1
|
Thumtecho S, Suteparuk S, Sitprija V. Pulmonary involvement from animal toxins: the cellular mechanisms. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230026. [PMID: 37727535 PMCID: PMC10506740 DOI: 10.1590/1678-9199-jvatitd-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Venomous animals and their venom have always been of human interest because, despite species differences, coevolution has made them capable of targeting key physiological components of our bodies. Respiratory failure from lung injury is one of the serious consequences of envenomation, and the underlying mechanisms are rarely discussed. This review aims to demonstrate how toxins affect the pulmonary system through various biological pathways. Herein, we propose the common underlying cellular mechanisms of toxin-induced lung injury: interference with normal cell function and integrity, disruption of normal vascular function, and provocation of excessive inflammation. Viperid snakebites are the leading cause of envenomation-induced lung injury, followed by other terrestrial venomous animals such as scorpions, spiders, and centipedes. Marine species, particularly jellyfish, can also inflict such injury. Common pulmonary manifestations include pulmonary edema, pulmonary hemorrhage, and exudative infiltration. Severe envenomation can result in acute respiratory distress syndrome. Pulmonary involvement suggests severe envenomation, thus recognizing these mechanisms and manifestations can aid physicians in providing appropriate treatment.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Suchai Suteparuk
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute and King Chulalongkorn Memorial
Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
2
|
Paolino G, Di Nicola MR, Avella I, Mercuri SR. Venomous Bites, Stings and Poisoning by European Vertebrates as an Overlooked and Emerging Medical Problem: Recognition, Clinical Aspects and Therapeutic Management. Life (Basel) 2023; 13:1228. [PMID: 37374011 PMCID: PMC10305571 DOI: 10.3390/life13061228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Europe presents a high number of venomous and poisonous animals able to elicit medically relevant symptoms in humans. However, since most of the accidents involving venomous or poisonous animals in Europe are unreported, their incidence and morbidity are severely overlooked. Here we provide an overview of the European vertebrate species of greatest toxicological interest, the clinical manifestations their toxins can cause, and their treatment. We report the clinical symptoms induced by envenomations and poisoning caused by reptiles, fishes, amphibians and mammals in Europe, ranging from mild, local symptoms (e.g., erythema, edema) to systemic and potentially deadly. The present work constitutes a tool for physicians to recognize envenomation/poisoning symptoms caused by the most medically relevant European vertebrates and to decide which approach is the most appropriate to treat them.
Collapse
Affiliation(s)
- Giovanni Paolino
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Unit of Clinical Dermatology, Università Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Matteo Riccardo Di Nicola
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
- Asociación Herpetológica Española, Apartado de Correos 191, 28911 Leganés, Spain
| | - Ignazio Avella
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4099-002 Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Santo Raffaele Mercuri
- Unit of Dermatology and Cosmetology, I.R.C.C.S. San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; (G.P.)
| |
Collapse
|
3
|
FIOROTTI HELENAB, SOARES THIAGOG, BORGES MÁRCIAH, MATAVEL ALESSANDRA, CAMPOS FABIANAV, FIGUEIREDO SUELYGDE. Preliminary report on the hemagglutinating activity of the Scorpaena plumieri fish venom. AN ACAD BRAS CIENC 2022; 94:e20200976. [DOI: 10.1590/0001-376520220976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Affiliation(s)
- HELENA B. FIOROTTI
- Universidade Federal do Espírito Santo, Brazil; Instituto Butantan, Brazil
| | | | | | | | | | | |
Collapse
|
4
|
Fish Cytolysins in All Their Complexity. Toxins (Basel) 2021; 13:toxins13120877. [PMID: 34941715 PMCID: PMC8704401 DOI: 10.3390/toxins13120877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 01/10/2023] Open
Abstract
The majority of the effects observed upon envenomation by scorpaenoid fish species can be reproduced by the cytolysins present in their venoms. Fish cytolysins are multifunctional proteins that elicit lethal, cytolytic, cardiovascular, inflammatory, nociceptive, and neuromuscular activities, representing a novel class of protein toxins. These large proteins (MW 150–320 kDa) are composed by two different subunits, termed α and β, with about 700 amino acid residues each, being usually active in oligomeric form. There is a high degree of similarity between the primary sequences of cytolysins from different fish species. This suggests these molecules share similar mechanisms of action, which, at least regarding the cytolytic activity, has been proved to involve pore formation. Although the remaining components of fish venoms have interesting biological activities, fish cytolysins stand out because of their multifunctional nature and their ability to reproduce the main events of envenomation on their own. Considerable knowledge about fish cytolysins has been accumulated over the years, although there remains much to be unveiled. In this review, we compiled and compared the current information on the biochemical aspects and pharmacological activities of fish cytolysins, going over their structures, activities, mechanisms of action, and perspectives for the future.
