1
|
Hatton-Jones KM, West NP, Barcelon J, Cox AJ. The effect of Proteinase K treatment on GeoMx digital spatial profiling data quality from formalin-fixed, paraffin-embedded tissue. Pathology 2024; 56:1028-1035. [PMID: 39227250 DOI: 10.1016/j.pathol.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 09/05/2024]
Abstract
The emergence of spatial profiling technologies in recent years has accelerated opportunities to profile in detail the molecular attributes of a wide range of tissue pathologies using archival specimens. However, tissue treatment for fixation and storage does not always support generation of high-quality genomic data. The purpose of this study was to investigate the impacts of Proteinase K (ProtK) treatment, as a way to increase target transcript exposure, on downstream sequencing data quality metrics for spatial transcriptomic data using formalin-fixed, paraffin-embedded samples. In a series of four independent assessments using different tissue types (nasal mucosa, tonsil, pancreas), varying concentrations of ProtK (ranging from 0.1 to 1 μg/mL) were used as part of the sample processing workflow to generate transcriptomic data using the Nanostring GeoMx DSP and Illumina NextSeq 2000 platforms. Use of higher concentrations of ProtK was generally found to increase total reads (2-4-fold). However, negative probe counts also tended to be increased (2-12-fold), resulting in reductions in the signal-to-noise ratio (10-70% lower) and the number of genes detected above background (50-80% lower). These effects were not seen in all tissues and impacts of tissue handling and processing, beyond ProtK treatment, on data quality metrics, also require consideration. Regardless, these observations highlight the need for careful consideration of a range of sample processing factors and benefits that may be achieved through the optimisation of sample processing workflows for specific tissues as a way to maximise the generation of quality data using spatial transcriptomic approaches.
Collapse
Affiliation(s)
- Kyle M Hatton-Jones
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Nicholas P West
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia
| | - Jean Barcelon
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia
| | - Amanda J Cox
- Menzies Health Institute Queensland, Griffith University, Southport, Qld, Australia; School of Pharmacy and Medical Science, Griffith University, Southport, Qld, Australia.
| |
Collapse
|
2
|
Zhou Z, Jin Z, Tian Y, Huangfu C, Fan Z, Liu D. CDK14 is regulated by IGF2BP2 and involved in osteogenic differentiation via Wnt/β-catenin signaling pathway in vitro. Life Sci 2024; 358:123148. [PMID: 39447733 DOI: 10.1016/j.lfs.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
AIMS Cyclin-dependent kinase (CDK) family proteins involve in various cellular processes via regulating the cell cycle; however, their expression during osteogenic differentiation and postmenopausal osteoporosis remains poorly understood. MAIN METHODS Using bioinformatics, we screened for CDK14 bound to Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and explored its expression in vitro with time-gradient model and in a mouse model of postmenopausal osteoporosis, building on prior research. Subsequently, we investigated its effect on osteoblast proliferation, cell cycle dynamics, and osteogenic differentiation by administering CDK14 siRNA and the covalent inhibitor FMF-04-159-2. Furthermore, we examined the interaction between IGF2BP2 and CDK14. Finally, we validated the regulatory role of CDK14 on the Wnt/β-catenin pathway. KEY FINDINGS Our findings demonstrate a time-dependent CDK14 expression patterns during osteogenic differentiation of MC3T3-E1 cell line, with an initial increase followed by gradual decline over time. Notably, CDK14 expression exhibited significant reduction in bone tissue of postmenopausal osteoporosis mouse model. CDK14 inhibition altered osteoblast cell cycle dynamics, significantly reduced cellular proliferation capacity, and impaired osteogenic differentiation ability. IGF2BP2 interacted with CDK14 mRNA, and stabilizing mRNA's structure and inhibiting its degradation. Additionally, CDK14 facilitated Low-density lipoprotein receptor-related protein 6 (LRP6) and Glycogen synthase kinase 3β (GSK3β) phosphorylation, thus regulating β-catenin levels. SIGNIFICANCE These findings provide further insight into the molecular mechanisms governing osteoblast proliferation, differentiation and osteoporosis.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zhuoru Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chenghao Huangfu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zheng Fan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
3
|
Figueiredo ML, Utturkar S, Kumar S, Fonseca-Alves CE. Transcriptomic analysis of mouse TRAMP cell lines and tumors provide insights into shared pathways and therapeutic targets. CELL INSIGHT 2024; 3:100184. [PMID: 39175940 PMCID: PMC11339039 DOI: 10.1016/j.cellin.2024.100184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
The present study focused on comparing the gene expression profiles of different mouse models of prostate cancer, focusing on the TRAMP transgenic model and its derived cell lines and extending the comparisons to relevant genetically engineered mouse models and human prostate cancer datasets. Employing RNA sequencing, we examined different levels of prostate cancer aggressiveness from the original TRAMP cells to the TRAMP-C2 (TC2) derived cell line and extending to the aggressive TC2-Ras (TC2R) cells and tumors. TC2R acquire the ability to grow in bone tissue upon implantation, unlike the parental TC2 cells. Analysis identified upregulated genes in cell cycle regulation, immune response, and mitotic processes in TRAMP compared to wild-type tissues. TC2 cells exhibited unique gene profiles enriched in ECM organization and tissue development pathways, while TC2R cells showed increased cytokine signaling and motility genes, with decreased ECM and immune response pathways. In vivo TC2R models demonstrated enhanced ECM organization and receptor tyrosine kinase signaling in tumors, notably enriching immune processes and collagen degradation pathways in intratibial tumors. Comparative analysis among mouse and human datasets showed overlaps, particularly in pathways relating to mitotic cycle regulation, ECM organization, and immune interactions. A gene signature identified in TC2R tumors correlated with aggressive tumor behavior and poor survival in human datasets. Further immune cell landscape analysis of TC2R tumors revealed altered T cell subsets and macrophages, confirmed in single-cell RNA-seq from human samples. TC2R models thus hold significant promise in helping advance preclinical therapeutics, potentially contributing to improved prostate cancer patient outcomes.
Collapse
Affiliation(s)
- Marxa L. Figueiredo
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Sagar Utturkar
- Purdue Institute for Cancer Research Computational Genomics, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreya Kumar
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Carlos Eduardo Fonseca-Alves
- Institute of Health Sciences, Paulista University-UNIP, Bauru, 17048-290, Brazil
- School of Veterinary Medicine and Animal Science, São Paulo State University – UNESP, Botucatu, 18610160, Brazil
| |
Collapse
|
4
|
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, Świętochowska E. B7H4 Role in Solid Cancers: A Review of the Literature. Cancers (Basel) 2024; 16:2519. [PMID: 39061159 PMCID: PMC11275172 DOI: 10.3390/cancers16142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Anti-cancer immunotherapies entirely changed the therapeutic approach to oncological patients. However, despite the undeniable success of anti-PD-1, PD-L1, and CTLA-4 antibody treatments, their effectiveness is limited either by certain types of malignancies or by the arising problem of cancer resistance. B7H4 (aliases B7x, B7H4, B7S1, VTCN1) is a member of a B7 immune checkpoint family with a distinct expression pattern from classical immune checkpoint pathways. The growing amount of research results seem to support the thesis that B7H4 might be a very potent therapeutic target. B7H4 was demonstrated to promote tumour progression in immune "cold" tumours by promoting migration, proliferation of tumour cells, and cancer stem cell persistence. B7H4 suppresses T cell effector functions, including inflammatory cytokine production, cytolytic activity, proliferation of T cells, and promoting the polarisation of naïve CD4 T cells into induced Tregs. This review aimed to summarise the available information about B7H4, focusing in particular on clinical implications, immunological mechanisms, potential strategies for malignancy treatment, and ongoing clinical trials.
Collapse
Affiliation(s)
- Miriam Dawidowicz
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Anna Kot
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Sylwia Mielcarska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Katarzyna Psykała
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Agnieszka Kula
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Katowice, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
5
|
Guo J, Ma RY, Qian BZ. Macrophage heterogeneity in bone metastasis. J Bone Oncol 2024; 45:100598. [PMID: 38585688 PMCID: PMC10997910 DOI: 10.1016/j.jbo.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Previous studies illustrated that macrophage, a type of innate immune cell, plays critical roles in tumour progression and metastasis. Bone is the most frequent site of metastasis for several cancer types including breast, prostate, and lung. In bone metastasis, osteoclast, a macrophage subset specialized in bone resorption, was heavily investigated in the past. Recent studies illustrated that other macrophage subsets, e.g. monocyte-derived macrophages, and bone resident macrophages, promoted bone metastasis independent of osteoclast function. These novel mechanisms further improved our understanding of macrophage heterogeneity in the context of bone metastasis and illustrated new opportunities for future studies.
Collapse
Affiliation(s)
| | | | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Alnukhali M, Altabbakh O, Farooqi AA, Pollack A, Daunert S, Deo S, Tao W. Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer. Curr Med Chem 2024; 31:6556-6571. [PMID: 38347787 PMCID: PMC11497144 DOI: 10.2174/0109298673273303231208071403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 10/19/2024]
Abstract
Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
Collapse
Affiliation(s)
- Mohammed Alnukhali
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Omar Altabbakh
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL 33759, USA
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), National Institute for Genomics and Advanced Biotechnology, Islamabad 44000, Pakistan
| | - Alan Pollack
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Leonard M. Miller School of Medicine, Clinical and Translational Science Institute, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Dr. John T. McDonald Foundation Bionanotechnology Institute, University of Miami, Miami, FL 33136, USA
| | - Wensi Tao
- Department of Radiation Oncology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
7
|
Su Q, Zhu Y, He B, Dai B, Mu W, Tian J. A novel tumor purity and immune infiltration-related model for predicting distant metastasis-free survival in prostate cancer. Eur J Med Res 2023; 28:545. [PMID: 38017548 PMCID: PMC10683297 DOI: 10.1186/s40001-023-01522-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND umor cells, immune cells and stromal cells jointly modify tumor development and progression. We aim to explore the potential effects of tumor purity on the immune microenvironment, genetic landscape and prognosis in prostate cancer (PCa). METHODS Tumor purity of prostate cancer patients was extracted from The cancer genome atlas (TCGA). Immune cellular proportions were calculated by the CIBERSORT. To identify critical modules related to tumor purity, we used weighted gene co-expression network analysis (WGCNA). Using STRING and Cytoscape, protein-protein interaction (PPI) networks were constructed and analyzed. A Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, Disease Ontology (DO), and Gene Set Enrichment Analysis (GSEA) enrichment analysis of identified modules was conducted. To identify the expression of key genes at protein levels, we used the Human Protein Atlas (HPA) platform. RESULTS A model of tumor purity score (TPS) was constructed in the gene expression omnibus series (GSE) 116,918 cohort. TCGA cohort served as a validation set and was employed to validate the TPS. TPS model, as an independent prognostic factor of distant metastasis-free survival (DMFS) in PCa. Patients had higher tumor purity and better prognosis in the low-TPS group. Tumor purity was related to the infiltration of mast cells and macrophage cells positively, whereas related to the infiltration of dendritic cells, T cells and B cells negatively in PCa. The nomogram based on TPS, Age, Gleason score and T stage had a good predictive value and could evaluate the prognosis of PCa metastasis. GO and KEGG enrichment analyses showed that hub genes mainly participate in T cell activation and T-helper lymphocytes (TH) differentiation. Hub genes were mainly enriched in primary immunodeficiency disease, according to DO analysis. SLAMF8 was identified as the most critical gene by Cytoscape and HPA analysis. CONCLUSIONS Dynamic changes in the immune microenvironment associated with tumor purity could correlate with a poor DMFS of low-purity PCa. The TPS can predict the DMFS of PCa. In addition, prostate cancer metastases may be related to immunosuppression caused by a disorder of the immune microenvironment.
