200cH, with a 23-fold increase of Hsp 26 gene expression (p = 0.023) and a 24-fold increase of p26 gene expression (p ≤ 0.001) in relation to baseline. Nitric acidum 200cH and Mercurius solubilis 30cH limited the exponential growth of cyanobacteria up to 95% and 85% respectively (p ≤ 0.003) in relation to baseline. Succussed water presented only a transitory 50% inhibition effect. CONCLUSION Isotherapic 200cH improved A. franciscana bioresilience to STX; Nitric acidum 200cH and Mercurius solubilis 30cH showed the optimal performance on limiting R. raciborskii growth. The results point to the potential of homeopathic potencies to mitigate environmental problems related to water quality.
Collapse
Affiliation(s)
- Suham Nowrooz Mohammad
- Research Center-UNIP, Graduate Program on Environmental and Experimental Pathology, University Paulista, São Paulo, Brazil
| | - Andreia Adelaide G Pinto
- Research Center-UNIP, Graduate Program on Environmental and Experimental Pathology, University Paulista, São Paulo, Brazil
| | - Rodrigo Augusto da Silva
- Research Center-UNIP, Graduate Program on Environmental and Experimental Pathology, University Paulista, São Paulo, Brazil
| | - Ivana Barbosa Suffredini
- Research Center-UNIP, Graduate Program on Environmental and Experimental Pathology, University Paulista, São Paulo, Brazil
| | - Alexander L Tournier
- Institute of Complementary and Integrative Medicine, University of Bern, Switzerland
| | - Steven J Cartwright
- Cherwell Laboratory for Fundamental Research in Homeopathy, Oxford, United Kingdom
| | | | - Leoni V Bonamin
- Research Center-UNIP, Graduate Program on Environmental and Experimental Pathology, University Paulista, São Paulo, Brazil
| |
Collapse
|
3
|
Lee MJ, Henderson SB, Clermont H, Turna NS, McIntyre L. The health risks of marine biotoxins associated with high seafood consumption: Looking beyond the single dose, single outcome paradigm with a view towards addressing the needs of coastal Indigenous populations in British Columbia. Heliyon 2024; 10:e27146. [PMID: 38463841 PMCID: PMC10923677 DOI: 10.1016/j.heliyon.2024.e27146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024] Open
Abstract
People who consume high quantities of seafood are at a heightened risk for marine biotoxin exposure. Coastal Indigenous peoples may experience higher levels of risk than the general population due to their reliance on traditional marine foods. Most evidence on the health risks associated with biotoxins focus on a single exposure at one point in time. There is limited research on other types of exposures that may occur among those who regularly consume large quantities of seafood. The objective of this review is to assess what is known about the unique biotoxin exposure risks associated with the consumption patterns of many coastal Indigenous populations. These risks include [1]: repeated exposure to low doses of a single or multiple biotoxins [2]; repeated exposures to high doses of a single or multiple biotoxins; and [3] exposure to multiple biotoxins at a single point in time. We performed a literature search and collected 23 recent review articles on the human health effects of different biotoxins. Using a narrative framework synthesis approach, we collated what is known about the health effects of the exposure risks associated with the putative consumption patterns of coastal Indigenous populations. We found that the health effects of repeated low- or high-dose exposures and the chronic health effects of marine biotoxins are rarely studied or documented. There are gaps in our understanding of how risks differ by seafood species and preparation, cooking, and consumption practices. Together, these gaps contribute to a relatively poor understanding of how biotoxins impact the health of those who regularly consume large quantities of seafood. In the context of this uncertainty, we explore how known and potential risks associated with biotoxins can be mitigated, with special attention to coastal Indigenous populations routinely consuming seafood. Overall, we conclude that there is a need to move beyond the single-dose single-outcome model of exposure to better serve Indigenous communities and others who consume high quantities of seafood.
Collapse
Affiliation(s)
- Michael Joseph Lee
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Sarah B. Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Holly Clermont
- Environmental Public Health Services, First Nations Health Authority, Snaw-naw-as Territory, Nanoose Bay, Canada
| | - Nikita Saha Turna
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| | - Lorraine McIntyre
- Environmental Health Services, British Columbia Centre for Disease Control, 655 W 12th Ave, Vancouver, BC, V5Z 4R4, Canada
| |
Collapse
|
4
|
Thawabteh AM, Naseef HA, Karaman D, Bufo SA, Scrano L, Karaman R. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel) 2023; 15:582. [PMID: 37756009 PMCID: PMC10535532 DOI: 10.3390/toxins15090582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.