Collapse
|
5
|
Marrón-Grijalba E, Cardona-Félix CS, Cruz-Escalona VH, Muñoz-Ochoa M, Cabral-Romero C, Hernández-Delgadillo R, Rivera-Pérez C, Aguila-Ramírez RN. Biochemical characterization and in vitro biological activities of the epithelial cell extracts from Hypanus dipterurus spine. Toxicon 2020; 187:129-135. [PMID: 32916140 DOI: 10.1016/j.toxicon.2020.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/31/2020] [Indexed: 11/29/2022]
Abstract
Ocean organisms live in competitive environments that demand the production of poisons and toxins. In some cases, these substances have been used in the pharmaceutical industry for human disease treatments. Most fish poisons generally have potent cytolytic activity, probably through cardiovascular and neuromuscular effects. In the case of marine stingrays, the injuries made by their tail venom apparatus are caused by the mechanical penetration of their sting and a subsequent venom release. This study focused on the evaluation of substances with cytotoxic activity in the epithelium that covers the venom apparatus from the marine stingray Hypanus dipterurus. To demonstrate the above, the hemolytic, proteolytic and cytotoxic capacities of H. dipterurus epithelium substances were determined. Discs impregnated with epithelial extract were used on blood agar plates. The proteolytic activity was analyzed using casein as substrate and for gelatin the liquefaction activity test. To determine the cytotoxicity degree of the extracts, the proliferation and cell viability MTT bioassay was implemented on human cervical carcinoma cells (HeLa). The results showed that no hemolytic or proteolytic activity existed against casein associated with the epithelial extract, but gelatin hydrolysis and cytotoxic activity against the HeLa cell line were observed. This study concludes that the substances found in the epithelium covering the H. dipterurus stingray venom apparatus are a mixture of various proteins, among which, glycosylated anionic proteins represent a potential source of molecules with cytotoxic and hydrolytic activity.
Collapse
Affiliation(s)
- Estrella Marrón-Grijalba
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - César Salvador Cardona-Félix
- CONACyT-Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Víctor Hugo Cruz-Escalona
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Mauricio Muñoz-Ochoa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo León, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Eduardo Aguirre Pequeño, Mitras Centro, 64460, Monterrey, N.L., Mexico.
| | - René Hernández-Delgadillo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Dr. Eduardo Aguirre Pequeño, Mitras Centro, 64460, Monterrey, N.L., Mexico.
| | - Crisalejandra Rivera-Pérez
- Centro de Investigaciones Biológicas Del Noroeste, Km. 1 Carretera a San Juan de La Costa, La Paz, BCS, 23205, Mexico.
| | - Ruth Noemí Aguila-Ramírez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. Instituto Politécnico Nacional S/N. Col. Playa Palo de Santa Rita, La Paz, Baja California Sur, 23096, Mexico.