Collapse
Affiliation(s)
- Qiang Su
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Yongbei Zhu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
| | - Bingxi He
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China
| | - Bin Dai
- Neurosurgery department, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Wei Mu
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China.
| | - Jie Tian
- School of Engineering Medicine, Beihang University, Beijing, 100191, China.
- Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, People's Republic of China, Beijing, 100191, China.
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
8
|
XIE FANGMEI, XI NAITE, HAN ZEPING, LUO WENFENG, SHEN JIAN, LUO JINGGENG, TANG XINGKUI, PANG TING, LV YUBING, LIANG JIABING, LIAO LIYIN, ZHANG HAOYU, JIANG YONG, LI YUGUANG, HE JINHUA. Progress in research on tumor microenvironment-based spatial omics technologies. Oncol Res 2023; 31:877-885. [PMID: 37744276 PMCID: PMC10513957 DOI: 10.32604/or.2023.029494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/21/2023] [Indexed: 09/26/2023] Open
Abstract
Spatial omics technology integrates the concept of space into omics research and retains the spatial information of tissues or organs while obtaining molecular information. It is characterized by the ability to visualize changes in molecular information and yields intuitive and vivid visual results. Spatial omics technologies include spatial transcriptomics, spatial proteomics, spatial metabolomics, and other technologies, the most widely used of which are spatial transcriptomics and spatial proteomics. The tumor microenvironment refers to the surrounding microenvironment in which tumor cells exist, including the surrounding blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, various signaling molecules, and extracellular matrix. A key issue in modern tumor biology is the application of spatial omics to the study of the tumor microenvironment, which can reveal problems that conventional research techniques cannot, potentially leading to the development of novel therapeutic agents for cancer. This paper summarizes the progress of research on spatial transcriptomics and spatial proteomics technologies for characterizing the tumor immune microenvironment.
Collapse
Affiliation(s)
- FANGMEI XIE
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - NAITE XI
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - ZEPING HAN
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - WENFENG LUO
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JIAN SHEN
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JINGGENG LUO
- Department of General Surgery, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - XINGKUI TANG
- Department of General Surgery, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - TING PANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YUBING LV
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - JIABING LIANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - LIYIN LIAO
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - HAOYU ZHANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YONG JIANG
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| | - YUGUANG LI
- Administrating Office, He Xian Memorial Hospital, Southern Medical University, Guangzhou, China
| | - JINHUA HE
- Central Laboratory, Panyu Central Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
9
|
Westerhof TM, Yang BA, Merill NM, Yates JA, Altemus M, Russell L, Miller AJ, Bao L, Wu Z, Ulintz PJ, Aguilar CA, Morikawa A, Castro MG, Merajver SD, Oliver CR. Blood-brain barrier remodeling in an organ-on-a-chip device shows Dkk1 to be a regulator of early metastasis. ADVANCED NANOBIOMED RESEARCH 2023; 3:2200036. [PMID: 37234365 PMCID: PMC10208594 DOI: 10.1002/anbr.202200036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Brain metastases are the most lethal progression event, in part because the biological processes underpinning brain metastases are poorly understood. There is a paucity of realistic models of metastasis, as current in vivo murine models are slow to manifest metastasis. We set out to delineate metabolic and secretory modulators of brain metastases by utilizing two models consisting of in vitro microfluidic devices: 1) a blood brain niche (BBN) chip that recapitulates the blood-brain-barrier and niche; and 2) a migration chip that assesses cell migration. We report secretory cues provided by the brain niche that attract metastatic cancer cells to colonize the brain niche region. Astrocytic Dkk-1 is increased in response to brain-seeking breast cancer cells and stimulates cancer cell migration. Brain-metastatic cancer cells under Dkk-1 stimulation increase gene expression of FGF-13 and PLCB1. Further, extracellular Dkk-1 modulates cancer cell migration upon entering the brain niche.
Collapse
Affiliation(s)
- Trisha M Westerhof
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Benjamin A Yang
- School of Engineering, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nathan M Merill
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Joel A Yates
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Megan Altemus
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Liam Russell
- School of Engineering, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna J Miller
- School of Engineering, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Liwei Bao
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Zhifen Wu
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Peter J Ulintz
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Carlos A Aguilar
- School of Engineering, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aki Morikawa
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Maria G Castro
- Michigan Medicine, Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Medicine, Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sofia D Merajver
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christopher R Oliver
- Michigan Medicine, Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Chapman ER, Nicholls L, Suh YE, Khoo V, Levine D, Ap Dafydd D, Van As N. Interobserver variation in clinical target volume (CTV) delineation for stereotactic radiotherapy to non-spinal bone metastases in prostate cancer: CT, MRI and PET/CT fusion. Radiother Oncol 2023; 180:109461. [PMID: 36634852 DOI: 10.1016/j.radonc.2022.109461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/03/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE The use of SBRT for the treatment of oligometastatic prostate cancer is increasing rapidly. While consensus guidelines are available for non-spinal bone metastases practice continues to vary widely. The aim of this study is to look at inter-observer variability in the contouring of prostate cancer non-spinal bone metastases with different imaging modalities. MATERIALS AND METHODS 15 metastases from 13 patients treated at our centre were selected. 4 observers independently contoured clinical target volumes (CTV) on planning CT alone, planning CT with MRI fusion, planning CT with PET-CT fusion and planning CT with both MRI and PET-CT fusion combined. The mean inter-observer agreement on each modality was compared by measuring the delineated volume, generalized conformity index (CIgen), and the distance of the centre of mass (dCOM), calculated per metastasis and imaging modality. RESULTS Mean CTV volume delineated on planning CT with MRI and PET-CT fusion combined was significantly larger compared to other imaging modalities (p = 0.0001). CIgen showed marked variation between modalities with the highest agreement between planning CT + PET-CT (mean CIgen 0.55, range 0.32-0.73) and planning CT + MRI + PET-CT (mean CIgen 0.59, range 0.34-0.73). dCOM showed small variations between imaging modalities but a significantly shorter distance found on planning CT + PET-CT when compared with planning CT + PET-CT + MRI combined (p = 0.03). CONCLUSIONS Highest consistency in CTV delineation between observers was seen with planning CT + PET-CT and planning CT + PET-CT + MRI combined.
Collapse
Affiliation(s)
- Ewan Richard Chapman
- Royal Free London NHS Foundation Trust, London, UK; Institute of Cancer Research, London, UK.
| | - Luke Nicholls
- Princess Alexandra Hospital, Raymond Terrace, Brisbane, QLD, Australia; University of Queensland, Brisbane, QLD, Australia.
| | - Yae-Eun Suh
- The Royal Marsden NHS Foundation Trust, London, UK.
| | - Vincent Khoo
- The Royal Marsden NHS Foundation Trust, London, UK; Institute of Cancer Research, London, UK.
| | | | | | - Nicholas Van As
- The Royal Marsden NHS Foundation Trust, London, UK; Institute of Cancer Research, London, UK.
| |
Collapse
|
11
|
Provera MD, Straign DM, Karimpour P, Ihle CL, Owens P. Bone morphogenetic protein pathway responses and alterations of osteogenesis in metastatic prostate cancers. Cancer Rep (Hoboken) 2023; 6:e1707. [PMID: 36054271 PMCID: PMC9940003 DOI: 10.1002/cnr2.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Prostate cancer is a common cancer in men that annually results in more than 33 000 US deaths. Mortality from prostate cancer is largely from metastatic disease, reflecting on the great strides in the last century of treatments in care for the localized disease. Metastatic castrate resistant prostate cancer (mCRPC) will commonly travel to the bone, creating unique bone pathology that requires nuanced treatments in those sites with surgical, radio and chemotherapeutic interventions. The bone morphogenetic protein (BMP) pathway has been historically studied in the capacity to regulate the osteogenic nature of new bone. New mineralized bone generation is a frequent and common observation in mCRPC and referred to as blastic bone lesions. Less common are bone destructive lesions that are termed lytic. METHODS We queried the cancer genome atlas (TCGA) prostate cancer databases for the expression of the BMP pathway and found that distinct gene expression of the ligands, soluble antagonists, receptors, and intracellular mediators were altered in localized versus metastatic disease. Human prostate cancer cell lines have an innate ability to promote blastic- or lytic-like bone lesions and we hypothesized that inhibiting BMP signaling in these cell lines would result in a distinct change in osteogenesis gene expression with BMP inhibition. RESULTS We found unique and common changes by comparing these cell lines response and unique BMP pathway alterations. We treated human PCa cell lines with distinct bone pathologic phenotypes with the BMP inhibitor DMH1 and found distinct osteogenesis responses. We analyzed distinct sites of metastatic PCa in the TCGA and found that BMP signaling was selectively altered in commons sites such as lymph node, bone and liver compared to primary tumors. CONCLUSIONS Overall we conclude that BMPs in metastatic prostate cancer are important signals and functional mediators of diverse processes that have potential for individualized precision oncology in mCRPC.
