1
|
Liang Y, Maeda O, Ando Y. Biomarkers for immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Jpn J Clin Oncol 2024; 54:365-375. [PMID: 38183211 DOI: 10.1093/jjco/hyad184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Although immune checkpoint inhibitors have greatly improved cancer therapy, they also cause immune-related adverse events, including a wide range of inflammatory side effects resulting from excessive immune activation. Types of immune-related adverse events are diverse and can occur in almost any organ, with different frequencies and severities. Furthermore, immune-related adverse events may occur within the first few weeks after treatment or even several months after treatment discontinuation. Predictive biomarkers include blood cell counts and cell surface markers, serum proteins, autoantibodies, cytokines/chemokines, germline genetic variations and gene expression profiles, human leukocyte antigen genotype, microRNAs and the gut microbiome. Given the inconsistencies in research results and limited practical utility, there is to date no established biomarker that can be used in routine clinical practice, and additional investigations are essential to demonstrate efficacy and subsequently facilitate integration into routine clinical use.
Collapse
Affiliation(s)
- Yao Liang
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Osamu Maeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yuichi Ando
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallego-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:401-432. [PMID: 38228461 DOI: 10.1016/j.gastrohep.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 01/18/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2% to 40%, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat Autònoma de Barcelona (UAB), Department of Medicine, Spain.
| | - Sabela Carballal
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Clinic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Spain; Universitat de Barcelona, Spain
| | - Álvaro Díaz-González
- Gastroenterology Department, Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, Instituto de Investigación Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Míriam Mañosa
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | | | - Joaquín Cubiella
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Gastroenterology Department, Hospital Universitario de Ourense, Grupo de Investigación en Oncología Digestiva-Ourense, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - María Varela
- Gastroenterology Department, Hospital Universitario Central de Asturias, IUOPA, ISPA, FINBA, University of Oviedo, Oviedo, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo - CEIMI, Instituto de Investigación Sanitaria Gregorio, Marañón, Spain; Departamento de Medicina, Universidad Complutense, Madrid, Spain
| | - Bruno Sangro
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Cancer Center Clinica Universidad de Navarra, Pamplona-Madrid, Spain
| | - Ana Fernández-Montes
- Medical Oncology Department, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Francisco Mesonero
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá de Henares, Spain
| | - Miguel Ángel Rodríguez-Gandía
- Gastroenterology and Hepatology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), Madrid, Spain
| | - Fernando Rivera
- Medical Oncology Department, Hospital Universitario Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - María-Carlota Londoño
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Universitat de Barcelona, Spain; Liver Unit, Hospital Clínic Barcelona, Fundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomèdiques August Pi i Sunyer, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Spain
| |
Collapse
|
3
|
Riveiro-Barciela M, Carballal S, Díaz-González Á, Mañosa M, Gallgo-Plazas J, Cubiella J, Jiménez-Fonseca P, Varela M, Menchén L, Sangro B, Fernández-Montes A, Mesonero F, Rodríguez-Gandía MÁ, Rivera F, Londoño MC. Management of liver and gastrointestinal toxicity induced by immune checkpoint inhibitors: Position statement of the AEEH-AEG-SEPD-SEOM-GETECCU. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2024; 116:83-113. [PMID: 38226597 DOI: 10.17235/reed.2024.10250/2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The development of the immune checkpoint inhibitors (ICI) is one of the most remarkable achievements in cancer therapy in recent years. However, their exponential use has led to an increase in immune-related adverse events (irAEs). Gastrointestinal and liver events encompass hepatitis, colitis and upper digestive tract symptoms accounting for the most common irAEs, with incidence rates varying from 2 % to 40 %, the latter in patients undergoing combined ICIs therapy. Based on the current scientific evidence derived from both randomized clinical trials and real-world studies, this statement document provides recommendations on the diagnosis, treatment and prognosis of the gastrointestinal and hepatic ICI-induced adverse events.
Collapse
Affiliation(s)
| | | | | | - Miriam Mañosa
- Gastroenterology, Hospital Universitari Germans Trias i Pujol
| | | | | | | | - María Varela
- Gastroenterology, Hospital Universitario Central de Asturias
| | - Luis Menchén
- Digestive Diseases, Instituto de Investigación Sanitaria Gregorio Marañón
| | | | | | | | | | - Fernando Rivera
- Hospital Universitario Marqués de Valdecilla, Medical Oncology
| | | |
Collapse
|
4
|
Ding P, Liu P, Meng L, Zhao Q. Mechanisms and biomarkers of immune-related adverse events in gastric cancer. Eur J Med Res 2023; 28:492. [PMID: 37936161 PMCID: PMC10631148 DOI: 10.1186/s40001-023-01365-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs), different from traditional cancer treatment models, have shown unprecedented anti-tumor effects in the past decade, greatly improving the prognosis of many malignant tumors in clinical practice. At present, the most widely used ICIs in clinical immunotherapy for a variety of solid tumors are monoclonal antibodies against cytotoxic T lymphocyte antigen-4 (CTLA-4), programmed cell death protein 1 (PD-1) and their ligand PD-L1. However, tumor patients may induce immune-related adverse events (irAEs) while performing immunotherapy, and irAE is an obstacle to the prospect of ICI treatment. IrAE is a non-specific disease caused by immune system imbalance, which can occur in many tissues and organs. For example, skin, gastrointestinal tract, endocrine system and lung. Although the exact mechanism is not completely clear, related studies have shown that irAE may develop through many ways. Such as excessive activation of autoreactive T cells, excessive release of inflammatory cytokines, elevated levels of autoantibodies, and common antigens between tumors and normal tissues. Considering that the occurrence of severe IrAE not only causes irreversible damage to the patient's body, but also terminates immunotherapy due to immune intolerance. Therefore, accurate identification and screening of sensitive markers of irAE are the main beneficiaries of ICI treatment. Additionally, irAEs usually require specific management, the most common of which are steroids and immunomodulatory therapies. This review aims to summarize the current biomarkers for predicting irAE in gastric cancer and their possible mechanisms.
Collapse
Affiliation(s)
- Ping'an Ding
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Pengpeng Liu
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China
| | - Lingjiao Meng
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
- Research Center of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China.
| | - Qun Zhao
- The Third Department of Surgery, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
- Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China.
| |
Collapse
|
5
|
Les I, Martínez M, Pérez-Francisco I, Cabero M, Teijeira L, Arrazubi V, Torrego N, Campillo-Calatayud A, Elejalde I, Kochan G, Escors D. Predictive Biomarkers for Checkpoint Inhibitor Immune-Related Adverse Events. Cancers (Basel) 2023; 15:1629. [PMID: 36900420 PMCID: PMC10000735 DOI: 10.3390/cancers15051629] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Immune-checkpoint inhibitors (ICIs) are antagonists of inhibitory receptors in the immune system, such as the cytotoxic T-lymphocyte-associated antigen-4, the programmed cell death protein-1 and its ligand PD-L1, and they are increasingly used in cancer treatment. By blocking certain suppressive pathways, ICIs promote T-cell activation and antitumor activity but may induce so-called immune-related adverse events (irAEs), which mimic traditional autoimmune disorders. With the approval of more ICIs, irAE prediction has become a key factor in improving patient survival and quality of life. Several biomarkers have been described as potential irAE predictors, some of them are already available for clinical use and others are under development; examples include circulating blood cell counts and ratios, T-cell expansion and diversification, cytokines, autoantibodies and autoantigens, serum and other biological fluid proteins, human leucocyte antigen genotypes, genetic variations and gene profiles, microRNAs, and the gastrointestinal microbiome. Nevertheless, it is difficult to generalize the application of irAE biomarkers based on the current evidence because most studies have been retrospective, time-limited and restricted to a specific type of cancer, irAE or ICI. Long-term prospective cohorts and real-life studies are needed to assess the predictive capacity of different potential irAE biomarkers, regardless of the ICI type, organ involved or cancer site.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Inés Pérez-Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - María Cabero
- Clinical Trials Platform, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarre University Hospital, 31008 Pamplona, Spain
| | - Nuria Torrego
- Osakidetza Basque Health Service, Department of Medical Oncology, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain
- Lung Cancer Research Group, Bioaraba Health Research Institute, 01006 Vitoria-Gasteiz, Spain
| | - Ana Campillo-Calatayud
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Autoimmune Diseases Unit, Internal Medicine Department, Navarre University Hospital, 31008 Pamplona, Spain
- Inflammatory and Immune-Mediated Diseases Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| | - David Escors
- Oncoimmunology Group, Instituto de Investigación Sanitaria de Navarra (IdISNA), Navarrabiomed-Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Li X, Ma S, Gao T, Mai Y, Song Z, Yang J. The main battlefield of mRNA vaccine – Tumor immune microenvironment. Int Immunopharmacol 2022; 113:109367. [DOI: 10.1016/j.intimp.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
7
|
Peripheral Blood Biomarkers Predictive of Efficacy Outcome and Immune-Related Adverse Events in Advanced Gastrointestinal Cancers Treated with Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14153736. [PMID: 35954401 PMCID: PMC9367581 DOI: 10.3390/cancers14153736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Gastrointestinal cancers constitute a major burden of global cancer mortalities. In recent years, the advent of immune checkpoint inhibitors has greatly improved the survival of patients with advanced gastrointestinal cancers, while predictive biomarkers of treatment efficacy and toxicities are still unmet demands. Methods: In our retrospective study, patients with advanced gastrointestinal cancers who received single or double immune checkpoint inhibitors in the Department of Gastrointestinal Oncology in Peking University Cancer Hospital between July 2016 and February 2022 were enrolled. Records of clinicopathological information, survival parameters, safety data, and baseline and posttreatment peripheral blood constituents were retrieved. Cox regression analysis and logistic regression analysis were performed to identify the predictive factors of treatment outcomes and immune-related adverse events. Results: We demonstrated that early treatment lines, the presence of immune-related adverse events, and a lower C2 neutrophil-to-lymphocyte ratio were independent factors predicting a superior objective response rate and progression-free survival in patients treated with immunotherapy. Lower ECOG PS, higher baseline albumin, and lower C2 neutrophil-to-lymphocyte ratios were independent risk factors for the onset of immune-related adverse events. Patients who succumbed to immune-related adverse events during immunotherapy presented better survival. Conclusion: Our results indicate that peripheral blood markers have potential for predicting treatment outcomes and immune-related adverse events in patients with advanced gastrointestinal cancer. Prospective validations are warranted.
Collapse
|
8
|
Les I, Pérez-Francisco I, Cabero M, Sánchez C, Hidalgo M, Teijeira L, Arrazubi V, Domínguez S, Anaut P, Eguiluz S, Elejalde I, Herrera A, Martínez M. Prediction of Immune-Related Adverse Events Induced by Immune Checkpoint Inhibitors With a Panel of Autoantibodies: Protocol of a Multicenter, Prospective, Observational Cohort Study. Front Pharmacol 2022; 13:894550. [PMID: 35721217 PMCID: PMC9198493 DOI: 10.3389/fphar.2022.894550] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Immune checkpoint inhibitor (ICI) therapy is markedly improving the prognosis of patients with several types of cancer. On the other hand, the growth in the use of these drugs in oncology is associated with an increase in multiple immune-related adverse events (irAEs), whose optimal prevention and management remain unclear. In this context, there is a need for reliable and validated biomarkers to predict the occurrence of irAEs in patients treated with ICIs. Thus, the main objective of this study is to evaluate the diagnostic performance of a sensitive routinely available panel of autoantibodies consisting of antinuclear antibodies, rheumatoid factor, and antineutrophil cytoplasmic antibodies to identify patients at risk of developing irAEs. Methods and Analysis: A multicenter, prospective, observational, cohort study has been designed to be conducted in patients diagnosed with cancer amenable to ICI therapy. Considering the percentage of ICI-induced irAEs to be 25% and a loss to follow-up of 5%, it has been estimated that a sample size of 294 patients is required to detect an expected sensitivity of the autoantibody panel under study of 0.90 with a confidence interval (95%) of no less than 0.75. For 48 weeks, patients will be monitored through the oncology outpatient clinics of five hospitals in Spain. Immune-related adverse events will be defined and categorized according to CTCAE v. 5.0. All the patients will undergo ordinary blood tests at specific moments predefined per protocol and extraordinary blood tests at the time of any irAE being detected. Ordinary and extraordinary samples will be frozen and stored in the biobank until analysis in the same autoimmunity laboratory when the whole cohort reaches week 48. A predictive model of irAEs will be constructed with potential risk factors of immune-related toxicity including the autoantibody panel under study. Ethics and Dissemination: This protocol was reviewed and approved by the Ethical Committee of the Basque Country and the Spanish Agency of Medicines and Medical Devices. Informed consent will be obtained from all participants before their enrollment. The authors declare that the results will be submitted to an international peer-reviewed journal for their prompt dissemination.
Collapse
Affiliation(s)
- Iñigo Les
- Internal Medicine Department, Navarra University Hospital, Pamplona, Spain.,Autoimmune Diseases Unit, Internal Medicine Department, Navarra University Hospital, Pamplona, Spain
| | - Inés Pérez-Francisco
- Bioaraba Health Research Institute, Breast Cancer Research Group, Vitoria-Gasteiz, Spain
| | - María Cabero
- Bioaraba Health Research Institute, Clinical Trials Platform, Vitoria-Gasteiz, Spain
| | - Cristina Sánchez
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - María Hidalgo
- Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain
| | - Lucía Teijeira
- Medical Oncology Department, Navarra University Hospital, Pamplona, Spain
| | - Virginia Arrazubi
- Medical Oncology Department, Navarra University Hospital, Pamplona, Spain
| | - Severina Domínguez
- Bioaraba Health Research Institute, Breast Cancer Research Group, Vitoria-Gasteiz, Spain.,Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain
| | - Pilar Anaut
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - Saioa Eguiluz
- Osakidetza Basque Health Service, Araba University Hospital, Department of Internal Medicine, Vitoria-Gasteiz, Spain
| | - Iñaki Elejalde
- Internal Medicine Department, Navarra University Hospital, Pamplona, Spain.,Autoimmune Diseases Unit, Internal Medicine Department, Navarra University Hospital, Pamplona, Spain
| | - Alberto Herrera
- Osakidetza Basque Health Service, Araba University Hospital, Department of Immunology, Vitoria-Gasteiz, Spain
| | - Mireia Martínez
- Osakidetza Basque Health Service, Araba University Hospital, Department of Medical Oncology, Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Lung Cancer Research Group, Vitoria-Gasteiz, Spain
| |
Collapse
|
9
|
Cardeña-Gutiérrez A, López Barahona M. Predictive Biomarkers of Severe Immune-Related Adverse Events With Immune Checkpoint Inhibitors: Prevention, Underlying Causes, Intensity, and Consequences. Front Med (Lausanne) 2022; 9:908752. [PMID: 35774996 PMCID: PMC9237384 DOI: 10.3389/fmed.2022.908752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed oncology by prolonging overall survival and yielding better patient tolerance compared to other chemotherapeutic agents. However, numerous questions remain unanswered about the toxicity profile of ICIs, its relationship with the treatment response, and causes underlying the excellent treatment response in some patients, while recalcitrance in others. Research groups have continued to seek biomarkers that may permit the identification of treatment responders and predict toxicity to facilitate cessation of immunotherapy before the development of severe toxicity. However, some studies have found associations between serious adverse events and longer survivorship. The research question entailed determining whether a biomarker is needed to predict severe immune-related adverse events prior to their development or whether providing early treatment for toxicity would inhibit the immune system from attaining a long-lasting anti-tumor effect. Therefore, this review conducted an in-depth analysis into the molecular basis of these observations.
Collapse
Affiliation(s)
- Ana Cardeña-Gutiérrez
- MedicalOncologyDepartment, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
10
|
Rahman MM, Behl T, Islam MR, Alam MN, Islam MM, Albarrati A, Albratty M, Meraya AM, Bungau SG. Emerging Management Approach for the Adverse Events of Immunotherapy of Cancer. Molecules 2022; 27:molecules27123798. [PMID: 35744922 PMCID: PMC9227460 DOI: 10.3390/molecules27123798] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy, which stimulates the body’s immune system, has received a considerable amount of press in recent years because of its powerful benefits. Cancer immunotherapy has shown long-term results in patients with advanced disease that are not seen with traditional chemotherapy. Immune checkpoint inhibitors, cytokines like interleukin 2 (IL-2) and interferon-alpha (IFN), and the cancer vaccine sipuleucel-T have all been licensed and approved by the FDA for the treatment of various cancers. These immunotherapy treatments boost anticancer responses by stimulating the immune system. As a result, they have the potential to cause serious, even fatal, inflammatory and immune-related side effects in one or more organs. Immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cell therapy are two immunotherapy treatments that are increasingly being used to treat cancer. Following their widespread usage in the clinic, a wave of immune-related adverse events (irAEs) impacting virtually every system has raised concerns about their unpredictability and randomness. Despite the fact that the majority of adverse effects are minimal and should be addressed with prudence, the risk of life-threatening complications exists. Although most adverse events are small and should be treated with caution, the risk of life-threatening toxicities should not be underestimated, especially given the subtle and unusual indications that make early detection even more difficult. Treatment for these issues is difficult and necessitates a multidisciplinary approach involving not only oncologists but also other internal medicine doctors to guarantee quick diagnosis and treatment. This study’s purpose is to give a fundamental overview of immunotherapy and cancer-related side effect management strategies.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India
- Correspondence: (T.B.); (S.G.B.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Md. Noor Alam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Md. Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.N.A.); (M.M.I.)
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia;
| | - Mohammed Albratty
- Department of Pharmaceutical Chemsitry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Abdulkarim M. Meraya
- Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia;
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
- Correspondence: (T.B.); (S.G.B.)
| |
Collapse
|
11
|
Ronen D, Bsoul A, Lotem M, Abedat S, Yarkoni M, Amir O, Asleh R. Exploring the Mechanisms Underlying the Cardiotoxic Effects of Immune Checkpoint Inhibitor Therapies. Vaccines (Basel) 2022; 10:vaccines10040540. [PMID: 35455289 PMCID: PMC9031363 DOI: 10.3390/vaccines10040540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 02/01/2023] Open
Abstract
Adaptive immune response modulation has taken a central position in cancer therapy in recent decades. Treatment with immune checkpoint inhibitors (ICIs) is now indicated in many cancer types with exceptional results. The two major inhibitory pathways involved are cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death protein 1 (PD-1). Unfortunately, immune activation is not tumor-specific, and as a result, most patients will experience some form of adverse reaction. Most immune-related adverse events (IRAEs) involve the skin and gastrointestinal (GI) tract; however, any organ can be involved. Cardiotoxicity ranges from arrhythmias to life-threatening myocarditis with very high mortality rates. To date, most treatments of ICI cardiotoxicity include immune suppression, which is also not cardiac-specific and may result in hampering of tumor clearance. Understanding the mechanisms behind immune activation in the heart is crucial for the development of specific treatments. Histological data and other models have shown mainly CD4 and CD8 infiltration during ICI-induced cardiotoxicity. Inhibition of CTLA4 seems to result in the proliferation of more diverse T0cell populations, some of which with autoantigen recognition. Inhibition of PD-1 interaction with PD ligand 1/2 (PD-L1/PD-L2) results in release from inhibition of exhausted self-recognizing T cells. However, CTLA4, PD-1, and their ligands are expressed on a wide range of cells, indicating a much more intricate mechanism. This is further complicated by the identification of multiple co-stimulatory and co-inhibitory signals, as well as the association of myocarditis with antibody-driven myasthenia gravis and myositis IRAEs. In this review, we focus on the recent advances in unraveling the complexity of the mechanisms driving ICI cardiotoxicity and discuss novel therapeutic strategies for directly targeting specific underlying mechanisms to reduce IRAEs and improve outcomes.
Collapse
Affiliation(s)
- Daniel Ronen
- Department of Internal Medicine D, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Aseel Bsoul
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Michal Lotem
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
| | - Merav Yarkoni
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel; (A.B.); (S.A.); (O.A.)
- Department of Cardiology, Heart Institute, Hadassah University Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel;
- Correspondence: ; Tel.: +972-2-6776564; Fax: +972-2-6411028
| |
Collapse
|
12
|
Feakins R, Torres J, Borralho-Nunes P, Burisch J, Cúrdia Gonçalves T, De Ridder L, Driessen A, Lobatón T, Menchén L, Mookhoek A, Noor N, Svrcek M, Villanacci V, Zidar N, Tripathi M. ECCO Topical Review on Clinicopathological Spectrum and Differential Diagnosis of Inflammatory Bowel Disease. J Crohns Colitis 2022; 16:343-368. [PMID: 34346490 DOI: 10.1093/ecco-jcc/jjab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Many diseases can imitate inflammatory bowel disease [IBD] clinically and pathologically. This review outlines the differential diagnosis of IBD and discusses morphological pointers and ancillary techniques that assist with the distinction between IBD and its mimics. METHODS European Crohn's and Colitis Organisation [ECCO] Topical Reviews are the result of an expert consensus. For this review, ECCO announced an open call to its members and formed three working groups [WGs] to study clinical aspects, pathological considerations, and the value of ancillary techniques. All WGs performed a systematic literature search. RESULTS Each WG produced a draft text and drew up provisional Current Practice Position [CPP] statements that highlighted the most important conclusions. Discussions and a preliminary voting round took place, with subsequent revision of CPP statements and text and a further meeting to agree on final statements. CONCLUSIONS Clinicians and pathologists encounter a wide variety of mimics of IBD, including infection, drug-induced disease, vascular disorders, diverticular disease, diversion proctocolitis, radiation damage, and immune disorders. Reliable distinction requires a multidisciplinary approach.
Collapse
Affiliation(s)
- Roger Feakins
- Department of Cellular Pathology, Royal Free Hospital, London, and University College London, UK
| | - Joana Torres
- Department of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Paula Borralho-Nunes
- Department of Pathology, Hospital Cuf Descobertas, Lisboa and Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Johan Burisch
- Gastrounit, Medical Division, Hvidovre Hospital, University of Copenhagen, Denmark
| | - Tiago Cúrdia Gonçalves
- Department of Gastroenterology, Hospital da Senhora da Oliveira, Guimarães, Portugal.,School of Medicine, University of Minho, Braga/Guimarães, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Lissy De Ridder
- Department of Paediatric Gastroenterology, Erasmus MC Sophia Children's Hospital, University Medical Center Rotterdam, The Netherlands
| | - Ann Driessen
- Department of Pathology, University Hospital Antwerp, University Antwerp, Edegem, Belgium
| | - Triana Lobatón
- Department of Gastroenterology, Ghent University Hospital, Ghent, Belgium
| | - Luis Menchén
- Department of Digestive System Medicine, Hospital General Universitario-Insitituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.,Department of Medicine, Universidad Complutense, Madrid, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Hepáticas y Digestivas [CIBEREHD], Madrid, Spain
| | - Aart Mookhoek
- Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nurulamin Noor
- Department of Gastroenterology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Magali Svrcek
- Department of Pathology, Sorbonne Université, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Vincenzo Villanacci
- Department of Histopathology, Spedali Civili and University of Brescia, Brescia, Italy
| | - Nina Zidar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Tripathi
- Department of Histopathology, Cambridge Biomedical Campus, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
13
|
Harnessing big data to characterize immune-related adverse events. Nat Rev Clin Oncol 2022; 19:269-280. [PMID: 35039679 DOI: 10.1038/s41571-021-00597-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 12/17/2022]
Abstract
Immune-checkpoint inhibitors (ICIs) have transformed patient care in oncology but are associated with a unique spectrum of organ-specific inflammatory toxicities known as immune-related adverse events (irAEs). Given the expanding use of ICIs, an increasing number of patients with cancer experience irAEs, including severe irAEs. Proper diagnosis and management of irAEs are important to optimize the quality of life and long-term outcomes of patients receiving ICIs; however, owing to the substantial heterogeneity within irAEs, and despite multicentre initiatives, performing clinical studies of these toxicities with a sufficient cohort size is challenging. Pioneering studies from the past few years have demonstrated that aggregate clinical data, real-world data (such as data on pharmacovigilance or from electronic health records) and multi-omics data are alternative tools well suited to investigating the underlying mechanisms and clinical presentations of irAEs. In this Perspective, we summarize the advantages and shortcomings of different sources of 'big data' for the study of irAEs and highlight progress made using such data to identify biomarkers of irAE risk, evaluate associations between irAEs and therapeutic efficacy, and characterize the effects of demographic and anthropometric factors on irAE risk. Harnessing big data will accelerate research on irAEs and provide key insights that will improve the clinical management of patients receiving ICIs.
Collapse
|
14
|
Smithy JW, Faleck DM, Postow MA. Facts and Hopes in Prediction, Diagnosis, and Treatment of Immune-Related Adverse Events. Clin Cancer Res 2021; 28:1250-1257. [PMID: 34921018 DOI: 10.1158/1078-0432.ccr-21-1240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Over the past decade, the use of immune checkpoint inhibitors (ICI) has expanded across a wide spectrum of oncology indications. Immune-related adverse events (irAE) from ICIs represent a significant source of morbidity, and in rare instances, can lead to treatment-related mortality. There are significant opportunities to better identify patients at increased risk for immune-related toxicity, diagnose irAEs more accurately and earlier in their course, and develop more individualized therapeutic strategies once complications arise. Clinical characteristics, germline and somatic genetic features, microbiome composition, and circulating biomarkers have all been associated with higher risk of developing irAEs in retrospective series. Many of these data suggest that both antitumor and anti-host ICI-associated immune reactions may be driven by common features of either the tumor or the patient's preexisting immune milieu. While irAE diagnosis is currently based on clinical history, exclusion of alternative etiologies, and sometimes pathologic confirmation, novel blood-based and radiographic assays are in development to identify these complications more precisely. Anecdotal reports and small case series have highlighted the potential role of targeted immunomodulatory agents to treat irAEs, though further prospective investigation is needed to evaluate more rigorously their use in these settings. In this review, we highlight the current state of knowledge about predicting, diagnosing, and treating irAEs with a translational focus and discuss emerging strategies which aim to improve each of these domains.
Collapse
Affiliation(s)
- James W Smithy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David M Faleck
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Michael A Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. .,Weill Cornell Medical College, New York, New York
| |
Collapse
|
15
|
Bardoscia L, Pasinetti N, Triggiani L, Cozzi S, Sardaro A. Biological Bases of Immune-Related Adverse Events and Potential Crosslinks With Immunogenic Effects of Radiation. Front Pharmacol 2021; 12:746853. [PMID: 34790123 PMCID: PMC8591245 DOI: 10.3389/fphar.2021.746853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Immune checkpoint inhibitors have gained an established role in the treatment of different tumors. Indeed, their use has dramatically changed the landscape of cancer care, especially for tumor types traditionally known to have poor outcomes. However, stimulating anticancer immune responses may also elicit an unusual pattern of immune-related adverse events (irAEs), different from those of conventional chemotherapy, likely due to a self-tolerance impairment featuring the production of autoreactive lymphocytes and autoantibodies, or a non-specific autoinflammatory reaction. Ionizing radiation has proven to promote both positive pro-inflammatory and immunostimolatory activities, and negative anti-inflammatory and immunosuppressive mechanisms, as a result of cross-linked interactions among radiation dose, the tumor microenvironment and the host genetic predisposition. Several publications argue in favor of combining immunotherapy and a broad range of radiation schedules, based on the recent evidence of superior treatment responses and patient survival. The synergistic modulation of the immune response by radiation therapy and immunotherapeutics, particularly those manipulating T-cell activation, may also affect the type and severity of irAEs, suggesting a relationship between the positive antitumor and adverse autoimmune effects of these agents. As yet, information on factors that may help to predict immune toxicity is still lacking. The aim of our work is to provide an overview of the biological mechanisms underlying irAEs and possible crosslinks with radiation-induced anticancer immune responses. We believe such an overview may support the optimization of immunotherapy and radiotherapy as essential components of multimodal anticancer therapeutic approaches. Challenges in translating these to clinical practice are discussed.
Collapse
Affiliation(s)
- Lilia Bardoscia
- Radiation Oncology Unit, S. Luca Hospital, Healthcare Company Tuscany Nord Ovest, Lucca, Italy
| | - Nadia Pasinetti
- Radiation Oncology Department, ASST Valcamonica Esine and University of Brescia, Brescia, Italy
| | - Luca Triggiani
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Salvatore Cozzi
- Radiotherapy Unit, Clinical Cancer Centre, AUSL-IRCCS, Reggio Emilia, Italy
| | - Angela Sardaro
- Interdisciplinary Department of Medicine, Section of Radiology and Radiation Oncology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
16
|
Yang Z, Deng Y, Cheng J, Wei S, Luo H, Liu L. Tumor-Infiltrating PD-1 hiCD8 +-T-Cell Signature as an Effective Biomarker for Immune Checkpoint Inhibitor Therapy Response Across Multiple Cancers. Front Oncol 2021; 11:695006. [PMID: 34604032 PMCID: PMC8479164 DOI: 10.3389/fonc.2021.695006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/25/2021] [Indexed: 02/05/2023] Open
Abstract
Background Stratification of patients who could benefit from immune checkpoint inhibitor (ICI) therapy is of much importance. PD-1hiCD8+ T cells represent a newly identified and effective biomarker for ICI therapy response biomarker in lung cancer. Accurately quantifying these T cells using commonly available RNA sequencing (RNA-seq) data may extend their applications to more cancer types. Method We built a transcriptome signature of PD-1hiCD8+ T cells from bulk RNA-seq and single-cell RNA-seq (scRNA-seq) data of tumor-infiltrating immune cells. The signature was validated by flow cytometry and in independent datasets. The clinical applications of the signature were explored in non-small-cell lung cancer, melanoma, gastric cancer, urothelial cancer, and a mouse model of breast cancer samples treated with ICI, and systematically evaluated across 21 cancer types in The Cancer Genome Atlas (TCGA). Its associations with other biomarkers were also determined. Results Signature scores could be used to identify the PD-1hiCD8+ T subset and were correlated with the fraction of PD-1hiCD8+ T cells in tumor tissue (Pearson correlation, R=0.76, p=0.0004). Furthermore, in the scRNA-seq dataset, we confirmed the capability of PD-1hiCD8+ T cells to secrete CXCL13, as well as their interactions with other immune cells. In 581 clinical samples and 204 mouse models treated with ICIs, high signature scores were associated with increased survival, and the signature achieved area under the receiver operating characteristic curve scores of 0.755 (ranging from 0.61 to 0.91) in predicting therapy response. In TCGA pan-cancer datasets, our signature scores were consistently correlated with therapy response (R=0.78, p<0.0001) and partially explained the diverse response rates among different cancer types. Finally, our signature generally outperformed other mRNA-based predictors and showed improved predictive performance when used in combination with tumor mutational burden (TMB). The signature score is available in the R package “PD1highCD8Tscore” (https://github.com/Liulab/PD1highCD8Tscore). Conclusion Through estimating the fraction of the PD-1hiCD8+ T cell, our signature could predict response to ICI therapy across multiple cancers and could serve as a complementary biomarker to TMB.
Collapse
Affiliation(s)
- Zhenyu Yang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Yulan Deng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Jiahan Cheng
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Hao Luo
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Keenan TE, Guerriero JL, Barroso-Sousa R, Li T, O'Meara T, Giobbie-Hurder A, Tayob N, Hu J, Severgnini M, Agudo J, Vaz-Luis I, Anderson L, Attaya V, Park J, Conway J, He MX, Reardon B, Shannon E, Wulf G, Spring LM, Jeselsohn R, Krop I, Lin NU, Partridge A, Winer EP, Mittendorf EA, Liu D, Van Allen EM, Tolaney SM. Molecular correlates of response to eribulin and pembrolizumab in hormone receptor-positive metastatic breast cancer. Nat Commun 2021; 12:5563. [PMID: 34548479 PMCID: PMC8455578 DOI: 10.1038/s41467-021-25769-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have minimal therapeutic effect in hormone receptor-positive (HR+ ) breast cancer. We present final overall survival (OS) results (n = 88) from a randomized phase 2 trial of eribulin ± pembrolizumab for patients with metastatic HR+ breast cancer, computationally dissect genomic and/or transcriptomic data from pre-treatment tumors (n = 52) for molecular associations with efficacy, and identify cytokine changes differentiating response and ICI-related toxicity (n = 58). Despite no improvement in OS with combination therapy (hazard ratio 0.95, 95% CI 0.59-1.55, p = 0.84), immune infiltration and antigen presentation distinguished responding tumors, while tumor heterogeneity and estrogen signaling independently associated with resistance. Moreover, patients with ICI-related toxicity had lower levels of immunoregulatory cytokines. Broadly, we establish a framework for ICI response in HR+ breast cancer that warrants diagnostic and therapeutic validation. ClinicalTrials.gov Registration: NCT03051659.
Collapse
Affiliation(s)
- Tanya E Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jennifer L Guerriero
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - Romualdo Barroso-Sousa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
- Oncology Center, Hospital Sírio-Libanês, Brasília, Brazil
| | - Tianyu Li
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tess O'Meara
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Anita Giobbie-Hurder
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nabihah Tayob
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jiani Hu
- Division of Biostatistics, Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mariano Severgnini
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ines Vaz-Luis
- Medical Oncology Department, INSERM Unit 981, Molecular Predictors and New Targets in Oncology, Institut Gustave Roussy, Villejuif, France
| | - Leilani Anderson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Victoria Attaya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Meng Xiao He
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Harvard Graduate Program in Biophysics, Boston, MA, USA
| | - Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Erin Shannon
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Gerburg Wulf
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Laura M Spring
- Breast Cancer, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Rinath Jeselsohn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Ian Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Ann Partridge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Eric P Winer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
- Breast Tumor Immunology Laboratory, Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Ludwig Center for Cancer Research at Harvard, Harvard Medical School, Boston, MA, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA.
| | - Sara M Tolaney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| |
Collapse
|
18
|
van Wilpe S, Wosika V, Ciarloni L, Hosseinian Ehrensberger S, Jeitziner R, Angelino P, Duiveman-de Boer T, Koornstra RHT, de Vries IJM, Gerritsen WR, Schalken J, Mehra N. Whole Blood Transcriptome Profiling Identifies DNA Replication and Cell Cycle Regulation as Early Marker of Response to Anti-PD-1 in Patients with Urothelial Cancer. Cancers (Basel) 2021; 13:cancers13184660. [PMID: 34572887 PMCID: PMC8465885 DOI: 10.3390/cancers13184660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Unfortunately, not all patients with urothelial cancer benefit from checkpoint inhibitors (ICIs). Currently, the first radiological response evaluation is not performed until after 9 to 12 weeks of ICI therapy. Early response biomarkers might enable an early switch to more effective therapies in patients that do not respond. In this study, we aimed to identify early response biomarkers in the blood of patients treated with ICIs. In whole blood of patients with clinical benefit, genes involved in DNA replication and cell cycle regulation were upregulated after 2 to 6 weeks of treatment. This appeared to be a result of T cell proliferation and was not observed in patients without clinical benefit. Our results suggest that whole blood RNA sequencing can contribute to early response prediction in patients treated with ICIs and warrants further research. Abstract Although immune checkpoint inhibitors improve median overall survival in patients with metastatic urothelial cancer (mUC), only a minority of patients benefit from it. Early blood-based response biomarkers may provide a reliable way to assess response weeks before imaging is available, enabling an early switch to other therapies. We conducted an exploratory study aimed at the identification of early markers of response to anti-PD-1 in patients with mUC. Whole blood RNA sequencing and phenotyping of peripheral blood mononuclear cells were performed on samples of 26 patients obtained before and after 2 to 6 weeks of anti-PD-1. Between baseline and on-treatment samples of patients with clinical benefit, 51 differentially expressed genes (DEGs) were identified, of which 37 were upregulated during treatment. Among the upregulated genes was PDCD1, the gene encoding PD-1. STRING network analysis revealed a cluster of five interconnected DEGs which were all involved in DNA replication or cell cycle regulation. We hypothesized that the upregulation of DNA replication/cell cycle genes is a result of T cell proliferation and we were able to detect an increase in Ki-67+ CD8+ T cells in patients with clinical benefit (median increase: 1.65%, range −0.63 to 7.06%, p = 0.012). In patients without clinical benefit, no DEGs were identified and no increase in Ki-67+ CD8+ T cells was observed. In conclusion, whole blood transcriptome profiling identified early changes in DNA replication and cell cycle regulation genes as markers of clinical benefit to anti-PD-1 in patients with urothelial cancer. Although promising, our findings require further validation before implementation in the clinic.
Collapse
Affiliation(s)
- Sandra van Wilpe
- Department of Medical Oncology, The Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.v.W.); (W.R.G.)
| | - Victoria Wosika
- Novigenix SA, 1066 Epalinges, Switzerland; (V.W.); (L.C.); (S.H.E.)
| | - Laura Ciarloni
- Novigenix SA, 1066 Epalinges, Switzerland; (V.W.); (L.C.); (S.H.E.)
| | | | - Rachel Jeitziner
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; (R.J.); (P.A.)
| | - Paolo Angelino
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; (R.J.); (P.A.)
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (T.D.-d.B.); (I.J.M.d.V.)
| | | | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (T.D.-d.B.); (I.J.M.d.V.)
| | - Winald R. Gerritsen
- Department of Medical Oncology, The Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.v.W.); (W.R.G.)
| | - Jack Schalken
- Department of Urology, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands;
| | - Niven Mehra
- Department of Medical Oncology, The Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (S.v.W.); (W.R.G.)
- Correspondence:
| |
Collapse
|
19
|
Sullivan RJ, Weber JS. Immune-related toxicities of checkpoint inhibitors: mechanisms and mitigation strategies. Nat Rev Drug Discov 2021; 21:495-508. [PMID: 34316029 DOI: 10.1038/s41573-021-00259-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2021] [Indexed: 02/07/2023]
Abstract
The immune-related adverse events associated with treatment with immune checkpoint inhibitors result in significant morbidity for patients as well as considerable cost to the health-care system, and can limit the use of these beneficial drugs. Understanding the mechanisms of these side effects and how they can be separated from the antitumour effects of immune checkpoint inhibitors, as well as identifying biomarkers that predict the development of immune-related toxicities, will facilitate the conduct of trials to limit their onset and improve patient outcomes. In this Review, we discuss the different types of immune-related adverse events and how their treatment and identification of possible predictive biomarkers may shed light on their mechanisms, and describe possible strategies and targets for prophylactic and therapeutic intervention to mitigate them.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Weber
- Laura and Isaac Perlmutter Comprehensive Cancer Center, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
20
|
The biomarkers related to immune related adverse events caused by immune checkpoint inhibitors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:284. [PMID: 33317597 PMCID: PMC7734811 DOI: 10.1186/s13046-020-01749-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
The enthusiasm for immune checkpoint inhibitors (ICIs), an efficient tumor treatment model different from traditional treatment, is based on their unprecedented antitumor effect, but the occurrence of immune-related adverse events (irAEs) is an obstacle to the prospect of ICI treatment. IrAEs are a discrete toxicity caused by the nonspecific activation of the immune system and can affect almost all tissues and organs. Currently, research on biomarkers mainly focuses on the gastrointestinal tract, endocrine system, skin and lung. Several potential hypotheses concentrate on the overactivation of the immune system, excessive release of inflammatory cytokines, elevated levels of pre-existing autoantibodies, and presence of common antigens between tumors and normal tissues. This review lists the current biomarkers that might predict irAEs and their possible mechanisms for both nonspecific and organ-specific biomarkers. However, the prediction of irAEs remains a major clinical challenge to screen and identify patients who are susceptible to irAEs and likely to benefit from ICIs.
Collapse
|
21
|
Shi YR, Xiong K, Ye X, Yang P, Wu Z, Zu XB. Development of a prognostic signature for bladder cancer based on immune-related genes. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1380. [PMID: 33313125 PMCID: PMC7723522 DOI: 10.21037/atm-20-1102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Although the prognosis of patients with bladder cancer (BC) has improved significantly with the use of multimodal therapy, reliable prognostic biomarkers are still urgently needed due to the heterogeneity of tumors. Our aim was to develop an individualized immune-related gene pair (IRGP) signature that could precisely predict prognosis in BC patients. Methods Gene expression profiles and corresponding clinical information were collected from eight microarray data sets and one RNA-Seq data set. Results Among 1,811 immune genes, a 30-IRGP signature consisting of 52 unique genes was generated in the training cohort, which significantly stratified patients into low- and high-risk groups in terms of overall survival. In the testing and validation cohorts, the IRGP signature was also associated with patient prognosis in the univariate and multivariate Cox regression analyses. Several biological processes, including the immune response, chemotaxis, and the inflammatory response, were enriched among genes in the IRGP signature. When the signature was integrated with the TNM stage, an IRGP nomogram was developed and showed improved prognostic accuracy relative to the IRGP signature alone. Conclusions In short, we identified a robust IRGP signature for estimating overall survival in BC patients that could also be used as a promising biomarker for identifying high-risk patients for individualized therapy.
Collapse
Affiliation(s)
- Ying-Rui Shi
- Department of Radiation Oncology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xiong
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Xu Ye
- Department of Radiation Oncology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Pei Yang
- Department of Radiation Oncology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheng Wu
- Department of Radiation Oncology, Hunan Cancer Hospital & the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiong-Bing Zu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
22
|
Cheung VTF, Brain O. Immunotherapy induced enterocolitis and gastritis - What to do and when? Best Pract Res Clin Gastroenterol 2020; 48-49:101703. [PMID: 33317787 DOI: 10.1016/j.bpg.2020.101703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 01/31/2023]
Abstract
Oncological treatment has been revolutionised by the advent of immune checkpoint inhibitors (ICPi), which block inhibitory immune pathways to enhance anti-tumour responses and improve survival. This mode of action is non-specific so can cause immune-related adverse events, of which diarrhoea and enterocolitis are amongst the most common. ICPi-enterocolitis frequently leads to cancer therapy interruption. ICPi-gastritis typically occurs at a later stage of ICPi therapy and can present more insidiously with nausea and vomiting. ICPi-enterocolitis and gastritis are treated with corticosteroids, with refractory cases typically requiring biologic therapy. This review will briefly consider the pathogenesis of ICPi-induced GI disease, before focussing on the practical management of these conditions. The anticipated global increase in ICPi use across cancer types highlights the importance of prospective research in order that we can understand the immuno-microbiology of ICPi-enterocolitis and gastritis. This will lead to predictive biomarkers and help to define optimal treatment regimens.
Collapse
Affiliation(s)
- Vincent Ting Fung Cheung
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Oliver Brain
- Translational Gastroenterology Unit, Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| |
Collapse
|
23
|
Hu W, Wang G, Wang Y, Riese MJ, You M. Uncoupling Therapeutic Efficacy from Immune-Related Adverse Events in Immune Checkpoint Blockade. iScience 2020; 23:101580. [PMID: 33083746 PMCID: PMC7554032 DOI: 10.1016/j.isci.2020.101580] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy with monoclonal antibodies targeting immune checkpoint molecules, including programmed death-1 (PD-1), PD ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen (CTLA)-4, has become prominent in the treatment of many types of cancer. However, a significant number of patients treated with immune checkpoint inhibitors (ICIs) develop immune-related adverse events (irAEs). irAEs can affect any organ system, and although most are clinically manageable, irAEs can result in mortality or long-term morbidity. Factors that can predict irAEs remain elusive. Understanding the etiology of ICI-induced irAEs and ways to limit these adverse events are needed. In this review, we provide basic science and clinical insights on the mechanisms responsible for ICI efficacy and ICI-induced irAEs. We further provide insights into approaches that may uncouple irAEs from the ability of ICIs to kill tumor cells.
Collapse
Affiliation(s)
- Weilei Hu
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Guosheng Wang
- Department of Biomedical Engineering, Binghamton University—SUNY, 4400 Vestal Pkwy E, Binghamton, NY 13902, USA
| | - Yian Wang
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matthew J. Riese
- Department of Medicine, Division of Hematology/Oncology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Blood Research Institute, Versiti Inc, Milwaukee, WI 53226, USA
| | - Ming You
- Center for Disease Prevention Research and Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
24
|
Xu Y, Fu Y, Zhu B, Wang J, Zhang B. Predictive Biomarkers of Immune Checkpoint Inhibitors-Related Toxicities. Front Immunol 2020; 11:2023. [PMID: 33123120 PMCID: PMC7572846 DOI: 10.3389/fimmu.2020.02023] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
The emergence and continuous development of immune checkpoint inhibitors (ICIs) therapy brings a revolution in cancer therapy history, but the major hurdle associated with their usage is the concomitant ICIs-related toxicities that present a challenge for oncologists. The toxicities may involve non-specific symptoms of multiple systems as for the unique mechanism of formation, which are not easily distinguishable from traditional toxicities. A few of these adverse events are self-limiting and readily manageable, but others may limit treatment, cause interruption and need to be treated with methylprednisolone or tumor necrosis factor-α (TNF-α) antibody infliximab, and even directly threaten life. Early accurate recognition and adequate management are critical to the patient's prognosis and overall survival (OS). Several biomarkers such as the expression of programmed cell death ligand 1 (PD-L1), tumor mutation burden (TMB), and microsatellite instability-high (MSI-H)/mismatch repair-deficient (dMMR) have been proved to be the predictors for anti-tumor efficacy of ICIs, but there is a gap in clinical needs for effective biomarkers that predict toxicities and help filter out the patients who may benefit most from these costly therapies while avoiding major risks of toxicities. Here, we summarize several types of risk factors correlated with ICIs-related toxicities to provide a reference for oncologists to predict the occurrence of ICIs-related toxicities resulting in a timely process in clinical practice.
Collapse
Affiliation(s)
- Ya Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Fu
- Department of Oncology, Xiangyang Hospital, Hubei University of Chinese Medicine, Xiangyang, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jun Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Bicheng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Collins M, Soularue E, Marthey L, Carbonnel F. Management of Patients With Immune Checkpoint Inhibitor-Induced Enterocolitis: A Systematic Review. Clin Gastroenterol Hepatol 2020; 18:1393-1403.e1. [PMID: 32007539 DOI: 10.1016/j.cgh.2020.01.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have improved the treatment of several cancers. These drugs increase T-cell activity and the antitumor immune response but also have immune-related adverse effects that can affect the gastrointestinal (GI) tract. These adverse effects have been observed in 7% to 30% of patients treated with ICIs. As the number of diseases treated with ICIs increases, gastroenterologists will see more patients with ICI-induced GI adverse events. We performed a systematic review of the incidence, risk factors, clinical manifestations, and management of the adverse effects of ICIs on the GI tract. Treatment with anti-cytotoxic T-lymphocyte-associated antigen-4 often causes severe enterocolitis, whereas treatment with inhibitors of programmed cell death 1 have less frequent and more diverse adverse effects. Management of patients with GI adverse effects of ICIs should involve first ruling out other disorders, followed by assessment of severity, treatment with corticosteroids, and rapid introduction of infliximab therapy for nonresponders.
Collapse
Affiliation(s)
- Michael Collins
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France; Paris Saclay University, Le Kremlin Bicêtre, France; INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif, France
| | - Emilie Soularue
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | - Lysiane Marthey
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France
| | - Franck Carbonnel
- Department of Gastroenterology, Kremlin Bicêtre Hospital, Assistance Publique-Hopitaux de Paris, Le Kremlin Bicêtre, France; Paris Saclay University, Le Kremlin Bicêtre, France; INSERM 1018, UPS, UVSQ Institut Gustave Roussy, Villejuif Cedex, France.
| |
Collapse
|
26
|
Shivaji UN, Jeffery L, Gui X, Smith SCL, Ahmad OF, Akbar A, Ghosh S, Iacucci M. Immune checkpoint inhibitor-associated gastrointestinal and hepatic adverse events and their management. Therap Adv Gastroenterol 2019; 12:1756284819884196. [PMID: 31723355 PMCID: PMC6831976 DOI: 10.1177/1756284819884196] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/18/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Drug-induced colitis is a known complication of therapies that alter the immune balance, damage the intestinal barrier or disturb intestinal microbiota. Immune checkpoint inhibitors (ICI) directed against cancer cells may result in activated T lymphocyte-induced immune-related adverse events (AEs), including immune-related colitis and hepatitis. The aim of this review article is to summarize the incidence of gastrointestinal (GI) and hepatic AEs related to ICI therapy. We have also looked at the pathogenesis of immune-mediated AEs and propose management strategies based on current available evidence. METHODS A literature search using PubMed and Medline databases was undertaken using relevant search terms pertaining to names of individual drugs, mechanism of action, related AEs and their management. RESULTS ICI-related GI AEs are common, and colitis appears to be the most common side effect, with some studies reporting incidence as high as 30%. The incidence of both all-grade colitis and hepatitis were highest with combination therapy with anti-CTLA-4/PD-1; severity of colitis was dose-dependent (anti-CTLA-4). Early intervention is associated with better outcomes. CONCLUSION ICI-related GI and hepatic AEs are common and clinicians need to be aware. Patients with GI AEs benefit from early diagnosis using endoscopy and computed tomography. Early intervention with oral steroids is effective in the majority of patients, and in steroid-refractory colitis infliximab and vedolizumab have been reported to be useful; mycophenolate has been used for steroid-refractory hepatitis.
Collapse
Affiliation(s)
- Uday N. Shivaji
- National Institute for Health Research (NIHR)
Birmingham Biomedical Research Centre, UK,Institute of Immunology and Immunotherapy,
University of Birmingham, UK
| | - Louisa Jeffery
- National Institute for Health Research (NIHR)
Birmingham Biomedical Research Centre, UK,Institute of Immunology and Immunotherapy,
University of Birmingham, UK
| | - Xianyong Gui
- Department of Pathology, University of
Washington, Seattle, WA, USA
| | - Samuel C. L. Smith
- Institute of Immunology and Immunotherapy,
University of Birmingham, UK,Institute of Translational Medicine, Birmingham,
UK
| | - Omer F. Ahmad
- Department of Gastroenterology, University
College London Hospital, London, UK
| | | | | | - Marietta Iacucci
- National Institute for Health Research (NIHR)
Birmingham Biomedical Research Centre, UK,Institute of Immunology and Immunotherapy,
University of Birmingham, UK,Institute of Translational Medicine,
Birmingham, UK
| |
Collapse
|
27
|
Diagnosis and Management of Immune Related Adverse Events (irAEs) in Cancer Immunotherapy. Biomed Pharmacother 2019; 120:109437. [PMID: 31590992 DOI: 10.1016/j.biopha.2019.109437] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Immune checkpoint inhibitors (ICPIs) and chimeric antigen receptor (CAR) T-cell therapy are two main promising methods of immunotherapy, which have become increasingly important in cancer treatment. After the wider application of these medicine in clinic, a range of immune related adverse events (irAEs) covering almost any system arouse the concern for being randomness and unpredictability. Even if most adverse events are mild and controllable after thoughtful management, the occurrence of life-threatening toxicities should not be ignored because of the insidious and atypical symptoms, which makes the early diagnosis even more challenging. In this review, a brief introduction of immunotherapy and mechanisms underlying irAEs is involved. We mainly focus on the early diagnostic method and recommended management of toxicities of different systems separately, and consequently maximized effectiveness of immunotherapy can be achieved.
Collapse
|
28
|
Schoenfeld JD, Nishino M, Severgnini M, Manos M, Mak RH, Hodi FS. Pneumonitis resulting from radiation and immune checkpoint blockade illustrates characteristic clinical, radiologic and circulating biomarker features. J Immunother Cancer 2019; 7:112. [PMID: 31014385 PMCID: PMC6480873 DOI: 10.1186/s40425-019-0583-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pneumonitis is a potential consequence of both lung-directed radiation and immune checkpoint blockade (ICB), particularly treatment with PD-1/PD-L1 inhibitors. Significant morbidity and mortality can result, and severe pneumonitis attributed to ICB precludes continued therapy. Thus, discriminating between radiation- and ICB- related pneumonitis is of importance for the increasing number of patients receiving both treatments. Furthermore, data are limited regarding the interplay between radiation- and ICB-induced lung injury, and which biomarkers might be associated with toxicity. CASE PRESENTATION We report longitudinal clinical and radiologic data, and circulating biomarkers in a melanoma patient treated with axillary radiation followed by ICB who developed consolidation and ground glass opacities (GGO) within the radiation field suggestive of radiation-pneumonitis followed by consolidation outside of the radiation field suggestive of ICB-related pneumonitis. Of note, symptomatic radiation-pneumonitis developed despite a low radiation dose to the lung (V20 < 8%), and ICB-related pneumonitis was limited to the ipsilateral lung, suggesting additive effect of radiation and ICB in the development of lung injury. Circulating biomarker analyses demonstrated increases in CXCR2, IL1ra and IL2ra that coincided with the development of symptomatic pneumonitis. CONCLUSIONS These data highlight the imaging findings associated with radiation and ICB-related lung toxicity, and anecdotally describe a clinical course with circulating biomarker correlates. This information can help guide clinical evaluation and future research investigations into the toxicity of combined radiation immunotherapy approaches.
Collapse
Affiliation(s)
- Jonathan D. Schoenfeld
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215-5450 USA
| | | | | | | | - Raymond H. Mak
- Brigham and Women’s Hospital, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215-5450 USA
| | | |
Collapse
|
29
|
Bridge JA, Lee JC, Daud A, Wells JW, Bluestone JA. Cytokines, Chemokines, and Other Biomarkers of Response for Checkpoint Inhibitor Therapy in Skin Cancer. Front Med (Lausanne) 2018; 5:351. [PMID: 30631766 PMCID: PMC6315146 DOI: 10.3389/fmed.2018.00351] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy for skin malignancies has ushered in a new era for cancer treatments by demonstrating unprecedented durable responses in the setting of metastatic Melanoma. Consequently, checkpoint inhibitors are now the first-line treatment of metastatic melanoma and widely used as adjuvant therapy for stage III disease. With the observation that higher tumor mutational burden correlates with a better response, checkpoint inhibitors are tested in other skin cancer types of known high tumor mutational burden with promising results and recently became the first-ever FDA-approved treatment for metastatic Merkel cell carcinoma. The emerging new standards-of-care will necessitate more precise biomarkers and predictors for treatment response and immune-related adverse events. Measurable immune-related mediators are currently under investigation as factors that promote or block the response to cancer immunotherapy and may provide insights into the underlying immune response to the tumor. Cytokines and chemokines are such mediators and are crucial for facilitating the recruitment and activation of specific subsets of leukocytes within the microenvironment of skin cancers. The exact mechanisms of how these meditators, both immunological and non-immunological, operate in the tumor microenvironment is an area of active research, so to reliable biomarkers of responses to cancer immunotherapy. Here, we will review and summarize the expanding body of literature for immune-related biomarkers pertaining to Melanoma, Basal cell carcinoma, Squamous cell carcinoma, and Merkel cell carcinoma, highlighting clinically relevant checkpoint inhibitor therapy biomarker advancements.
Collapse
Affiliation(s)
- Jennifer A Bridge
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - James C Lee
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - Adil Daud
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, CA, United States
| | - James W Wells
- The Faculty of Medicine, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Jeffrey A Bluestone
- Sean N. Parker Autoimmune Research Laboratory, Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|