Collapse
Affiliation(s)
- Amin Mahmood Thawabteh
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
- General Safety Section, General Services Department, Birzeit University, Bir Zeit 71939, Palestine
| | - Hani A Naseef
- Faculty of Pharmacy, Nursing and Health Professions, Birzeit University, Ramallah 00972, Palestine; (A.M.T.); (H.A.N.)
| | - Donia Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
| | - Sabino A. Bufo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
- Department of Geography, Environmental Management and Energy Studies, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2092, South Africa
| | - Laura Scrano
- Department of European and Mediterranean Cultures, University of Basilicata, Via Lanera 20, 75100 Matera, Italy;
| | - Rafik Karaman
- Faculty of Pharmacy, Al-Quds University, Jerusalem 20002, Palestine;
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano 10, 85100 Potenza, Italy;
| |
Collapse
|
5
|
Boukadida K, Banni M, Romero-Ramirez A, Clerandeau C, Gourves PY, Cachot J. Metal contamination and heat stress impair swimming behavior and acetylcholinesterase activity in embryo-larval stages of the Mediterranean mussel, Mytilus galloprovincialis. MARINE ENVIRONMENTAL RESEARCH 2022; 179:105677. [PMID: 35738152 DOI: 10.1016/j.marenvres.2022.105677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Behavioral parameters are increasingly considered sensitive and early bioindicators of toxicity in aquatic organisms. A video-tracking tool was specifically developed to monitor the swimming behaviour of D-larvae of the Mediterranean mussel, Mytilus galloprovincialis, in controlled laboratory conditions. Both maximum and average swimming speeds and trajectories were recorded. We then investigated the impact of copper and silver with or without a moderate rise of temperature on swimming behavior and acetylcholinesterase (AChE) activity of mussel D-larvae and the possible mechanistic link between both biological responses. Our results showed that copper and/or silver exposure, as well as temperature increase, disrupts the swimming behavior of mussel larvae which could compromise their dispersal and survival. In addition, the combined effect of temperature and metals significantly (p < 0.05) increased AChE activity in mussel larvae. Pearson's correlation analysis was performed and results showed that the AChE activity is positively correlated with maximum speeds (r = 0.71, p < 0.01). This study demonstrates the value of behavioral analyzes of aquatic invertebrates as a sensitive and integrate marker of the effects of stressors.
Collapse
Affiliation(s)
- Khouloud Boukadida
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France; Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology, ISA, Chott-Mariem, 4042, Sousse, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Alicia Romero-Ramirez
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Christelle Clerandeau
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Pierre-Yves Gourves
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| | - Jérôme Cachot
- Laboratory of Oceanic and Continental Environments and Paleoenvironments, University of Bordeaux, EPOC, UMR 5805, F-33600, Pessac, France
| |
Collapse
|
6
|
Chen X, Huang B, Zhao Q, Wang Z, Liu W, Zhang J, Zhou Y, Sun Q, Huang H, Huang X, Jiang T, Liu J. Shellfish contamination with lipophilic toxins and dietary exposure assessments from consumption of shellfish products in Shenzhen, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112446. [PMID: 34175823 DOI: 10.1016/j.ecoenv.2021.112446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Lipophilic shellfish toxins (LSTs) can cause human illness and therefore represent a serious threat to public health. Shellfish are the main dietary source of LSTs, but very few studies have appraised dietary exposure to LSTs through shellfish consumption in China. We measured levels of multiple LSTs in shellfish samples sold in the principal wholesale seafood market in the southern coastal city of Shenzhen, and we estimated the potential for acute and chronic LST exposure of the Shenzhen population via ingestion of shellfish. LST contamination data were obtained from a total of 14 species of 188 commercial samples. Eleven individual LSTs, namely okadaic acid (OA), dinophysis toxin-1 and -2 (DTX1 and DTX2), pectenotoxin-2 (PTX2), yessotoxin and homo yessotoxin (YTX and hYTX), azaspiracid-1, -2 and -3 (AZA1, AZA2, AZA3), spirolides (SPXs), and gymnodimine (GYM), were determined using liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS). More than two thirds of samples showed undetectable LSTs, while the detection rates (the proportion of samples with detectable LSTs) of individual LSTs ranged from 0% to 45.7%. Most shellfish samples had lower levels of LST contamination than the corresponding limits of detection (LODs), while some samples had levels of hYTX and GYM that exceeded the limits of quantification (LOQs). Overall, levels of LSTs in the 188 samples were below the regulatory limits set by most countries. Acute and chronic exposures of LST were estimated by a point-estimate modeling method that combined sample contamination data with consumption data from dietary survey of Shenzhen residents and consumption figures proposed by EFSA, the European Food Safety Authority. Seasonal variations in LST concentrations were noted in some instances. Overall, the estimated acute exposure to LSTs based on consumption of large-size shellfish portions and the maximum LSTs contamination level were below the provisional acute reference doses (ARfDs) proposed by the EFSA. Chronic exposure estimates based on mean and 99th percentile consumption of shellfish by Shenzhen residents and mean LSTs contamination levels in the collected samples were from 2452 to 74 times lower than those associated with estimated acute exposure levels.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Baiqiang Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China; Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou 510632, China
| | - Qionghui Zhao
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong 518045, China
| | - Zhou Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Jianying Zhang
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong 518045, China
| | - Yan Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Qian Sun
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Tianjiu Jiang
- Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou 510632, China.