Collapse
Affiliation(s)
- Meredith D. Provera
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Desiree M. Straign
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | | | - Claire L. Ihle
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
| | - Philip Owens
- Department of PathologyUniversity of Colorado, Anschutz Medical CenterAuroraColoradoUSA
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care SystemAuroraColoradoUSA
| |
Collapse
|
12
|
Dozzo A, Chullipalliyalil K, McAuliffe M, O’Driscoll CM, Ryan KB. Nano-Hydroxyapatite/PLGA Mixed Scaffolds as a Tool for Drug Development and to Study Metastatic Prostate Cancer in the Bone. Pharmaceutics 2023; 15:pharmaceutics15010242. [PMID: 36678871 PMCID: PMC9864166 DOI: 10.3390/pharmaceutics15010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
(1) Background: Three-dimensional (3D) in vitro, biorelevant culture models that recapitulate cancer progression can help elucidate physio-pathological disease cues and enhance the screening of more effective therapies. Insufficient research has been conducted to generate in vitro 3D models to replicate the spread of prostate cancer to the bone, a key metastatic site of the disease, and to understand the interplay between the key cell players. In this study, we aim to investigate PLGA and nano-hydroxyapatite (nHA)/PLGA mixed scaffolds as a predictive preclinical tool to study metastatic prostate cancer (mPC) in the bone and reduce the gap that exists with traditional 2D cultures. (2) Methods: nHA/PLGA mixed scaffolds were produced by electrospraying, compacting, and foaming PLGA polymer microparticles, +/- nano-hydroxyapatite (nHA), and a salt porogen to produce 3D, porous scaffolds. Physicochemical scaffold characterisation together with an evaluation of osteoblastic (hFOB 1.19) and mPC (PC-3) cell behaviour (RT-qPCR, viability, and differentiation) in mono- and co-culture, was undertaken. (3) Results: The results show that the addition of nHA, particularly at the higher-level impacted scaffolds in terms of mechanical and degradation behaviour. The nHA 4 mg resulted in weaker scaffolds, but cell viability increased. Qualitatively, fluorescent imaging of cultures showed an increase in PC-3 cells compared to osteoblasts despite lower initial PC-3 seeding densities. Osteoblast monocultures, in general, caused an upregulation (or at least equivalent to controls) in gene production, which was highest in plain scaffolds and decreased with increases in nHA. Additionally, the genes were downregulated in PC3 and co-cultures. Further, drug toxicity tests demonstrated a significant effect in 2D and 3D co-cultures. (4) Conclusions: The results demonstrate that culture conditions and environment (2D versus 3D, monoculture versus co-culture) and scaffold composition all impact cell behaviour and model development.
Collapse
Affiliation(s)
- Annachiara Dozzo
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | | | - Michael McAuliffe
- Centre for Advanced Photonics & Process Analysis, Munster Technological University Cork, T12 P928 Cork, Ireland
| | - Caitriona M. O’Driscoll
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
| | - Katie B. Ryan
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy, University College Cork, T12 K8AF Cork, Ireland
- Correspondence:
| |
Collapse
|
13
|
Chang J, Jiang Z, Ma T, Li J, Chen J, Ye P, Feng L. Integrating transcriptomics and network analysis-based multiplexed drug repurposing to screen drug candidates for M2 macrophage-associated castration-resistant prostate cancer bone metastases. Front Immunol 2022; 13:989972. [PMID: 36389722 PMCID: PMC9643318 DOI: 10.3389/fimmu.2022.989972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/07/2022] [Indexed: 11/24/2022] Open
Abstract
Metastatic castration-resistant prostate cancer (CRPC) has long been considered to be associated with patient mortality. Among metastatic organs, bone is the most common metastatic site, with more than 90% of advanced patients developing bone metastases (BMs) before 24 months of death. Although patients were recommended to use bone-targeted drugs represented by bisphosphonates to treat BMs of CRPC, there was no significant improvement in patient survival. In addition, the use of immunotherapy and androgen deprivation therapy is limited due to the immunosuppressed state and resistance to antiandrogen agents in patients with bone metastases. Therefore, it is still essential to develop a safe and effective therapeutic schedule for CRPC patients with BMs. To this end, we propose a multiplex drug repurposing scheme targeting differences in patient immune cell composition. The identified drug candidates were ranked from the perspective of M2 macrophages by integrating transcriptome and network-based analysis. Meanwhile, computational chemistry and clinical trials were used to generate a comprehensive drug candidate list for the BMs of CRPC by drug redundancy structure filtering. In addition to docetaxel, which has been approved for clinical trials, the list includes norethindrone, testosterone, menthol and foretinib. This study provides a new scheme for BMs of CRPC from the perspective of M2 macrophages. It is undeniable that this multiplex drug repurposing scheme specifically for immune cell-related bone metastases can be used for drug screening of any immune-related disease, helping clinicians find promising therapeutic schedules more quickly, and providing reference information for drug R&D and clinical trials.
Collapse
|
14
|
Kumar V, Randhawa P, Bilodeau R, Mercola D, McClelland M, Agrawal A, Nguyen J, Castro P, Ittmann MM, Rahmatpanah F. Spatial Profiling of the Prostate Cancer Tumor Microenvironment Reveals Multiple Differences in Gene Expression and Correlation with Recurrence Risk. Cancers (Basel) 2022; 14:cancers14194923. [PMID: 36230846 PMCID: PMC9562240 DOI: 10.3390/cancers14194923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a crucial role in both the development and progression of prostate cancer. Furthermore, identifying protein and gene expression differences between different regions is valuable for treatment development. We applied Digital Spatial Profiling multiplex analysis to formalin-fixed paraffin embedded prostatectomy tissue blocks to investigate protein and transcriptome differences between tumor, tumor-adjacent stroma (TAS), CD45+ tumor, and CD45+ TAS tissue. Differential expression of an immunology/oncology protein panel (n = 58) was measured. OX40L and CTLA4 were expressed at higher levels while 22 other proteins, including CD11c, were expressed at lower levels (FDR < 0.2 and p-value < 0.05) in TAS as compared to tumor epithelia. A tissue microarray analysis of 97 patients with 1547 cores found positive correlations between high expression of CD11c and increased time to recurrence in tumor and TAS, and inverse relationships for CTLA4 and OX40L, where higher expression in tumor correlated with lower time to recurrence, but higher time to recurrence in TAS. Spatial transcriptomic analysis using a Cancer Transcriptome Atlas panel (n = 1825 genes) identified 162 genes downregulated and 69 upregulated in TAS versus tumor, 26 downregulated and 6 upregulated in CD45+ TAS versus CD45+ tumor. We utilized CIBERSORTx to estimate the relative immune cell fractions using CD45+ gene expression and found higher average fractions for memory B, naïve B, and T cells in TAS. In summary, the combination of protein expression differences, immune cell fractions, and correlations of protein expression with time to recurrence suggest that closely examining the tumor microenvironment provides valuable data that can improve prognostication and treatment techniques.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Pavneet Randhawa
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Robert Bilodeau
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Michael McClelland
- Department of Molecular and Microbiology, University of California, Irvine, CA 92697, USA
| | - Anshu Agrawal
- Department of Medicine, University of California, Irvine, CA 92697, USA
| | - James Nguyen
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
| | - Patricia Castro
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael M. Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farah Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
15
|
Interplay between fat cells and immune cells in bone: Impact on malignant progression and therapeutic response. Pharmacol Ther 2022; 238:108274. [DOI: 10.1016/j.pharmthera.2022.108274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
|
16
|
Luo C, Liu Z, Gan Y, Gao X, Zu X, Zhang Y, Ye W, Cai Y. SLC26A4 correlates with homologous recombination deficiency and patient prognosis in prostate cancer. J Transl Med 2022; 20:313. [PMID: 35836192 PMCID: PMC9281181 DOI: 10.1186/s12967-022-03513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Background Homologous recombination deficiency (HRD) is closely associated with patient prognosis and treatment options in prostate cancer (PCa). However, there is a lack of quantitative indicators related to HRD to predict the prognosis of PCa accurately. Methods We screened HRD-related genes based on the HRD scores and constructed an HRD cluster system to explore different clinicopathological, genomic, and immunogenomic patterns among the clusters. A risk signature, HRDscore, was established and evaluated by multivariate Cox regression analysis. We noticed that SLC26A4, a model gene, demonstrated unique potential to predict prognosis and HRD in PCa. Multi-omics analysis was conducted to explore its role in PCa, and the results were validated by qRT-PCR and immunohistochemistry. Results Three HRD clusters were identified with significant differences in patient prognosis, clinicopathological characteristics, biological pathways, immune infiltration characteristics, and regulation of immunomodulators. Further analyses revealed that the constructed HRDscore system was an independent prognostic factor of PCa patients with good stability. Finally, we identified a single gene, SLC26A4, which significantly correlated with prognosis in three independent cohorts. Importantly, SLC26A4 was confirmed to distinguish PCa (AUC for mRNA 0.845; AUC for immunohistochemistry score 0.769) and HRD (AUC for mRNA 0.911; AUC for immunohistochemistry score 0.689) at both RNA and protein levels in our cohort. Conclusion This study introduces HRDscore to quantify the HRD pattern of individual PCa patients. Meanwhile, SLC26A4 is a novel biomarker and can reasonably predict the prognosis and HRD in PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03513-5.
Collapse
Affiliation(s)
- Cong Luo
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zhi Liu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Urology, The Second Affiliated Hospital of Guizhou Medical University, Kaili City, 556000, Guizhou, People's Republic of China
| | - Yu Gan
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaomei Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,Department of Pathology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Xiongbing Zu
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ye Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Xiangya Hospital, Central South University, Hunan Province, No. 87 Xiangya Road, Changsha, 410008, People's Republic of China.
| | - Wenrui Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Department of Neurosurgery, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Yi Cai
- Department of Urology, Disorders of Prostate Cancer Multidisciplinary Team, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
17
|
Multiplex Tissue Imaging: Spatial Revelations in the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14133170. [PMID: 35804939 PMCID: PMC9264815 DOI: 10.3390/cancers14133170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is the leading cause of death worldwide, and the overall aging of the population results in an increased risk of a cancer diagnosis during a person’s lifetime. Diagnosis and treatment at an early stage will typically increase the chances of survival. Tumors can develop therapy resistance, and it is difficult to predict how individual patients will respond to therapy. Most studies that aim to resolve this problem have focused on studying the composition and characteristics of dissociated tumors, while ignoring the role of cell localization and interactions within the tumor microenvironment. In the past decade, technological innovations have enabled multiplex imaging analyses of intact tumors to study localization and interaction parameters, which can be used as biomarkers, or can be correlated with treatment responses and clinical outcomes. Abstract The tumor microenvironment is a complex ecosystem containing various cell types, such as immune cells, fibroblasts, and endothelial cells, which interact with the tumor cells. In recent decades, the cancer research field has gained insight into the cellular subtypes that are involved in tumor microenvironment heterogeneity. Moreover, it has become evident that cellular interactions in the tumor microenvironment can either promote or inhibit tumor development, progression, and drug resistance, depending on the context. Multiplex spatial analysis methods have recently been developed; these have offered insight into how cellular crosstalk dynamics and heterogeneity affect cancer prognoses and responses to treatment. Multiplex (imaging) technologies and computational analysis methods allow for the spatial visualization and quantification of cell–cell interactions and properties. These technological advances allow for the discovery of cellular interactions within the tumor microenvironment and provide detailed single-cell information on properties that define cellular behavior. Such analyses give insights into the prognosis and mechanisms of therapy resistance, which is still an urgent problem in the treatment of multiple types of cancer. Here, we provide an overview of multiplex imaging technologies and concepts of downstream analysis methods to investigate cell–cell interactions, how these studies have advanced cancer research, and their potential clinical implications.