| |
Collapse
|
6
|
The venoms of the lesser ( Echiichthys vipera) and greater ( Trachinus draco) weever fish- A review. Toxicon X 2020; 6:100025. [PMID: 32550581 PMCID: PMC7285994 DOI: 10.1016/j.toxcx.2020.100025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022] Open
Abstract
In comparison with other animal venoms, fish venoms remain relatively understudied. This is especially true for that of the lesser Echiichthys vipera and greater weever fish Trachinus draco which, apart from the isolation of their unique venom cytolysins, trachinine and dracotoxin, respectively, remain relatively uncharacterised. Envenomation reports mainly include mild symptoms consisting of nociception and inflammation. However, like most fish venoms, if the venom becomes systemic it causes cardiorespiratory and blood pressure changes. Although T. draco venom has not been studied since the 1990's, recent studies on E. vipera venom have discovered novel cytotoxic components on human cancer cells, but due to the scarcity of research on the molecular make-up of the venom, the molecule(s) causing this cytotoxicity remains unknown. This review analyses past studies on E. vipera and T. draco venom, the methods used in the , the venom constituents characterised, the reported symptoms of envenomation and compares these findings with those from other venomous Scorpaeniformes. Research on the weever fish venoms Echiichthys vipera and Trachinus draco has been scarce. E. vipera and T. draco venoms elicit cardiorespiratory symptoms in victims. E. vipera and T. draco contain unique cytolysins – Trachinine and Dracotoxin. Dracotoxin is haemolytic and contains membrane depolarising activities. E. vipera venom triggers apoptosis in human colon carcinoma cells.
Collapse
|
7
|
Morlighem JÉRL, Radis-Baptista G. The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Curr Protein Pept Sci 2019; 20:334-355. [PMID: 30255754 DOI: 10.2174/1389203719666180926121722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| | - Gandhi Radis-Baptista
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| |
Collapse
|
8
|
Costa FLS, De Lima ME, Figueiredo SG, Ferreira RS, Prates NS, Sakamoto T, Salas CE. Sequence analysis of the cDNA encoding for SpCTx: a lethal factor from scorpionfish venom ( Scorpaena plumieri). J Venom Anim Toxins Incl Trop Dis 2018; 24:24. [PMID: 30181739 PMCID: PMC6114736 DOI: 10.1186/s40409-018-0158-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/03/2018] [Indexed: 12/03/2022] Open
Abstract
Background Lethal factors are multifunctional oligomeric proteins found in the venomous apparatus of Scorpaeniformes fish. These toxins elicit not only an array of biological responses in vitro but also cardiovascular disorders and strong hemolytic, nociceptive and edematogenic activities in vivo. This work describes the cloning and molecular identification of two toxin subunits, denominated Sp-CTx-α and Sp-CTx-β, from scorpionfish venom (Scorpaena plumieri). Methods The primary structures were deduced after cDNA amplification by PCR with primers from conserved sequences described in Scorpaeniformes toxins. Following DNA sequencing and bioinformatic analysis, the tridimensional structures of both subunits were modeled. Results The translated sequences (702 amino acids, each subunit) show homology with other lethal factors, while alignment between Sp-CTx-α and Sp-CTx-β shows 54% identity. The subunits lack N-terminal signal sequences and display masses of approximately 80 kDa each. Both Sp-CTx subunits display a B30.2/SPRY domain at the C-terminal region with typically conserved motifs as described in these toxins. Secondary structure prediction identified six α-helices 18 residues long in both α and β subunits, some of them amphiphilic with their N-terminal flanked by many basic residues, creating a cationic site associated with the cytolytic activity of these toxins. Antimicrobial potential sites were identified in Sp-CTx and share some features with other peptides presenting variable and broad-spectrum activity. A phylogenetic tree built to represent these toxins supports the proximity between scorpionfish, lionfish and stonefish. Conclusion The study identified a putative toxin protein whose primary structure is similar to other fish toxins and with potential for production of antivenom against scorpionfish envenomation in Brazil. As a prelude to structure-function studies, we propose that the toxin is structurally related to pore-forming marine toxins. Electronic supplementary material The online version of this article (10.1186/s40409-018-0158-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fábio L S Costa