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
7
|
Sun Q, Chen X, Liu W, Li S, Zhou Y, Yang X, Liu J. Effects of long-term low dose saxitoxin exposure on nerve damage in mice. Aging (Albany NY) 2021; 13:17211-17226. [PMID: 34197336 PMCID: PMC8312470 DOI: 10.18632/aging.203199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/18/2021] [Indexed: 11/25/2022]
Abstract
Saxitoxin (STX), as a type of paralytic shellfish poisoning (PSP), is gaining widespread attention due to its long existence in edible shellfish. However, the mechanism underlying STX chronic exposure-induced effect is not well understood. Here, we evaluated the neurotoxicity effects of long-term low-dose STX exposure on C57/BL mice by behavioral tests, pathology analysis, and hippocampal proteomics analysis. Several behavioral tests showed that mice were in a cognitive deficiency after treated with 0, 0.5, 1.5, or 4.5 μg STX equivalents/kg body weight in the drinking water for 3 months. Compared with control mice, STX-exposed mice exhibited brain neuronal damage characterized by decreasing neuronal cells and thinner pyramidal cell layers in the hippocampal CA1 region. A total of 29 proteins were significantly altered in different STX dose groups. Bioinformatics analysis showed that protein phosphatase 1 (Ppp1c) and arylsulfatase A (Arsa) were involved in the hippo signaling pathway and sphingolipid metabolism pathway. The decreased expression of Arsa indicates that long-term low doses of STX exposure can cause neuronal inhibition, which is a process related to spatial memory impairment. Taken together, our study provides a new understanding of the molecular mechanisms of STX neurotoxicity.
Collapse
Affiliation(s)
- Qian Sun
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China.,School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China
| | - Shenpan Li
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China.,School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Yan Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China
| | - Xingfen Yang
- School of Public Health, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Díaz-Alejo Guerrero HM, Martínez Esteban RP, Martínez-Alesón García P, García Balboa C, Costas Costas E, López Rodas V. Detección de biotoxinas en moluscos de venta al consumidor en la Comunidad de Madrid. REVISTA MADRILEÑA DE SALUD PÚBLICA 2020. [DOI: 10.36300/remasp.2020.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
La presencia de biotoxinas en los moluscos es largamente conocida y ampliamente vigilada. En España, las dos que más se han detectado en los últimos años han sido las saxitoxinas y el ácido okadaico (toxinas PSP y DSP, respectivamente). A efecto de evitar intoxicaciones agudas en la población, existen unos límites máximos de toxinas que pueden estar presentes en el alimento de venta al consumidor. Sin embargo, la presencia de toxina a concentraciones inferiores a la legalmente establecida puede producir intoxicaciones crónicas o efectos a largo plazo. El objetivo del estudio es detectar la presencia de toxinas que están llegando a consumo humano, estén o no dentro del límite de concentración permitido.
Se realizó un muestreo en diferentes pescaderías de la Comunidad de Madrid, sin incluir la propia ciudad de Madrid, y se analizó la concentración de toxinas PSP y DSP presentes en 50 muestras de mejillones, almejas, berberechos, vieiras y zamburiñas.
Los resultados indican que un 4% de las muestras de los moluscos adquiridos contenían saxitoxinas y en un 6% se detectó ácido okadaico, ya sea en forma de trazas o con una positividad confirmada en base al método analítico, si bien los datos obtenidos cumplen los límites máximos establecidos a nivel comunitario.
Collapse
Affiliation(s)
| | - Rocío Paloma Martínez Esteban
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España). Servicio Madrileño de Salud (SERMAS)
| | | | - Camino García Balboa
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España)
| | - Eduardo Costas Costas
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España)
| | - Victoria López Rodas
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid (España)
| |
Collapse
|
9
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|