Collapse
|
18
|
Zhang X, Liu Q, Zhang T, Gao P, Wang H, Yao L, Huang J, Jiang S. Bone-targeted nanoplatform enables efficient modulation of bone tumor microenvironment for prostate cancer bone metastasis treatment. Drug Deliv 2022; 29:889-905. [PMID: 35285760 PMCID: PMC8928789 DOI: 10.1080/10717544.2022.2050845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As there is currently no effective therapy for patients with prostate cancer (PCa) bone metastasis, it was stringent to explore the relevant treatment strategies. Actually, the interaction between cancer cells and bone microenvironment plays important role in prostate cancer bone metastasis, especially the Sonic hedgehog protein (SHH) signaling in the bone microenvironment. The SHH promotes osteoblast maturation and osteoblast then secretes RANKL to induce osteoclastogenesis. Herein, this study develops bone-targeting calcium phosphate lipid hybrid nanoparticles (NPs) loaded with docetaxel (DTXL) and SHH siRNA for PCa bone metastasis treatment. For bone targeting purposes, the nanoplatform was modified with alendronate (ALN). (DTXL + siRNA)@NPs-ALN NPs effectively change the bone microenvironment by inhibiting the SHH paracrine and autocrine signaling, enhancing the anti-tumor effects of DTXL. Besides showing good in vitro cellular uptake, the NPs-ALN also inhibited tumor growth both in vitro and in vivo by inducing apoptosis, cell cycle arrest, and autophagy. This DDS comprised of (DTXL + siRNA)-loaded NPs provides an excellent strategy to treat PCa bone metastasis.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Postdoctoral of Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Pathology, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Tingting Zhang
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Pei Gao
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Hui Wang
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Lu Yao
- Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| | - Jingwen Huang
- The First Affiliated Hospital of Bengbu Medical College, Tumor Hospital Affiliated to Bengbu Medical College, Bengbu, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
19
|
Jianfeng W, Yutao W, Jianbin B. Indolethylamine-N-Methyltransferase Inhibits Proliferation and Promotes Apoptosis of Human Prostate Cancer Cells: A Mechanistic Exploration. Front Cell Dev Biol 2022; 10:805402. [PMID: 35252179 PMCID: PMC8891133 DOI: 10.3389/fcell.2022.805402] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Indolethylamine-N-methyltransferase (INMT) is a methyltransferase downregulated in lung cancer, meningioma, and prostate cancer; however, its role and mechanism in prostate cancer remain unclear. By analyzing The Cancer Genome Atlas (TCGA)-PRAD, we found that the expression of INMT in prostate cancer was lower than that of adjacent non-cancerous prostate tissues and was significantly correlated with lymph node metastasis Gleason score, PSA expression, and survival. Combined with the GSE46602 cohorts for pathway enrichment analysis, we found that INMT was involved in regulating the MAPK, TGFβ, and Wnt signaling pathways. After overexpression of INMT in prostate cancer cell lines 22Rv1 and PC-3, we found an effect of INMT on these tumor signal pathways; overexpression of INMT inhibited the proliferation of prostate cancer cells and promoted apoptosis. Using the ESTIMATE algorithm, we found that with the increase of INMT expression, immune and stromal scores in the tumor microenvironment increased, immune response intensity increased, and tumor purity decreased. The difference in INMT expression affected the proportion of several immune cells. According to PRISM and CTRP2.0, the potential therapeutic agents associated with the INMT expression subgroup in TCGA were predicted. The area under the curve (AUC) values of 26 compounds positively correlated with the expression of INMT, while the AUC values of 14 compounds were negatively correlated with the expression of INMT. These findings suggest that INMT may affect prostate cancer’s occurrence, development, and drug sensitivity via various tumor signaling pathways and tumor microenvironments.
Collapse
|
20
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Gandhi J, Nicoli D, Farnetti E, Piana S, Tafuni A, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review (Part 6): Correlation of PD-L1 Expression with the Status of Mismatch Repair System, BRCA, PTEN, and Other Genes. Biomedicines 2022; 10:236. [PMID: 35203446 PMCID: PMC8868626 DOI: 10.3390/biomedicines10020236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Pembrolizumab (anti-PD-1) is allowed in selected metastatic castration-resistant prostate cancer (PC) patients showing microsatellite instability/mismatch repair system deficiency (MSI-H/dMMR). BRCA1/2 loss-of-function is linked to hereditary PCs and homologous recombination DNA-repair system deficiency: poly-ADP-ribose-polymerase inhibitors can be administered to BRCA-mutated PC patients. Recently, docetaxel-refractory metastatic castration-resistant PC patients with BRCA1/2 or ATM somatic mutations had higher response rates to pembrolizumab. PTEN regulates cell cycle/proliferation/apoptosis through pathways including the AKT/mTOR, which upregulates PD-L1 expression in PC. Our systematic literature review (PRISMA guidelines) investigated the potential correlations between PD-L1 and MMR/MSI/BRCA/PTEN statuses in PC, discussing few other relevant genes. Excluding selection biases, 74/677 (11%) PCs showed dMMR/MSI; 8/67 (12%) of dMMR/MSI cases were PD-L1+. dMMR-PCs included ductal (3%) and acinar (14%) PCs (all cases tested for MSI were acinar-PCs). In total, 15/39 (39%) PCs harbored BRCA1/2 aberrations: limited data are available for PD-L1 expression in these patients. 13/137 (10%) PTEN- PCs were PD-L1+; 10/29 (35%) PD-L1+ PCs showed PTEN negativity. SPOP mutations may increase PD-L1 levels, while the potential correlation between PD-L1 and ERG expression in PC should be clarified. Further research should verify how the efficacy of PD-1 inhibitors in metastatic castration-resistant PCs is related to dMMR/MSI, DNA-damage repair genes defects, or PD-L1 expression.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asuncion 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Simonetta Piana
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (S.P.); (A.T.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
21
|
Immune Checkpoint Inhibitor Therapy for Bone Metastases: Specific Microenvironment and Current Situation. J Immunol Res 2021; 2021:8970173. [PMID: 34877360 PMCID: PMC8645368 DOI: 10.1155/2021/8970173] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/19/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
The treatment of bone metastases is a thorny issue. Immunotherapy may be one of the few hopes for patients with unresectable bone metastases. Immune checkpoint inhibitors are the most commonly used immunotherapy drugs currently. In this review, the characteristics and interaction of bone metastases and their immune microenvironment were systematically discussed, and the relevant research progress of the immunological mechanism of tumor bone metastasis was reviewed. On this basis, we expounded the clinical application of immune checkpoint inhibitors for bone metastasis of common tumors, including non-small-cell lung cancer, renal cell carcinoma, prostate cancer, melanoma, and breast cancer. Then, the deficiencies and limitations in current researches were summarized. In-depth basic research on bone metastases and optimization of clinical treatment is needed.
Collapse
|
22
|
Palicelli A, Bonacini M, Croci S, Bisagni A, Zanetti E, De Biase D, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Ascani S, De Leo A, Gandhi J, Tafuni A, Melli B. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 7: PD-L1 Expression in Liquid Biopsy. J Pers Med 2021; 11:1312. [PMID: 34945784 PMCID: PMC8709072 DOI: 10.3390/jpm11121312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Liquid biopsy is an accessible, non-invasive diagnostic tool for advanced prostate cancer (PC) patients, potentially representing a real-time monitoring test for tumor evolution and response to treatment through the analysis of circulating tumor cells (CTCs) and exosomes. We performed a systematic literature review (PRISMA guidelines) to describe the current knowledge about PD-L1 expression in liquid biopsies of PC patients: 101/159 (64%) cases revealed a variable number of PD-L1+ CTCs. Outcome correlations should be investigated in larger series. Nuclear PD-L1 expression by CTCs was occasionally associated with worse prognosis. Treatment (abiraterone, enzalutamide, radiotherapy, checkpoint-inhibitors) influenced PD-L1+ CTC levels. Discordance in PD-L1 status was detected between primary vs. metastatic PC tissue biopsies and CTCs vs. corresponding tumor tissues. PD-L1 is also released by PC cells through soluble exosomes, which could inhibit the T cell function, causing immune evasion. PD-L1+ PC-CTC monitoring and genomic profiling may better characterize the ongoing aggressive PC forms compared to PD-L1 evaluation on primary tumor biopsies/prostatectomy specimens (sometimes sampled a long time before recurrence/progression). Myeloid-derived suppressor cells and dendritic cells (DCs), which may have immune-suppressive effects in tumor microenvironment, have been found in PC patients circulation, sometimes expressing PD-L1. Occasionally, their levels correlated to clinical outcome. Enzalutamide-progressing castration-resistant PC patients revealed increased PD-1+ T cells and circulating PD-L1/2+ DCs.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.)
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alessandro Tafuni
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
23
|
A Transcription Factor-Based Risk Model for Predicting the Prognosis of Prostate Cancer and Potential Therapeutic Drugs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6894278. [PMID: 34853602 PMCID: PMC8629613 DOI: 10.1155/2021/6894278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022]
Abstract
Background Prostate cancer (PC) is one of the most critical cancers affecting men's health worldwide. The development of many cancers involves dysregulation or mutations in key transcription factors. This study established a transcription factor-based risk model to predict the prognosis of PC and potential therapeutic drugs. Materials and Methods In this study, RNA-sequencing data were downloaded and analyzed using The Cancer Genome Atlas dataset. A total of 145 genes related to the overall survival rate of PC patients were screened using the univariate Cox analysis. The Kdmist clustering method was used to classify prostate adenocarcinoma (PRAD), thereby determining the cluster related to the transcription factors. The support vector machine-recursive feature elimination method was used to identify genes related to the types of transcription factors and the key genes specifically upregulated or downregulated were screened. These genes were further analyzed using Lasso to establish a model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used for the functional analysis. The TIMER algorithm was used to quantify the abundance of immune cells in PRAD samples. The chemotherapy response of each GBM patient was predicted based on the public pharmacogenomic database, Genomics of Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.org). The R package "pRRophetic" was applied to drug sensitivity (IC50) value prediction. Results We screened 10 genes related to prognosis, including eight low-risk genes and two high-risk genes. The receiver operating characteristic (ROC) curve was 0.946. Patients in the high-risk score group had a poorer prognosis than those in the low-risk score group. The average area under the curve value of the model at different times was higher than 0.8. The risk score was an independent prognostic factor. Compared with the low-risk score group, early growth response-1 (EGR1), CACNA2D1, AC005831.1, SLC52A3, TMEM79, IL20RA, CRACR2A, and FAM189A2 expressions in the high-risk score group were decreased, while AC012181.1 and TRAPPC8 expressions were increased. GO and KEGG analyses showed that prognosis was related to various cancer signaling pathways. The proportion of B_cell, T_cell_CD4, and macrophages in the high-risk score group was significantly higher than that in the low-risk score group. A total of 25 classic immune checkpoint genes were screened out to express abnormally high-risk scores, and there were significant differences. Thirty mutant genes were identified; in the high- and low-risk score groups, SPOP, TP53, and TTN had the highest mutation frequency, and their mutations were mainly missense mutations. A total of 36 potential drug candidates for the treatment of PC were screened and identified. Conclusions Ten genes of both high-and low-risk scores were associated with the prognosis of PC. PC prognosis may be related to immune disorders. SPOP, TP53, and TTN may be potential targets for the prognosis of PC.
Collapse
|
24
|
Ahmed R, Augustine R, Valera E, Ganguli A, Mesaeli N, Ahmad IS, Bashir R, Hasan A. Spatial mapping of cancer tissues by OMICS technologies. Biochim Biophys Acta Rev Cancer 2021; 1877:188663. [PMID: 34861353 DOI: 10.1016/j.bbcan.2021.188663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/15/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Spatial mapping of heterogeneity in gene expression in cancer tissues can improve our understanding of cancers and help in the rapid detection of cancers with high accuracy and reliability. Significant advancements have been made in recent years in OMICS technologies, which possess the strong potential to be applied in the spatial mapping of biopsy tissue samples and their molecular profiling to a single-cell level. The clinical application of OMICS technologies in spatial profiling of cancer tissues is also advancing. The current review presents recent advancements and prospects of applying OMICS technologies to the spatial mapping of various analytes in cancer tissues. We benchmark the current state of the art in the field to advance existing OMICS technologies for high throughput spatial profiling. The factors taken into consideration include spatial resolution, types of biomolecules, number of different biomolecules that can be detected from the same assay, labeled versus label-free approaches, and approximate time required for each assay. Further advancements are still needed for the widespread application of OMICs technologies in performing fast and high throughput spatial mapping of cancer tissues as well as their effective use in research and clinical applications.
Collapse
Affiliation(s)
- Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar; Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar
| | - Enrique Valera
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Anurup Ganguli
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA
| | - Nasrin Mesaeli
- Department of Biochemistry, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Irfan S Ahmad
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA
| | - Rashid Bashir
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana Champaign, IL, USA; Department of Bioengineering, University of Illinois at Urbana Champaign, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center (BRC), Qatar University, Doha 2713, Qatar.
| |
Collapse
|
25
|
Wang N, Wang R, Li X, Song Z, Xia L, Wang J, Zhang L, Wu A, Ding Z. Tumor Microenvironment Profiles Reveal Distinct Therapy-Oriented Proteogenomic Characteristics in Colorectal Cancer. Front Bioeng Biotechnol 2021; 9:757378. [PMID: 34778231 PMCID: PMC8581216 DOI: 10.3389/fbioe.2021.757378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022] Open
Abstract
Advances in immunotherapy have made an unprecedented leap in treating colorectal cancer (CRC). However, more effective therapeutic regimes need a deeper understanding of molecular architectures for precise patient stratification and therapeutic improvement. We profiled patients receiving neoadjuvant chemotherapy alone or in combination with immunotherapy (PD-1 checkpoint inhibitor) using Digital Spatial Profiler (DSP), a high-plex spatial proteogenomic technology. Compartmentalization-based high-plex profiling of both proteins and mRNAs revealed pronounced immune infiltration at tumor regions associated with immunotherapy treatment. The protein and the corresponding mRNA levels within the same selected regions of those patient samples correlate, indicating an overall concordance between the transcriptional and translational levels. An elevated expression of PD-L1 at both protein and the mRNA levels was discovered in the tumor compartment of immunotherapy-treated patients compared with chemo-treated patients, indicating potential prognostic biomarkers are explorable in a spatial manner at the local tumor microenvironment (TME). An elevated expression of PD-L1 was verified by immunohistochemistry. Other compartment-specific biomarkers were also differentially expressed between the tumor and stromal regions, indicating a dynamic interplay that can potentiate novel biomarker discovery from the TME perspectives. Simultaneously, a high-plex spatial profiling of protein and mRNA in the tumor microenvironment of colorectal cancer was performed.
Collapse
Affiliation(s)
- Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Rongshui Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Xia Li
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Zhentao Song
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Lingbo Xia
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| | - Jue Wang
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Zhang
- Department of Pathology, Beijing Cancer Hospital, Beijing, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery, Peking University, Beijing, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd., Jinan, China
| |
Collapse
|
26
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Nicoli D, Farnetti E, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 5: Epigenetic Regulation of PD-L1. Int J Mol Sci 2021; 22:12314. [PMID: 34830196 PMCID: PMC8619683 DOI: 10.3390/ijms222212314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Epigenetic alterations (including DNA methylation or miRNAs) influence oncogene/oncosuppressor gene expression without changing the DNA sequence. Prostate cancer (PC) displays a complex genetic and epigenetic regulation of cell-growth pathways and tumor progression. We performed a systematic literature review (following PRISMA guidelines) focused on the epigenetic regulation of PD-L1 expression in PC. In PC cell lines, CpG island methylation of the CD274 promoter negatively regulated PD-L1 expression. Histone modifiers also influence the PD-L1 transcription rate: the deletion or silencing of the histone modifiers MLL3/MML1 can positively regulate PD-L1 expression. Epigenetic drugs (EDs) may be promising in reprogramming tumor cells, reversing epigenetic modifications, and cancer immune evasion. EDs promoting a chromatin-inactive transcriptional state (such as bromodomain or p300/CBP inhibitors) downregulated PD-L1, while EDs favoring a chromatin-active state (i.e., histone deacetylase inhibitors) increased PD-L1 expression. miRNAs can regulate PD-L1 at a post-transcriptional level. miR-195/miR-16 were negatively associated with PD-L1 expression and positively correlated to longer biochemical recurrence-free survival; they also enhanced the radiotherapy efficacy in PC cell lines. miR-197 and miR-200a-c positively correlated to PD-L1 mRNA levels and inversely correlated to the methylation of PD-L1 promoter in a large series. miR-570, miR-34a and miR-513 may also be involved in epigenetic regulation.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Davide Nicoli
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Enrico Farnetti
- Molecular Biology Laboratory, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (D.N.); (E.F.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
27
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Copelli V, Bernardelli G, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 3: PD-L1, Intracellular Signaling Pathways and Tumor Microenvironment. Int J Mol Sci 2021; 22:12330. [PMID: 34830209 PMCID: PMC8618001 DOI: 10.3390/ijms222212330] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) includes immune (T, B, NK, dendritic), stromal, mesenchymal, endothelial, adipocytic cells, extracellular matrix, and cytokines/chemokines/soluble factors regulating various intracellular signaling pathways (ISP) in tumor cells. TME influences the survival/progression of prostate cancer (PC), enabling tumor cell immune-evasion also through the activation of the PD-1/PD-L1 axis. We have performed a systematic literature review according to the PRISMA guidelines, to investigate how the PD-1/PD-L1 pathway is influenced by TME and ISPs. Tumor immune-escape mechanisms include suppression/exhaustion of tumor infiltrating cytotoxic T lymphocytes, inhibition of tumor suppressive NK cells, increase in immune-suppressive immune cells (regulatory T, M2 macrophagic, myeloid-derived suppressor, dendritic, stromal, and adipocytic cells). IFN-γ (the most investigated factor), TGF-β, TNF-α, IL-6, IL-17, IL-15, IL-27, complement factor C5a, and other soluble molecules secreted by TME components (and sometimes increased in patients' serum), as well as and hypoxia, influenced the regulation of PD-L1. Experimental studies using human and mouse PC cell lines (derived from either androgen-sensitive or androgen-resistant tumors) revealed that the intracellular ERK/MEK, Akt-mTOR, NF-kB, WNT and JAK/STAT pathways were involved in PD-L1 upregulation in PC. Blocking the PD-1/PD-L1 signaling by using immunotherapy drugs can prevent tumor immune-escape, increasing the anti-tumor activity of immune cells.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Centre, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Valerio Copelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giuditta Bernardelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (V.C.); (G.B.); (G.S.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
28
|
Li X, Wang CY. From bulk, single-cell to spatial RNA sequencing. Int J Oral Sci 2021; 13:36. [PMID: 34782601 PMCID: PMC8593179 DOI: 10.1038/s41368-021-00146-0] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/19/2023] Open
Abstract
RNA sequencing (RNAseq) can reveal gene fusions, splicing variants, mutations/indels in addition to differential gene expression, thus providing a more complete genetic picture than DNA sequencing. This most widely used technology in genomics tool box has evolved from classic bulk RNA sequencing (RNAseq), popular single cell RNA sequencing (scRNAseq) to newly emerged spatial RNA sequencing (spRNAseq). Bulk RNAseq studies average global gene expression, scRNAseq investigates single cell RNA biology up to 20,000 individual cells simultaneously, while spRNAseq has ability to dissect RNA activities spatially, representing next generation of RNA sequencing. This article highlights these technologies, characteristic features and suitable applications in precision oncology.
Collapse
Affiliation(s)
- Xinmin Li
- UCLA Technology Center for Genomics & Bioinformatics, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry and Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
29
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Athanazio D, Gandhi J, Cavazza A, Santandrea G, Tafuni A, Zanelli M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 1: Focus on Immunohistochemical Results with Discussion of Pre-Analytical and Interpretation Variables. Cells 2021; 10:3166. [PMID: 34831389 PMCID: PMC8625301 DOI: 10.3390/cells10113166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Immunotherapy targeting the PD-1-PD-L1 axis yielded good results in treating different immunologically ''hot'' tumors. A phase II study revealed good therapeutic activity of pembrolizumab in selected prostatic carcinoma (PC)-patients. We performed a systematic literature review (PRISMA guidelines), which analyzes the immunohistochemical expression of PD-L1 in human PC samples and highlights the pre-analytical and interpretation variables. Interestingly, 29% acinar PCs, 7% ductal PCs, and 46% neuroendocrine carcinomas/tumors were PD-L1+ on immunohistochemistry. Different scoring methods or cut-off criteria were applied on variable specimen-types, evaluating tumors showing different clinic-pathologic features. The positivity rate of different PD-L1 antibody clones in tumor cells ranged from 3% (SP142) to 50% (ABM4E54), excluding the single case tested for RM-320. The most tested clone was E1L3N, followed by 22C3 (most used for pembrolizumab eligibility), SP263, SP142, and 28-8, which gave the positivity rates of 35%, 11-41% (depending on different scoring systems), 6%, 3%, and 15%, respectively. Other clones were tested in <200 cases. The PD-L1 positivity rate was usually higher in tumors than benign tissues. It was higher in non-tissue microarray specimens (41-50% vs. 15%), as PC cells frequently showed heterogenous or focal PD-L1-staining. PD-L1 was expressed by immune or stromal cells in 12% and 69% cases, respectively. Tumor heterogeneity, inter-institutional preanalytics, and inter-observer interpretation variability may account for result biases.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | | | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Alberto Cavazza
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.P.B.); (A.C.); (G.S.); (A.T.); (M.Z.)
| |
Collapse
|
30
|
Palicelli A, Croci S, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Ragazzi M, Zanelli M, Chaux A, Cañete-Portillo S, Bonasoni MP, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Bonacini M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 4: Experimental Treatments in Pre-Clinical Studies (Cell Lines and Mouse Models). Int J Mol Sci 2021; 22:12297. [PMID: 34830179 PMCID: PMC8618402 DOI: 10.3390/ijms222212297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 02/05/2023] Open
Abstract
In prostate cancer (PC), the PD-1/PD-L1 axis regulates various signaling pathways and it is influenced by extracellular factors. Pre-clinical experimental studies investigating the effects of various treatments (alone or combined) may discover how to overcome the immunotherapy-resistance in PC-patients. We performed a systematic literature review (PRISMA guidelines) to delineate the landscape of pre-clinical studies (including cell lines and mouse models) that tested treatments with effects on PD-L1 signaling in PC. NF-kB, MEK, JAK, or STAT inhibitors on human/mouse, primary/metastatic PC-cell lines variably down-modulated PD-L1-expression, reducing chemoresistance and tumor cell migration. If PC-cells were co-cultured with NK, CD8+ T-cells or CAR-T cells, the immune cell cytotoxicity increased when PD-L1 was downregulated (opposite effects for PD-L1 upregulation). In mouse models, radiotherapy, CDK4/6-inhibitors, and RB deletion induced PD-L1-upregulation, causing PC-immune-evasion. Epigenetic drugs may reduce PD-L1 expression. In some PC experimental models, blocking only the PD-1/PD-L1 pathway had limited efficacy in reducing the tumor growth. Anti-tumor effects could be increased by combining the PD-1/PD-L1 blockade with other approaches (inhibitors of tyrosine kinase, PI3K/mTOR or JAK/STAT3 pathways, p300/CBP; anti-RANKL and/or anti-CTLA-4 antibodies; cytokines; nitroxoline; DNA/cell vaccines; radiotherapy/Radium-223).
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.R.); (M.Z.); (M.P.B.); (G.S.)
- International Doctorate School in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (S.C.); (M.B.)
| |
Collapse
|
31
|
Palicelli A, Bonacini M, Croci S, Magi-Galluzzi C, Cañete-Portillo S, Chaux A, Bisagni A, Zanetti E, De Biase D, Melli B, Sanguedolce F, Zanelli M, Bonasoni MP, De Marco L, Soriano A, Ascani S, Zizzo M, Castro Ruiz C, De Leo A, Giordano G, Landriscina M, Carrieri G, Cormio L, Berney DM, Gandhi J, Santandrea G, Gelli MC, Tafuni A, Ragazzi M. What Do We Have to Know about PD-L1 Expression in Prostate Cancer? A Systematic Literature Review. Part 2: Clinic-Pathologic Correlations. Cells 2021; 10:3165. [PMID: 34831388 PMCID: PMC8618408 DOI: 10.3390/cells10113165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023] Open
Abstract
Many studies have investigated the potential prognostic and predictive role of PD-L1 in prostatic carcinoma (PC). We performed a systematic literature review (PRISMA guidelines) to critically evaluate human tissue-based studies (immunohistochemistry, molecular analysis, etc.), experimental research (cell lines, mouse models), and clinical trials. Despite some controversial results and study limitations, PD-L1 expression by tumor cells may be related to clinic-pathologic features of adverse outcome, including advanced tumor stage (high pT, presence of lymph node, and distant metastases), positivity of surgical margins, high Grade Group, and castration resistance. Different PD-L1 positivity rates may be observed in matched primary PCs and various metastatic sites of the same patients. Over-fixation, type/duration of decalcification, and PD-L1 antibody clone may influence the immunohistochemical analysis of PD-L1 on bone metastases. PD-L1 seemed expressed more frequently by castration-resistant PCs (49%) as compared to hormone-sensitive PCs (17%). Some series found that PD-L1 positivity was associated with decreased time to castration resistance. Treatment with ipilimumab, cyclophosphamide/GVAX/degarelix, or degarelix alone may increase PD-L1 expression. Correlation of PD-L1 positivity with overall survival and outcomes related to tumor recurrence were rarely investigated; the few analyzed series produced conflicting results and sometimes showed limitations. Further studies are required. The testing and scoring of PD-L1 should be standardized.
Collapse
Affiliation(s)
- Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Martina Bonacini
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.B.); (S.C.)
| | - Cristina Magi-Galluzzi
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Sofia Cañete-Portillo
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (C.M.-G.); (S.C.-P.)
| | - Alcides Chaux
- Department of Scientific Research, School of Postgraduate Studies, Norte University, Asunción 1614, Paraguay;
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Dario De Biase
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, 40126 Bologna, Italy;
| | - Beatrice Melli
- Fertility Center, Department of Obstetrics and Gynecology, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | | | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Maria Paola Bonasoni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Loredana De Marco
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandra Soriano
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA;
- Gastroenterology Division, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Ascani
- Pathology Unit, Azienda Ospedaliera Santa Maria di Terni, University of Perugia, 05100 Terni, Italy;
- Haematopathology Unit, CREO, Azienda Ospedaliera di Perugia, University of Perugia, 06129 Perugia, Italy
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Carolina Castro Ruiz
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Antonio De Leo
- Molecular Diagnostic Unit, Azienda USL Bologna, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy;
| | - Guido Giordano
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Matteo Landriscina
- Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (G.G.); (M.L.)
| | - Giuseppe Carrieri
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Luigi Cormio
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy; (G.C.); (L.C.)
| | - Daniel M. Berney
- Barts Cancer Institute, Queen Mary University of London, London EC1M 5PZ, UK;
| | - Jatin Gandhi
- Department of Pathology and Laboratory Medicine, University of Washington, Seattle, WA 98195, USA;
| | - Giacomo Santandrea
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Maria Carolina Gelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| | - Alessandro Tafuni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
- Pathology Unit, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (A.B.); (E.Z.); (M.Z.); (M.P.B.); (L.D.M.); (G.S.); (M.C.G.); (A.T.); (M.R.)
| |
Collapse
|
32
|
Batoon L, McCauley LK. Cross Talk Between Macrophages and Cancer Cells in the Bone Metastatic Environment. Front Endocrinol (Lausanne) 2021; 12:763846. [PMID: 34803925 PMCID: PMC8597897 DOI: 10.3389/fendo.2021.763846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
The skeleton is a common site for cancer metastases with the bone microenvironment providing the appropriate conditions for cancer cell colonization. Once in bone, cancer cells effectively manipulate their microenvironment to support their growth and survival. Despite previous efforts to improve treatment modalities, skeletal metastases remain with poor prognoses. This warrants an improved understanding of the mechanisms leading to bone metastasis that will aid development of effective treatments. Macrophages in the tumor microenvironment are termed tumor associated macrophages (TAMs) and their crosstalk with cancer cells is critical in regulating tumorigenicity in multiple cancers. In bone metastases, this crosstalk is also being increasingly implicated but the specific signaling pathways remain incompletely understood. Here, we summarize the reported functions, interactions, and signaling of macrophages with cancer cells during the metastatic cascade to bone. Specifically, we review and discuss how these specific interactions impact macrophages and their profiles to promote tumor development. We also discuss the potential of targeting this crosstalk to inhibit disease progression. Finally, we identify the remaining knowledge gaps that will need to be addressed in order to fully consider therapeutic targeting to improve clinical outcomes in cancer patients.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
- Bones and Immunology Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, United States
| |
Collapse
|
33
|
Bergholtz H, Carter JM, Cesano A, Cheang MCU, Church SE, Divakar P, Fuhrman CA, Goel S, Gong J, Guerriero JL, Hoang ML, Hwang ES, Kuasne H, Lee J, Liang Y, Mittendorf EA, Perez J, Prat A, Pusztai L, Reeves JW, Riazalhosseini Y, Richer JK, Sahin Ö, Sato H, Schlam I, Sørlie T, Stover DG, Swain SM, Swarbrick A, Thompson EA, Tolaney SM, Warren SE, On Behalf Of The GeoMx Breast Cancer Consortium. Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx ® Digital Spatial Profiler. Cancers (Basel) 2021; 13:4456. [PMID: 34503266 PMCID: PMC8431590 DOI: 10.3390/cancers13174456] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 01/07/2023] Open
Abstract
Breast cancer is a heterogenous disease with variability in tumor cells and in the surrounding tumor microenvironment (TME). Understanding the molecular diversity in breast cancer is critical for improving prediction of therapeutic response and prognostication. High-plex spatial profiling of tumors enables characterization of heterogeneity in the breast TME, which can holistically illuminate the biology of tumor growth, dissemination and, ultimately, response to therapy. The GeoMx Digital Spatial Profiler (DSP) enables researchers to spatially resolve and quantify proteins and RNA transcripts from tissue sections. The platform is compatible with both formalin-fixed paraffin-embedded and frozen tissues. RNA profiling was developed at the whole transcriptome level for human and mouse samples and protein profiling of 100-plex for human samples. Tissue can be optically segmented for analysis of regions of interest or cell populations to study biology-directed tissue characterization. The GeoMx Breast Cancer Consortium (GBCC) is composed of breast cancer researchers who are developing innovative approaches for spatial profiling to accelerate biomarker discovery. Here, the GBCC presents best practices for GeoMx profiling to promote the collection of high-quality data, optimization of data analysis and integration of datasets to advance collaboration and meta-analyses. Although the capabilities of the platform are presented in the context of breast cancer research, they can be generalized to a variety of other tumor types that are characterized by high heterogeneity.
Collapse
Affiliation(s)
- Helga Bergholtz
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
| | - Jodi M Carter
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Maggie Chon U Cheang
- ICR Clinical Trials and Statistics Unit, Division of Clinical Studies, The Institute of Cancer Research, London SM2 5NG, UK
| | | | | | | | - Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jingjing Gong
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Jennifer L Guerriero
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - E Shelley Hwang
- Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Hellen Kuasne
- Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jinho Lee
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Yan Liang
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Elizabeth A Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
- Breast Oncology Program, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Jessica Perez
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Aleix Prat
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute, 08036 Barcelona, Spain
| | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, Montreal, QC H3A 0G4, Canada
- McGill University Genome Centre, McGill University, Montreal, QC H3A 0G4, Canada
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Özgür Sahin
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Hiromi Sato
- NanoString® Technologies Inc., Seattle, WA 98109, USA
| | - Ilana Schlam
- MedStar Washington Hospital Center, Washington, DC 20010, USA
- Tufts Medical Center, Boston, MA 02111, USA
| | - Therese Sørlie
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, 0450 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
| | - Daniel G Stover
- Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Sandra M Swain
- Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20057, USA
- Georgetown University Medical Center, Washington, DC 20057, USA
- MedStar Health, Washington, DC 20057, USA
| | - Alexander Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney NSW 2052, Australia
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Sara M Tolaney
- Harvard Medical School, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
34
|
Hinz N, Jücker M. AKT in Bone Metastasis of Solid Tumors: A Comprehensive Review. Cancers (Basel) 2021; 13:cancers13102287. [PMID: 34064589 PMCID: PMC8151478 DOI: 10.3390/cancers13102287] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Bone metastasis is a frequent complication of solid tumors and leads to a reduced overall survival. Although much progress has been made in the field of tumor therapy in the last years, bone metastasis depicts a stage of the disease with a lack of appropriate therapeutical options. Hence, this review aims to present the role of AKT in bone metastasis of solid tumors to place the spotlight on AKT as a possible therapeutical approach for patients with bone metastases. Furthermore, we intended to discuss postulated underlying molecular mechanisms of the bone metastasis-promoting effect of AKT, especially in highly bone-metastatic breast, prostate, and lung cancer. To conclude, this review identified the AKT kinase as a potential therapeutical target in bone metastasis and revealed remaining questions, which need to be addressed in further research projects. Abstract Solid tumors, such as breast cancer and prostate cancer, often form bone metastases in the course of the disease. Patients with bone metastases frequently develop complications, such as pathological fractures or hypercalcemia and exhibit a reduced life expectancy. Thus, it is of vital importance to improve the treatment of bone metastases. A possible approach is to target signaling pathways, such as the PI3K/AKT pathway, which is frequently dysregulated in solid tumors. Therefore, we sought to review the role of the serine/threonine kinase AKT in bone metastasis. In general, activation of AKT signaling was shown to be associated with the formation of bone metastases from solid tumors. More precisely, AKT gets activated in tumor cells by a plethora of bone-derived growth factors and cytokines. Subsequently, AKT promotes the bone-metastatic capacities of tumor cells through distinct signaling pathways and secretion of bone cell-stimulating factors. Within the crosstalk between tumor and bone cells, also known as the vicious cycle, the stimulation of osteoblasts and osteoclasts also causes activation of AKT in these cells. As a consequence, bone metastasis is reduced after experimental inhibition of AKT. In summary, AKT signaling could be a promising therapeutical approach for patients with bone metastases of solid tumors.
Collapse
|
35
|
Sun Y, Jing J, Xu H, Xu L, Hu H, Tang C, Liu S, Wei Q, Duan R, Guo J, Yang L. N-cadherin inhibitor creates a microenvironment that protect TILs from immune checkpoints and Treg cells. J Immunother Cancer 2021; 9:e002138. [PMID: 33692219 PMCID: PMC7949480 DOI: 10.1136/jitc-2020-002138] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Few patients with prostate cancer benefit from current immunotherapies. Therefore, we aimed to explore new strategies to change this paradigm. METHODS Human tissues, cell lines and in vivo experiments were used to determine whether and how N-cadherin impacts the production of programmed death ligand-1 (PD-L1) and indole amine 2,3-dioxygenase (IDO-1) and whether N-cadherin can increase the production of effector (e)Treg cells. Then, we used PC3-bearing humanized non-obese diabetic/severe combined immunodeficiency IL2Rγnull (hNSG) mice with an intravenous injection of human CD34+ hematopoietic stem cells into the tail vein to evaluate whether the N-cadherin antagonist N-Ac-CHAVC-NH2 (designated ADH-1) could improve the therapeutic effect of tumor-infiltrating lymphocyte (TIL)-related treatment. RESULTS N-cadherin dramatically upregulated the expression of PD-L1 and IDO-1 through IFN-γ (interferongamma) signaling and increasing the production of free fatty acids that could promote the generation of eTreg cells. In preclinical experiments, immune reconstitution mediated by TILs slowed tumor growth and extended the survival time; however, this effect disappeared after immune system suppression by PD-L1, IDO-1 and eTreg cells. Furthermore, ADH-1 effectively reduced immunosuppression and enhanced TIL-related therapy. CONCLUSIONS These data show that the N-cadherin antagonist ADH-1 promotes TIL antitumor responses. This important hurdle must be overcome for tumors to respond to immunotherapy.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- B7-H1 Antigen/antagonists & inhibitors
- B7-H1 Antigen/metabolism
- Cadherins/antagonists & inhibitors
- Cadherins/metabolism
- Drug Resistance, Neoplasm
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Janus Kinase 1/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Mice, Inbred NOD
- Mice, SCID
- Oligopeptides/pharmacology
- PC-3 Cells
- Peptides, Cyclic/pharmacology
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Signal Transduction
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Yi Sun
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Jun Jing
- Department of Rheumatology and Clinical Immunology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Urology, Shanghai Changhai Hospital of Second Military Medical University, Shanghai, China
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Hailiang Hu
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Cai Tang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shengzhuo Liu
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Ruiqi Duan
- Department of Obstetrics and Gynecology/Key Laboratory of Birth Defects and Related Diseases of Women and Children, West China Second Hospital of Sichuan University, Chengdu, China
| | - Ju Guo
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Yang
- Department of Urology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Pfisterer U, Bräunig J, Brattås P, Heidenblad M, Karlsson G, Fioretos T. Single-cell sequencing in translational cancer research and challenges to meet clinical diagnostic needs. Genes Chromosomes Cancer 2021; 60:504-524. [PMID: 33611828 DOI: 10.1002/gcc.22944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
The ability to capture alterations in the genome or transcriptome by next-generation sequencing has provided critical insight into molecular changes and programs underlying cancer biology. With the rapid technological development in single-cell sequencing, it has become possible to study individual cells at the transcriptional, genetic, epigenetic, and protein level. Using single-cell analysis, an increased resolution of fundamental processes underlying cancer development is obtained, providing comprehensive insights otherwise lost by sequencing of entire (bulk) samples, in which molecular signatures of individual cells are averaged across the entire cell population. Here, we provide a concise overview on the application of single-cell analysis of different modalities within cancer research by highlighting key articles of their respective fields. We furthermore examine the potential of existing technologies to meet clinical diagnostic needs and discuss current challenges associated with this translation.
Collapse
Affiliation(s)
- Ulrich Pfisterer
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Julia Bräunig
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Per Brattås
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Markus Heidenblad
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Thoas Fioretos
- Center for Translational Genomics, Lund University, Lund, Sweden.,Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden.,Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
37
|
Straign DM, Ihle CL, Provera MD, Owens P. Targeting the BMP Pathway in Prostate Cancer Induced Bone Disease. Front Endocrinol (Lausanne) 2021; 12:769316. [PMID: 34956082 PMCID: PMC8702552 DOI: 10.3389/fendo.2021.769316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
From the 33,000 men in the U.S. who die from prostate cancer each year, the majority of these patients exhibit metastatic disease with bone being the most common site of metastasis. Prostate cancer bone metastases are commonly blastic, exhibiting new growth of unhealthy sclerotic bone, which can cause painful skeletal related events. Patient's current care entails androgen deprivation therapy, anti-resorptive agents, radiation, and chemotherapy to help control the spread of the cancer but little intervention is available to treat blastic bone disease. The transforming growth factor beta (TGFβ) and bone morphogenetic protein (BMP) pathways are known to regulate bone growth and resorption of destructive lytic bone lesions, yet the role of TGFβ/BMP signaling in prostate cancer blastic vs lytic bone lesions are not fully understood. We hypothesized that to target the BMP/TGFβ pathway, a useful biomarker of bone lytic or blastic pathology would have superior response. We show distinct BMP vs. TGFβ signaling in clinical samples of human prostate cancer bone metastases with either lytic or blastic pathologies. BMPs exhibit distinct effects on bone homeostasis, so to examine the effect of BMP inhibition on healthy bone, we treated mice with the BMP receptor small molecule antagonist DMH1 and saw a modest temporary improvement in bone health, with increased trabecular bone. We next sought to use the BMP inhibitor DMH1 to treat bone metastasis engraftment seeded by a caudal artery injection of the lytic human prostate cell line PC3 in immunodeficient mice. The colonization by PC3 cells to the bone were restricted with DMH1 treatment and bone health was importantly preserved. We next proceeded to test BMP inhibition in an injury model of established bone metastasis via intratibial injection of the MYC-CaP mouse prostate cell line into FVBN syngeneic mice. DMH1 treated mice had a modest decrease in trabecular bone and reduced lymphocytes in circulation without affecting tumor growth. Taken together we show unique responses to BMP inhibition in metastatic prostate cancer in the bone. These studies suggest that profiling bone lesions in metastatic prostate cancer can help identify therapeutic targets that not only treat the metastatic tumor but also address the need to better treat the distinct tumor induced bone disease.
Collapse
Affiliation(s)
- Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Claire L. Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Philip Owens
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
- *Correspondence: Philip Owens,
| |
Collapse
|
38
|
Interleukin-10 Induces Expression of Neuroendocrine Markers and PDL1 in Prostate Cancer Cells. Prostate Cancer 2020; 2020:5305306. [PMID: 32802517 PMCID: PMC7415101 DOI: 10.1155/2020/5305306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023] Open
Abstract
Interleukin-10 (IL10) is best studied for its inhibitory action on immune cells and ability to suppress an antitumour immune response. But IL10 also exerts direct effects on nonimmune cells such as prostate cancer epithelial cells. Elevated serum levels of IL10 observed in prostate and other cancer patients are associated with poor prognosis. After first-line androgen-deprivation therapy, prostate cancer patients are treated with androgen receptor antagonists such as enzalutamide to inhibit androgen-dependent prostate cancer cell growth. However, development of resistance inevitably occurs and this is associated with tumour differentiation to more aggressive forms such as a neuroendocrine phenotype characterized by expression of neuron specific enolase and synaptophysin. We found that treatment of prostate cancer cell lines in vitro with IL10 or enzalutamide induced markers of neuroendocrine differentiation and inhibited androgen receptor reporter activity. Both also upregulated the levels of PDL1, which could promote tumour survival in vivo through its interaction with the immune cell inhibitory receptor PD1 to suppress antitumour immunity. These findings suggest that IL10's direct action on prostate cancer cells could contribute to prostate cancer progression independent of IL10's suppression of host immune cells.
Collapse
|
39
|
Wood SL, Brown JE. Personal Medicine and Bone Metastases: Biomarkers, Micro-RNAs and Bone Metastases. Cancers (Basel) 2020; 12:cancers12082109. [PMID: 32751181 PMCID: PMC7465268 DOI: 10.3390/cancers12082109] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Bone metastasis is a major cause of morbidity within solid tumours of the breast, prostate, lung and kidney. Metastasis to the skeleton is associated with a wide range of complications including bone fractures, spinal cord compression, hypercalcaemia and increased bone pain. Improved treatments for bone metastasis, such as the use of anti-bone resorptive bisphosphonate agents, within post-menopausal women have improved disease-free survival; however, these treatments are not without side effects. There is thus a need for biomarkers, which will predict the risk of developing the spread to bone within these cancers. The application of molecular profiling techniques, together with animal model systems and engineered cell-lines has enabled the identification of a series of potential bone-metastasis biomarker molecules predictive of bone metastasis risk. Some of these biomarker candidates have been validated within patient-derived samples providing a step towards clinical utility. Recent developments in multiplex biomarker quantification now enable the simultaneous measurement of up to 96 micro-RNA/protein molecules in a spatially defined manner with single-cell resolution, thus enabling the characterisation of the key molecules active at the sites of pre-metastatic niche formation as well as tumour-stroma signalling. These technologies have considerable potential to inform biomarker discovery. Additionally, a potential future extension of these discoveries could also be the identification of novel drug targets within cancer spread to bone. This chapter summarises recent findings in biomarker discovery within the key bone metastatic cancers (breast, prostate, lung and renal cell carcinoma). Tissue-based and circulating blood-based biomarkers are discussed from the fields of genomics, epigenetic regulation (micro-RNAs) and protein/cell-signalling together with a discussion of the potential future development of these markers towards clinical development.
Collapse
Affiliation(s)
- Steven L. Wood
- Department of Oncology and Metabolism, Medical School, Beech Hill Road, Sheffield S10 2RX, UK
- Correspondence:
| | - Janet E. Brown
- Department of Oncology and Metabolism, Weston Park Hospital, Whitham Road, Sheffield S10 2SJ, UK;
| |
Collapse
|
40
|
de Vries NL, Mahfouz A, Koning F, de Miranda NFCC. Unraveling the Complexity of the Cancer Microenvironment With Multidimensional Genomic and Cytometric Technologies. Front Oncol 2020; 10:1254. [PMID: 32793500 PMCID: PMC7390924 DOI: 10.3389/fonc.2020.01254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022] Open
Abstract
Cancers are characterized by extensive heterogeneity that occurs intratumorally, between lesions, and across patients. To study cancer as a complex biological system, multidimensional analyses of the tumor microenvironment are paramount. Single-cell technologies such as flow cytometry, mass cytometry, or single-cell RNA-sequencing have revolutionized our ability to characterize individual cells in great detail and, with that, shed light on the complexity of cancer microenvironments. However, a key limitation of these single-cell technologies is the lack of information on spatial context and multicellular interactions. Investigating spatial contexts of cells requires the incorporation of tissue-based techniques such as multiparameter immunofluorescence, imaging mass cytometry, or in situ detection of transcripts. In this Review, we describe the rise of multidimensional single-cell technologies and provide an overview of their strengths and weaknesses. In addition, we discuss the integration of transcriptomic, genomic, epigenomic, proteomic, and spatially-resolved data in the context of human cancers. Lastly, we will deliberate on how the integration of multi-omics data will help to shed light on the complex role of cell types present within the human tumor microenvironment, and how such system-wide approaches may pave the way toward more effective therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Natasja L. de Vries
- Pathology, Leiden University Medical Center, Leiden, Netherlands
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Human Genetics, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Frits Koning
- Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
41
|
La Manna F, De Menna M, Patel N, Karkampouna S, De Filippo MR, Klima I, Kloen P, Beimers L, Thalmann GN, Pelger RCM, Jacinto E, Kruithof-de Julio M. Dual-mTOR Inhibitor Rapalink-1 Reduces Prostate Cancer Patient-Derived Xenograft Growth and Alters Tumor Heterogeneity. Front Oncol 2020; 10:1012. [PMID: 32656088 PMCID: PMC7324765 DOI: 10.3389/fonc.2020.01012] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022] Open
Abstract
Bone metastasis is the leading cause of prostate cancer (PCa) mortality, frequently marking the progression to castration-resistant PCa. Dysregulation of the androgen receptor pathway is a common feature of castration-resistant PCa, frequently appearing in association with mTOR pathway deregulations. Advanced PCa is also characterized by increased tumor heterogeneity and cancer stem cell (CSC) frequency. CSC-targeted therapy is currently being explored in advanced PCa, with the aim of reducing cancer clonal divergence and preventing disease progression. In this study, we compared the molecular pathways enriched in a set of bone metastasis from breast and prostate cancer from snap-frozen tissue. To further model PCa drug resistance mechanisms, we used two patient-derived xenografts (PDX) models of bone-metastatic PCa, BM18, and LAPC9. We developed in vitro organoids assay and ex vivo tumor slice drug assays to investigate the effects of mTOR- and CSC-targeting compounds. We found that both PDXs could be effectively targeted by treatment with the bivalent mTORC1/2 inhibitor Rapalink-1. Exposure of LAPC9 to Rapalink-1 but not to the CSC-targeting drug disulfiram blocked mTORC1/2 signaling, diminished expression of metabolic enzymes involved in glutamine and lipid metabolism and reduced the fraction of CD44+ and ALDEFluorhigh cells, in vitro. Mice treated with Rapalink-1 showed a significantly delayed tumor growth compared to control and cells recovered from the tumors of treated animals showed a marked decrease of CD44 expression. Taken together these results highlight the increased dependence of advanced PCa on the mTOR pathway, supporting the development of a targeted approach for advanced, bone metastatic PCa.
Collapse
Affiliation(s)
- Federico La Manna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Marta De Menna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Nikhil Patel
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Sofia Karkampouna
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Maria Rosaria De Filippo
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Irena Klima
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
| | - Peter Kloen
- Department of Orthopedic Trauma Surgery, Academic Medical Center, Amsterdam, Netherlands
| | - Lijkele Beimers
- Department of Orthopedic Surgery, MC Slotervaart, Amsterdam, Netherlands
| | - George N. Thalmann
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Rob C. M. Pelger
- Department of Urology, Leiden University Medical Center, Leiden, Netherlands
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Marianna Kruithof-de Julio
- Department for BioMedical Research, Urology Research Laboratory, University of Bern, Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
42
|
Owen KL, Gearing LJ, Zanker DJ, Brockwell NK, Khoo WH, Roden DL, Cmero M, Mangiola S, Hong MK, Spurling AJ, McDonald M, Chan C, Pasam A, Lyons RJ, Duivenvoorden HM, Ryan A, Butler LM, Mariadason JM, Giang Phan T, Hayes VM, Sandhu S, Swarbrick A, Corcoran NM, Hertzog PJ, Croucher PI, Hovens C, Parker BS. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep 2020; 21:e50162. [PMID: 32314873 PMCID: PMC7271653 DOI: 10.15252/embr.202050162] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/15/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
The latency associated with bone metastasis emergence in castrate-resistant prostate cancer is attributed to dormancy, a state in which cancer cells persist prior to overt lesion formation. Using single-cell transcriptomics and ex vivo profiling, we have uncovered the critical role of tumor-intrinsic immune signaling in the retention of cancer cell dormancy. We demonstrate that loss of tumor-intrinsic type I IFN occurs in proliferating prostate cancer cells in bone. This loss suppresses tumor immunogenicity and therapeutic response and promotes bone cell activation to drive cancer progression. Restoration of tumor-intrinsic IFN signaling by HDAC inhibition increased tumor cell visibility, promoted long-term antitumor immunity, and blocked cancer growth in bone. Key findings were validated in patients, including loss of tumor-intrinsic IFN signaling and immunogenicity in bone metastases compared to primary tumors. Data herein provide a rationale as to why current immunotherapeutics fail in bone-metastatic prostate cancer, and provide a new therapeutic strategy to overcome the inefficacy of immune-based therapies in solid cancers.
Collapse
|
43
|
Stewart RL, Matynia AP, Factor RE, Varley KE. Spatially-resolved quantification of proteins in triple negative breast cancers reveals differences in the immune microenvironment associated with prognosis. Sci Rep 2020; 10:6598. [PMID: 32313087 PMCID: PMC7170957 DOI: 10.1038/s41598-020-63539-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/27/2020] [Indexed: 01/28/2023] Open
Abstract
Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Recent studies have shown that MHC class II (MHCII) expression and tumor infiltrating lymphocytes are important prognostic factors in patients with TNBC, although the relative importance of lymphocyte subsets and associated protein expression is incompletely understood. NanoString Digital Spatial Profiling (DSP) allows for spatially resolved, highly multiplexed quantification of proteins in clinical samples. In this study, we sought to determine if DSP could be used to characterize expression of MHCII and other immune related proteins in tumor epithelial versus stromal compartments of patient-derived TNBCs (N = 10) using a panel of 39 markers. We confirmed that a subset of TNBCs have elevated expression of HLA-DR in tumor epithelial cells; HLA-DR expression was also significantly higher in the tumors of patients with long-term disease-free survival when compared to patients that relapsed. HLA-DR expression in the epithelial compartment was correlated with high expression of CD4 and ICOS in the stromal compartment of the same tumors. We also identified candidate protein biomarkers with significant differential expression between patients that relapsed versus those that did not. In conclusion, DSP is a powerful method that allows for quantification of proteins in the immune microenvironment of TNBCs.
Collapse
Affiliation(s)
- Rachel L Stewart
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Anna P Matynia
- Department of Pathology, ARUP Laboratories, University of Utah Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Rachel E Factor
- