1
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
2
|
Yabushita T, Shimomura Y, Maruoka H, Katoh D, Yamashita D, Satake H, Hiramoto N, Yoshioka S, Yonetani N, Nishikori M, Morimoto T, Imai Y, Ishikawa T. Complete detection of FR1 to FR3 primer-based PCR patterns of immunoglobulin heavy chain rearrangement in the BIOMED-2 protocol is associated with poor prognosis in patients with diffuse large B-cell lymphoma. EJHAEM 2024; 5:698-708. [PMID: 39157631 PMCID: PMC11327714 DOI: 10.1002/jha2.921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/20/2024]
Abstract
Somatic hypermutations (SHMs) in the variable region (VH) of the immunoglobulin heavy chain (IgH) gene are common in diffuse large B-cell lymphoma (DLBCL). Recently, IgH VH SHMs have become known as immunogenic neoantigens, but few studies have evaluated the prognostic impact of the frequency of VH SHMs in DLBCL. The BIOMED-2 protocol is the gold standard polymerase chain reaction (PCR) for clonality analysis in lymphoid malignancies, but can produce false negatives due to the presence of IgH VH SHMs. To overcome this problem, three primer sets were designed for the three framework regions (FR1, FR2, and FR3). We evaluated the predictive value of this PCR pattern in patients with DLBCL. To evaluate the prognostic impact of complete detection of the clonal amplifications (VHFR1-JH, VHFR2-JH, and VHFR3-JH) in the BIOMED-2 protocol, we retrospectively analyzed 301 DLBCL patients who were initially treated with anthracycline-based immunochemotherapy. Complete detection of the FR1 to FR3 primer-based IgH VH PCR patterns in the BIOMED-2 protocol was associated with low frequency of VH SHMs (p < 0.001). Patients who were positive for all these three PCRs (n = 79) were significantly associated with shorter 5-year overall survival (OS; 54.2% vs. 73.2%; p = 0.002) and progression-free survival (PFS; 34.3% vs. 59.3%; p < 0.001) compared to patients with other PCR patterns (n = 202). Specifically, the successful FR3-JH detection was associated with significantly worse OS (p < 0.001) and PFS (p < 0.001). PCR patterns of complete IgH rearrangement using the BIOMED-2 protocol are clinically meaningful indicators for prognostic stratification of DLBCL patients.
Collapse
Affiliation(s)
- Tomohiro Yabushita
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
- International Research Center for Medical SciencesKumamoto UniversityKumamotoJapan
| | | | - Hayato Maruoka
- Department of Clinical LaboratoryKobe City Medical Center General HospitalKobeJapan
| | - Daisuke Katoh
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
| | - Daisuke Yamashita
- Department of PathologyKobe City Medical Center General HospitalKobeJapan
| | - Hironaga Satake
- Department of Medical OncologyKobe City Medical Center General HospitalKobeJapan
- Department of Medical OncologyKochi Medical SchoolKochiJapan
| | - Nobuhiro Hiramoto
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
| | - Satoshi Yoshioka
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
- Department of HematologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Noboru Yonetani
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
| | - Momoko Nishikori
- Department of Hematology and Oncology, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takeshi Morimoto
- Clinical Research CenterKobe City Medical Center General HospitalKobeJapan
- Department of Clinical EpidemiologyHyogo College of MedicineHyogoJapan
| | - Yukihiro Imai
- Department of PathologyKobe City Medical Center General HospitalKobeJapan
- Department of Surgical PathologyKakogawa Central City HospitalKakogawaJapan
| | - Takayuki Ishikawa
- Department of HematologyKobe City Medical Center General HospitalKobeJapan
| |
Collapse
|
3
|
Xu-Monette ZY, Li Y, Snyder T, Yu T, Lu T, Tzankov A, Visco C, Bhagat G, Qian W, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, Hagemeister FB, Wang Y, Go H, Ponzoni M, Ferreri AJ, Møller MB, Parsons BM, Fan X, van Krieken JH, Piris MA, Winter JN, Au Q, Kirsch I, Zhang M, Shaughnessy J, Xu B, Young KH. Tumor-Infiltrating Normal B Cells Revealed by Immunoglobulin Repertoire Clonotype Analysis Are Highly Prognostic and Crucial for Antitumor Immune Responses in DLBCL. Clin Cancer Res 2023; 29:4808-4821. [PMID: 37728879 PMCID: PMC10842978 DOI: 10.1158/1078-0432.ccr-23-1554] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Tumor-infiltrating B lymphocytes (TIL-B) have demonstrated prognostic and predictive significance in solid cancers. In this study, we aimed to distinguish TIL-Bs from malignant B-cells in diffuse large B-cell lymphoma (DLBCL) and determine the clinical and biological significance. EXPERIMENTAL DESIGN A total of 269 patients with de novo DLBCL from the International DLBCL R-CHOP Consortium Program were studied. Ultra-deep sequencing of the immunoglobulin genes was performed to determine B-cell clonotypes. The frequencies and numbers of TIL-B clonotypes in individual repertoires were correlated with patient survival, gene expression profiling (GEP) data, and frequencies of DLBCL-infiltrating immune cells quantified by fluorescent multiplex IHC at single-cell resolution. RESULTS TIL-B abundance, evaluated by frequencies of normal B-cell clonotypes in the immunoglobulin repertoires, remarkably showed positive associations with significantly better survival of patients in our sequenced cohorts. DLBCLs with high versus low TIL-B abundance displayed distinct GEP signatures, increased pre-memory B-cell state and naïve CD4 T-cell state fractions, and higher CD4+ T-cell infiltration. TIL-B frequency, as a new biomarker in DLBCL, outperformed the germinal center (GC) B-cell-like/activated B-cell-like classification and TIL-T frequency. The identified TIL-B-high GEP signature, including genes upregulated during T-dependent B-cell activation and those highly expressed in normal GC B cells and T cells, showed significant favorable prognostic effects in several external validation cohorts. CONCLUSIONS TIL-B frequency is a significant prognostic factor in DLBCL and plays a crucial role in antitumor immune responses. This study provides novel insights into the prognostic determinants in DLBCL and TIL-B functions with important therapeutic implications.
Collapse
Affiliation(s)
- Zijun Y. Xu-Monette
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Yong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Tiantian Yu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Tingxun Lu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | | | - Carlo Visco
- Department of Hematology, University of Verona, Verona, Italy
| | - Govind Bhagat
- Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, NY, USA
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | - Wayne Tam
- Weill Medical College of Cornell University, New York, NY, USA
| | - Youli Zu
- The Methodist Hospital, Houston, TX, USA
| | - Eric D. Hsi
- Wake Forest University, Winston-Salem, NC, USA
| | - Fredrick B. Hagemeister
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yingjun Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Heounjeong Go
- Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | | | | | | | | | - Xiangshan Fan
- Pathology Center, Anhui Medical University and the first Affiliated Hospital, Hefei, China
| | | | - Miguel A. Piris
- Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Qingyan Au
- NeoGenomics Laboratories, Aliso Viejo, California, USA
| | | | - Mingzhi Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - John Shaughnessy
- Myeloma Center, Winthrop P. Rockefeller Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Bing Xu
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ken H. Young
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
4
|
Yang L, Wang J, Altreuter J, Jhaveri A, Wong CJ, Song L, Fu J, Taing L, Bodapati S, Sahu A, Tokheim C, Zhang Y, Zeng Z, Bai G, Tang M, Qiu X, Long HW, Michor F, Liu Y, Liu XS. Tutorial: integrative computational analysis of bulk RNA-sequencing data to characterize tumor immunity using RIMA. Nat Protoc 2023; 18:2404-2414. [PMID: 37391666 DOI: 10.1038/s41596-023-00841-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/22/2023] [Indexed: 07/02/2023]
Abstract
RNA-sequencing (RNA-seq) has become an increasingly cost-effective technique for molecular profiling and immune characterization of tumors. In the past decade, many computational tools have been developed to characterize tumor immunity from gene expression data. However, the analysis of large-scale RNA-seq data requires bioinformatics proficiency, large computational resources and cancer genomics and immunology knowledge. In this tutorial, we provide an overview of computational analysis of bulk RNA-seq data for immune characterization of tumors and introduce commonly used computational tools with relevance to cancer immunology and immunotherapy. These tools have diverse functions such as evaluation of expression signatures, estimation of immune infiltration, inference of the immune repertoire, prediction of immunotherapy response, neoantigen detection and microbiome quantification. We describe the RNA-seq IMmune Analysis (RIMA) pipeline integrating many of these tools to streamline RNA-seq analysis. We also developed a comprehensive and user-friendly guide in the form of a GitBook with text and video demos to assist users in analyzing bulk RNA-seq data for immune characterization at both individual sample and cohort levels by using RIMA.
Collapse
Affiliation(s)
- Lin Yang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jin Wang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cheryl J Wong
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Li Song
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jingxin Fu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- School of Life Science and Technology, Tongji University, Shanghai, China
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Len Taing
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sudheshna Bodapati
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Avinash Sahu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Collin Tokheim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Yi Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Gali Bai
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ming Tang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xintao Qiu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Henry W Long
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Franziska Michor
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA
- The Ludwig Center at Harvard, Boston, MA, USA
| | - Yang Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Takahara T, Nakamura S, Tsuzuki T, Satou A. The Immunology of DLBCL. Cancers (Basel) 2023; 15:835. [PMID: 36765793 PMCID: PMC9913124 DOI: 10.3390/cancers15030835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy and is the most common type of malignant lymphoid neoplasm. While some DLBCLs exhibit strong cell-autonomous survival and proliferation activity, others depend on interactions with non-malignant cells for their survival and proliferation. Recent next-generation sequencing studies have linked these interactions with the molecular classification of DLBCL. For example, germinal center B-cell-like DLBCL tends to show strong associations with follicular T cells and epigenetic regulation of immune recognition molecules, whereas activated B-cell-like DLBCL shows frequent genetic aberrations affecting the class I major histocompatibility complex. Single-cell technologies have also provided detailed information about cell-cell interactions and the cell composition of the microenvironment of DLBCL. Aging-related immunological deterioration, i.e., immunosenescence, also plays an important role in DLBCL pathogenesis, especially in Epstein-Barr virus-positive DLBCL. Moreover, DLBCL in "immune-privileged sites"-where multiple immune-modulating mechanisms exist-shows unique biological features, including frequent down-regulation of immune recognition molecules and an immune-tolerogenic tumor microenvironment. These advances in understanding the immunology of DLBCL may contribute to the development of novel therapies targeting immune systems.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| |
Collapse
|
6
|
Klausen U, Grauslund JH, Jørgensen NGD, Ahmad SM, Jonassen M, Weis-Banke SE, Martinenaite E, Pedersen LB, Lisle TL, Gang AO, Enggaard L, Hansen M, Holmström MO, Met Ö, Svane IM, Niemann CU, Pedersen LM, Andersen MH. Anti-PD-L1/PD-L2 therapeutic vaccination in untreated chronic lymphocytic leukemia patients with unmutated IgHV. Front Oncol 2022; 12:1023015. [PMID: 36483037 PMCID: PMC9723164 DOI: 10.3389/fonc.2022.1023015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Chronic lymphocytic leukemia (CLL) patients with unmutated immunoglobulin heavy chain (IgHV) are at risk of early disease progression compared to patients with mutated IgHV. As a preventive strategy, we treated 19 previously untreated CLL patients with unmutated IgHV in a phase 1/2 trial (clinicaltrials.gov, NCT03939234) exploring the efficacy and toxicity of a therapeutic cancer vaccine containing peptides derived from programmed death ligand 1 (PD-L1) and ligand 2 (PD-L2), hoping to restore immunological control of the disease. According to the International Workshop on Chronic lymphocytic Leukemia (iwCLL) response criteria, no patients obtained a response; however, during follow-up, one patient had complete normalization of the peripheral lymphocyte count and remained in biochemical remission after a follow-up time of 15 months. At the end of treatment, one patient had progressed, and 17 patients had stable disease. During follow-up with a median time of 23.5 months since inclusion, seven patients had progressed, and eight patients had stable disease. The median time to first treatment (TTFT) from diagnosis was 90.3 months with a median follow-up time of 50.1 months. This apparent favorable outcome in TTFT needs to be investigated in a randomized setting, as our population may have been biased. More than 80% of patients obtained vaccine-specific immune responses, confirming the immunogenicity of the vaccine. The vaccine was generally well tolerated with only grade I-II adverse events. Although there were some signs of clinical effects, the vaccine seems to be insufficient as monotherapy in CLL, possibly due to a high tumor burden. The efficacy of the vaccine should preferably be tested in combination with novel targeted therapies or as a consolidating treatment.
Collapse
Affiliation(s)
- Uffe Klausen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Handlos Grauslund
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai Grønne Dahlager Jørgensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Hematology, Zealand University Hospital, Roskilde, Denmark
| | - Shamaila Munir Ahmad
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Merete Jonassen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Stine Emilie Weis-Banke
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Evelina Martinenaite
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Lone Bredo Pedersen
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Thomas Landkildehus Lisle
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Anne Ortved Gang
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisbeth Enggaard
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Hansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Morten Orebo Holmström
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Carsten Utoft Niemann
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Matthiesen R, Gameiro P, Henriques A, Bodo C, Moraes MCS, Costa-Silva B, Cabeçadas J, Gomes da Silva M, Beck HC, Carvalho AS. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int J Mol Sci 2022; 23:13327. [PMID: 36362114 PMCID: PMC9654702 DOI: 10.3390/ijms232113327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 09/29/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Paula Gameiro
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Andreia Henriques
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - José Cabeçadas
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Maria Gomes da Silva
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
8
|
Deng X, Zhang M, Zhou J, Xiao M. Next-generation sequencing for MRD monitoring in B-lineage malignancies: from bench to bedside. Exp Hematol Oncol 2022; 11:50. [PMID: 36057673 PMCID: PMC9440501 DOI: 10.1186/s40164-022-00300-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/21/2022] [Indexed: 12/02/2022] Open
Abstract
Minimal residual disease (MRD) is considered the strongest relevant predictor of prognosis and an effective decision-making factor during the treatment of hematological malignancies. Remarkable breakthroughs brought about by new strategies, such as epigenetic therapy and chimeric antigen receptor-T (CAR-T) therapy, have led to considerably deeper responses in patients than ever, which presents difficulties with the widely applied gold-standard techniques of MRD monitoring. Urgent demands for novel approaches that are ultrasensitive and provide sufficient information have put a spotlight on high-throughput technologies. Recently, advances in methodology, represented by next-generation sequencing (NGS)-based clonality assays, have proven robust and suggestive in numerous high-quality studies and have been recommended by some international expert groups as disease-monitoring modalities. This review demonstrates the applicability of NGS-based clonality assessment for MRD monitoring of B-cell malignancies by summarizing the oncogenesis of neoplasms and the corresponding status of immunoglobulin (IG) rearrangements. Furthermore, we focused on the performance of NGS-based assays compared with conventional approaches and the interpretation of results, revealing directions for improvement and prospects in clinical practice.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Meilan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, 430030, China.
| |
Collapse
|
9
|
Andreani T, Slot LM, Gabillard S, Strübing C, Reimertz C, Yaligara V, Bakker AM, Olfati-Saber R, Toes REM, Scherer HU, Augé F, Šimaitė D. Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data. NAR Genom Bioinform 2022; 4:lqac049. [PMID: 35855325 PMCID: PMC9278041 DOI: 10.1093/nargab/lqac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/30/2022] [Accepted: 06/21/2022] [Indexed: 11/12/2022] Open
Abstract
Multiple methods have recently been developed to reconstruct full-length B-cell receptors (BCRs) from single-cell RNA sequencing (scRNA-seq) data. This need emerged from the expansion of scRNA-seq techniques, the increasing interest in antibody-based drug development and the importance of BCR repertoire changes in cancer and autoimmune disease progression. However, a comprehensive assessment of performance-influencing factors such as the sequencing depth, read length or number of somatic hypermutations (SHMs) as well as guidance regarding the choice of methodology is still lacking. In this work, we evaluated the ability of six available methods to reconstruct full-length BCRs using one simulated and three experimental SMART-seq datasets. In addition, we validated that the BCRs assembled in silico recognize their intended targets when expressed as monoclonal antibodies. We observed that methods such as BALDR, BASIC and BRACER showed the best overall performance across the tested datasets and conditions, whereas only BASIC demonstrated acceptable results on very short read libraries. Furthermore, the de novo assembly-based methods BRACER and BALDR were the most accurate in reconstructing BCRs harboring different degrees of SHMs in the variable domain, while TRUST4, MiXCR and BASIC were the fastest. Finally, we propose guidelines to select the best method based on the given data characteristics.
Collapse
Affiliation(s)
- Tommaso Andreani
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| | - Linda M Slot
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - Carsten Strübing
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Claus Reimertz
- Immunology & Inflammation Research, Sanofi , Frankfurt am Main 65926, Germany
| | - Veeranagouda Yaligara
- Molecular Biology & Genomics, Translational Science Unit, Sanofi , Chilly-Mazarin 91385, France
| | - Aleida M Bakker
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | | | - René E M Toes
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Hans U Scherer
- Department of Rheumatology, Leiden University Medical Center , 2333 RC Leiden, The Netherlands
| | - Franck Augé
- AI & Deep Analytics—Omics Data Science, Sanofi , Paris 91385, France
| | - Deimantė Šimaitė
- AI & Deep Analytics—Omics Data Science, Sanofi , Frankfurt am Main 65926, Germany
| |
Collapse
|
10
|
Neoantigens – the next frontier in precision immunotherapy for B-cell lymphoproliferative disorders. Blood Rev 2022; 56:100969. [DOI: 10.1016/j.blre.2022.100969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/20/2022]
|
11
|
Qian X, Zheng H, Xue K, Chen Z, Hu Z, Zhang L, Wan J. Recurrence Risk of Liver Cancer Post-hepatectomy Using Machine Learning and Study of Correlation With Immune Infiltration. Front Genet 2021; 12:733654. [PMID: 34956309 PMCID: PMC8692778 DOI: 10.3389/fgene.2021.733654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022] Open
Abstract
Postoperative recurrence of liver cancer is the main obstacle to improving the survival rate of patients with liver cancer. We established an mRNA-based model to predict the risk of recurrence after hepatectomy for liver cancer and explored the relationship between immune infiltration and the risk of recurrence after hepatectomy for liver cancer. We performed a series of bioinformatics analyses on the gene expression profiles of patients with liver cancer, and selected 18 mRNAs as biomarkers for predicting the risk of recurrence of liver cancer using a machine learning method. At the same time, we evaluated the immune infiltration of the samples and conducted a joint analysis of the recurrence risk of liver cancer and found that B cell, B cell naive, T cell CD4+ memory resting, and T cell CD4+ were significantly correlated with the risk of postoperative recurrence of liver cancer. These results are helpful for early detection, intervention, and the individualized treatment of patients with liver cancer after surgical resection, and help to reveal the potential mechanism of liver cancer recurrence.
Collapse
Affiliation(s)
- Xiaowen Qian
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Huilin Zheng
- Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ke Xue
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Zheng Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhenhua Hu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China.,Key Laboratory of Combined Multi-Organ Transplantation, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Ministry of Public Health Key Laboratory of Organ Transplantation, Hangzhou, China.,Division of Hepatobiliary and Pancreatic Surgery, Yiwu Central Hospital, Yiwu, China
| | - Lei Zhang
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China.,Department of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Jian Wan
- Department of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| |
Collapse
|
12
|
Chiodin G, Allen JD, Bryant DJ, Rock P, Martino EA, Valle-Argos B, Duriez PJ, Watanabe Y, Henderson I, Blachly JS, McCann KJ, Strefford JC, Packham G, Geijtenbeek TBH, Figdor CG, Wright GW, Staudt LM, Burack R, Bowden TA, Crispin M, Stevenson FK, Forconi F. Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood 2021; 138:1570-1582. [PMID: 34424958 PMCID: PMC8554650 DOI: 10.1182/blood.2021012052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Glycosylation of the surface immunoglobulin (Ig) variable region is a remarkable follicular lymphoma-associated feature rarely seen in normal B cells. Here, we define a subset of diffuse large B-cell lymphomas (DLBCLs) that acquire N-glycosylation sites selectively in the Ig complementarity-determining regions (CDRs) of the antigen-binding sites. Mass spectrometry and X-ray crystallography demonstrate how the inserted glycans are stalled at oligomannose-type structures because they are buried in the CDR loops. Acquisition of sites occurs in ∼50% of germinal-center B-cell-like DLBCL (GCB-DLBCL), mainly of the genetic EZB subtype, irrespective of IGHV-D-J use. This markedly contrasts with the activated B-cell-like DLBCL Ig, which rarely has sites in the CDR and does not seem to acquire oligomannose-type structures. Acquisition of CDR-located acceptor sites associates with mutations of epigenetic regulators and BCL2 translocations, indicating an origin shared with follicular lymphoma. Within the EZB subtype, these sites are associated with more rapid disease progression and with significant gene set enrichment of the B-cell receptor, PI3K/AKT/MTORC1 pathway, glucose metabolism, and MYC signaling pathways, particularly in the fraction devoid of MYC translocations. The oligomannose-type glycans on the lymphoma cells interact with the candidate lectin dendritic cell-specific intercellular adhesion molecule 3 grabbing non-integrin (DC-SIGN), mediating low-level signals, and lectin-expressing cells form clusters with lymphoma cells. Both clustering and signaling are inhibited by antibodies specifically targeting the DC-SIGN carbohydrate recognition domain. Oligomannosylation of the tumor Ig is a posttranslational modification that readily identifies a distinct GCB-DLBCL category with more aggressive clinical behavior, and it could be a potential precise therapeutic target via antibody-mediated inhibition of the tumor Ig interaction with DC-SIGN-expressing M2-polarized macrophages.
Collapse
Affiliation(s)
- Giorgia Chiodin
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Dean J Bryant
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Philip Rock
- Department of Pathology and Laboratory Medicine/Hematopathology, University of Rochester Medical Center, Rochester, NY
| | - Enrica A Martino
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
- Division of Hematology, Azienda Policlinico-Ospedale Vittorio Emanuele, University of Catania, Catania, Italy
| | - Beatriz Valle-Argos
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Patrick J Duriez
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Yasunori Watanabe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Isla Henderson
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - James S Blachly
- Division of Hematology, The Ohio State University, Columbus, OH
| | - Katy J McCann
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Jonathan C Strefford
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Graham Packham
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD; and
| | - Richard Burack
- Department of Pathology and Laboratory Medicine/Hematopathology, University of Rochester Medical Center, Rochester, NY
| | - Thomas A Bowden
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Freda K Stevenson
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
| | - Francesco Forconi
- School of Cancer Sciences, Cancer Research United Kingdom Southampton Centre, Faculty of Medicine
- Haematology Department, Cancer Care Directorate, University Hospital Southampton National Health Service Trust, Southampton, United Kingdom
| |
Collapse
|
13
|
You H, Xu-Monette ZY, Wei L, Nunns H, Nagy ML, Bhagat G, Fang X, Zhu F, Visco C, Tzankov A, Dybkaer K, Chiu A, Tam W, Zu Y, Hsi ED, Hagemeister FB, Huh J, Ponzoni M, Ferreri AJM, Møller MB, Parsons BM, Van Krieken JH, Piris MA, Winter JN, Li Y, Au Q, Xu B, Albitar M, Young KH. Genomic complexity is associated with epigenetic regulator mutations and poor prognosis in diffuse large B-cell lymphoma. Oncoimmunology 2021; 10:1928365. [PMID: 34350060 PMCID: PMC8293967 DOI: 10.1080/2162402x.2021.1928365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma with high mutation burdens but a low response rate to immune checkpoint inhibitors. In this study, we performed targeted next-generation sequencing and fluorescent multiplex immunohistochemistry, and investigated the clinical significance and immunological effect of mutation numbers in 424 DLBCL patients treated with standard immunochemotherapy. We found that KMT2D and TP53 nonsynonymous mutations (MUT) were significantly associated with increased nonsynonymous mutation numbers, and that high mutation numbers (MUThigh) were associated with significantly poorer clinical outcome in germinal center B-cell-like DLBCL with wild-type TP53. To understand the underlying mechanisms, we identified a gene-expression profiling signature and the association of MUThigh with decreased T cells in DLBCL patients with wild-type TP53. On the other hand, in overall cohort, MUThigh was associated with lower PD-1 expression in T cells and PD-L1 expression in macrophages, suggesting a positive role of MUThigh in immune responses. Analysis in a whole-exome sequencing dataset of 304 patients deposited by Chapuy et al. validated the correlation of MUT-KMT2D with genomic complexity and the significantly poorer survival associated with higher numbers of genomic single nucleotide variants in activated B-cell-like DLBCL with wild-type TP53. Together, these results suggest that KMT2D inactivation or epigenetic dysregulation has a role in driving DLBCL genomic instability, and that genomic complexity has adverse impact on clinical outcome in DLBCL patients with wild-type TP53 treated with standard immunochemotherapy. The oncoimmune data in this study have important implications for biomarker and therapeutic studies in DLBCL.
Collapse
Affiliation(s)
- Hua You
- Department of Hematology and Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carollina, USA
| | - Zijun Y Xu-Monette
- Department of Hematology and Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Li Wei
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carollina, USA.,Duke Cancer Institute, Durham, North Caronlina, USA
| | - Harry Nunns
- Duke Cancer Institute, Durham, North Caronlina, USA
| | - Máté L Nagy
- Duke Cancer Institute, Durham, North Caronlina, USA
| | - Govind Bhagat
- NeoGenomics Laboratories, Aliso Viejo, California, USA
| | - Xiaosheng Fang
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carollina, USA
| | - Feng Zhu
- Hematopathology Division and Department of Pathology, Duke University Medical Center, Durham, North Carollina, USA
| | - Carlo Visco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, New York, USA
| | - Alexandar Tzankov
- Department of Medicine, Section of Hematology, University of Verona, Verona, Italy
| | - Karen Dybkaer
- Department of Pathology, Institute of Pathology,University Hospital Basel, Switzerland
| | - April Chiu
- Clinical Department, Aalborg University Hospital, Aalborg, Denmark
| | - Wayne Tam
- Hematopathology Department, Mayo Clinic, Rochester, Minnesota, USA
| | - Youli Zu
- Department of Pathology, Weill Medical College of Cornell University, New York, New York, USA
| | - Eric D Hsi
- Department of Pathology and Genomic Medicine, The Methodist Hospital, Houston, Texas, USA
| | | | - Jooryung Huh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maurilio Ponzoni
- Department of Pathology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Andrés J M Ferreri
- Department of Pathology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Michael B Møller
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - J Han Van Krieken
- Hematology & Oncology, Gundersen Lutheran Health System, La Crosse, Wisconsin, USA
| | - Miguel A Piris
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Jane N Winter
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Yong Li
- Department of Medicine (Hematology and Oncology), Feinberg School of Medicine, Northwestern University, Chicago, Illinois,USA
| | - Qingyan Au
- Duke Cancer Institute, Durham, North Caronlina, USA
| | - Bing Xu
- Department of Medicine, Baylor College of Medicine, Houston, Texas,USA
| | - Maher Albitar
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian,China
| | - Ken H Young
- Department of Hematology and Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.,Genomic Testing Cooperative, LCA, Irvine, California,USA
| |
Collapse
|
14
|
Aoki T, Savage KJ, Steidl C. Biology in Practice: Harnessing the Curative Potential of the Immune System in Lymphoid Cancers. J Clin Oncol 2021; 39:346-360. [PMID: 33434057 DOI: 10.1200/jco.20.01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Tomohiro Aoki
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kerry J Savage
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada.,Department of Medical Oncology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, British Columbia Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Menter T, Tzankov A, Dirnhofer S. The tumor microenvironment of lymphomas: Insights into the potential role and modes of actions of checkpoint inhibitors. Hematol Oncol 2020; 39:3-10. [PMID: 33105031 DOI: 10.1002/hon.2821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
The tumor microenvironment (TME) - a term comprising non-neoplastic cells and extracellular matrix as well as various cytokines, chemokines, growth factors, and other substances in the vicinity of tumor cells - is an integrative part of most tumors including lymphomas. Interactions between lymphoma cells and the TME are vital for survival and proliferation of the former. In addition, lymphoma cells often reprogram the TME to protect them from defense mechanisms of the host's immune system. In this review, we will introduce the role of the tumor microenvironment (TME) for lymphoma cells looking at direct cell-cell interactions as well as cytokine-related communications. The immunomodulative/immunosuppressive role of the TME is more and more coming into the focus of potential new targeted therapies, and thus a special attention will be given to the interactions of immune checkpoints such as programed cell death protein 1 and L1 (PD-1/PD-L1), T-cell immunoglobulin and mucin-domain containing protein-3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), and cytotoxic T-lymphocyte-associated protein-4 (CTLA4) with the TME, as well as their expression by both lymphoma cells and cells of the TME. Aspects of the TME will be discussed for indolent and aggressive B-cell lymphomas, Hodgkin lymphomas, and T-cell lymphomas. In addition, the potential influence of other immunomodulators such as lenalidomide will be briefly touched. The complex role of the TME is in the focus of new therapeutic options. In order to exploit its full therapeutic potential, however, a thorough understanding of TME biology and interaction between lymphoma cells and the TME, as well as the host's immune system and the TME is necessary.
Collapse
Affiliation(s)
- Thomas Menter
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Stefan Dirnhofer
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive B-cell lymphoma and highly heterogeneous disease. With the standard immunochemotherapy, anti-CD20 antibody rituximab (R-) plus CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) chemotherapy, 30-40% of DLBCLs are refractory to initial immunochemotherapy or experience relapse post-therapy with poor clinical outcomes despite salvage therapies. Mechanisms underlying chemoresistance and relapse are heterogeneous across DLBCL and within individual patients, representing hurdles for targeted therapies targeting a specific oncogenic signaling pathway. In recent years, paradigm-shifting immunotherapies have shown impressive efficacy in various cancer types regardless of underlying oncogenic mechanisms. Vaccines are being developed for DLBCL to build protective immunity against relapse after first complete remission and to promote antitumor immune responses synergizing with immune checkpoint inhibitors to treat refractory/relapsed patients. This article provides a brief review of current progress in vaccine development in DLBCL and discussion on immunologic mechanisms underlying the therapeutic effectiveness and resistance.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Hematopathology Division, Department of Pathology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ken H Young
- Hematopathology Division, Department of Pathology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
17
|
Savage P. Chemotherapy Curability in Leukemia, Lymphoma, Germ Cell Tumors and Gestational Malignancies: A Reflection of the Unique Physiology of Their Cells of Origin. Front Genet 2020; 11:426. [PMID: 32582272 PMCID: PMC7295948 DOI: 10.3389/fgene.2020.00426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/21/2022] Open
Abstract
Cytotoxic DNA damaging chemotherapy brings clinical benefits in the treatment of many metastatic malignancies. However routine curative treatment remains restricted to a small number of malignancies including acute leukemia, high grade lymphoma, germ cell tumors, gestational malignancies and some of the rare childhood cancers. The detailed explanation for this dramatic divergence in outcomes remains to be elucidated. However, we have previously argued that there is a strong correlation between presence of the unique genetic events of immunoglobulin gene variable/diversity/joining (VDJ) recombination, somatic hypermutation (SHM), meiosis, nuclear fusion and gastrulation occurring in cells of origin of these malignancies and their high sensitivity to DNA damaging chemotherapy. In this study we have reviewed some of the basic physiological information relating to the specialized activity and sensitivity to DNA damage mediated apoptosis of normal cells undergoing these processes. In each of unique genetic events there are dramatic changes in apoptotic sensitivity. In VDJ recombination and somatic hypermutation over 95% of the cells involved undergo apoptosis, whilst in meiosis and nuclear fusion there are dramatic short term increases in the apoptotic sensitivity to DNA damage. It is apparent that each of the malignancies arising during these processes retains some of the unique phenotype associated with it. The impact of the physiological differences is most clearly seen in the two non-mutational malignancies. Gestational choriocarcinoma which arises shortly after nuclear fusion is routinely curable with chemotherapy whilst CIMP-positive ependymomas which is not linked to any of the unique genetic events is highly resistant. A similar pattern is found in a pair of malignancies driven by a single driver mutation. Infantile acute lymphoblastic leukemia (ALL) arises in a cell undergoing the early stages of VDJ recombination and has a 40% cure rate in contrast pediatric rhabdoid malignancy which is not linked to a unique genetic event responds very poorly to chemotherapy treatment. The physiological changes occurring in cancer cells at the time of the malignant transformation appear to have a major impact on the subsequent sensitivity to chemotherapy and curability. New therapies that impact on these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Philip Savage
- Department of Oncology, Brighton and Sussex University Hospitals, Brighton, United Kingdom
| |
Collapse
|
18
|
Høglund RA, Bremel RD, Homan EJ, Torsetnes SB, Lossius A, Holmøy T. CD4 + T Cells in the Blood of MS Patients Respond to Predicted Epitopes From B cell Receptors Found in Spinal Fluid. Front Immunol 2020; 11:598. [PMID: 32328067 PMCID: PMC7160327 DOI: 10.3389/fimmu.2020.00598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/16/2020] [Indexed: 01/13/2023] Open
Abstract
B cells are important pathogenic players in multiple sclerosis (MS), but their exact role is not known. We have previously demonstrated that B cells from cerebrospinal fluid (CSF) of MS patients can activate T cells that specifically recognize antigenic determinants (idiotopes) from their B cell receptors (BCRs). The aim of this study was to evaluate whether in silico prediction models could identify antigenic idiotopes of immunoglobulin heavy-chain variable (IGHV) transcriptomes in MS patients. We utilized a previously assembled dataset of CSF IGHV repertoires from MS patients. To guide selection of potential antigenic idiotopes, we used in silico predicted HLA-DR affinity, endosomal processing, as well as transcript frequency from nine MS patients. Idiotopes with predicted low affinity and low likelihood of cathepsins cleavage were inert controls. Peripheral blood mononuclear cells from these patients were stimulated with the selected idiotope peptides in presence of anti-CD40 for 12 h. T cells were then labeled for activation status with anti-CD154 antibodies and CD3+CD4+ T cells phenotyped as memory (CD45RO+) or naïve (CD45RO-), with potential for brain migration (CXCR3 and/or CCR6 expression). Anti-CD14 and -CD8 were utilized to exclude monocytes and CD8+ T cells. Unstimulated cells or insulin peptides were negative controls, and EBNA-1 peptides or CD3/CD28 beads were positive controls. The mean proportion of responding memory CD4+ T cells from all nine MS patients was significantly higher for idiotope peptides with predicted high HLA-DR affinity and high likelihood of cathepsin cleavage, than toward predicted inert peptides. Responses were mainly observed toward peptides affiliated with the CDR3 region. Activated memory CD4+ T cells expressed the chemokine receptor CCR6, affiliated with a Th17 phenotype and allowing passage into the central nervous system (CNS). This in vitro study suggests that that antigenic properties of BCR idiotopes can be identified in silico using HLA affinity and endosomal processing predictions. It further indicates that MS patients have a memory T cell repertoire capable of recognizing frequent BCR idiotopes found in endogenous CSF, and that these T cells express chemokine receptors allowing them to reach the CSF B cells expressing these idiotopes.
Collapse
Affiliation(s)
- Rune A. Høglund
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | | | | | - Silje Bøen Torsetnes
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital and University of Oslo, Lørenskog, Norway
| | - Andreas Lossius
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve Holmøy
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|