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Maria Elena De Lima
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Suely G Figueiredo
- 2Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Vitória, ES Brazil
| | - Rafaela S Ferreira
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Núbia S Prates
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Tetsu Sakamoto
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| | - Carlos E Salas
- 1Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901 Brazil
| |
Collapse
|
9
|
Malacarne PF, Menezes TN, Martins CW, Naumann GB, Gomes HL, Pires RGW, Figueiredo SG, Campos FV. Advances in the characterization of the Scorpaena plumieri cytolytic toxin (Sp-CTx). Toxicon 2018; 150:220-227. [PMID: 29902539 DOI: 10.1016/j.toxicon.2018.06.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/29/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
Abstract
Proteins that account for the hemolytic activity found in scorpaeniform fish venoms are responsible for the majority of the effects observed upon envenomation, for instance, neurotoxic, cardiotoxic and inflammatory effects. These multifunctional toxins, described as protein lethal factors and referred to as cytolysins, are known to be extremely labile molecules. In the present work, we endeavored to overcome this constraint by determining optimal storage conditions for Sp-CTx, the major bioactive component from the scorpionfish Scorpaena plumieri venom. This cardiotoxic hemolytic cytolysin is a large dimeric glycoprotein (subunits of ≈65 kDa) with pore-forming ability. We were able to establish storage conditions that allowed us to keep the toxin partially active for up to 60 days. Stability was achieved by storing Sp-CTx at -80 and -196 °C in the presence of glycerol 10% in a pH 7.4 solution. It was demonstrated that the hemolytic activity of Sp-CTx is calcium dependent, being abolished by EDTA and zinc ions. Furthermore, the toxin exhibited its maximal hemolytic activity at pH between 8 and 9, displaying typical N- and O- linked glycoconjugated residues (galactose (1-4) N-acetylglucosamine and sialic acid (2-3) galactose in N- and/or O-glycan complexes). The hemolytic activity of Sp-CTx was inhibited by phosphatidylglycerol and phosphatidylethanolamine, suggesting a direct electrostatic interaction lipid - toxin in the pore-formation mechanism of action of this toxin. In addition, we observed that the hemolytic activity was inhibited by increasing doses of cholesterol. Finally, we were able to show, for first time, that Sp-CTx is at least partially responsible for the pain and inflammation observed upon envenomation. However, while the edema induced by Sp-CTx was reduced by pre-treatment with aprotinin and HOE-140, pointing to the involvement of the kallikrein-kinin system in this response, these drugs had no significant effect in the toxin-induced nociception. Taken together, our results could suggest that, as has been already reported for other fish cytolysins, Sp-CTx acts mostly through lipid-dependent pore formation not only in erythrocytes but also in other cell types, which could account for the pain observed upon envenomation. We believe that the present work paves the way towards the complete characterization of fish cytolysins.
Collapse
Affiliation(s)
- Pedro F Malacarne
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Thiago N Menezes
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Cleciane W Martins
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Gustavo B Naumann
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil; Diretoria do Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Rua Conde Pereira Carneiro 80, Gameleira, 30510-010, Belo Horizonte, MG, Brazil.
| | - Helena L Gomes
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Rita G W Pires
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Suely G Figueiredo
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| | - Fabiana V Campos
- Departamento de Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468, Maruípe, 29043-900, Vitória, ES, Brazil.
| |
Collapse
|
10
|
Sáenz A, Ortiz N, Lomonte B, Rucavado A, Díaz C. Comparison of biochemical and cytotoxic activities of extracts obtained from dorsal spines and caudal fin of adult and juvenile non-native Caribbean lionfish (Pterois volitans/miles). Toxicon 2017; 137:158-167. [DOI: 10.1016/j.toxicon.2017.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|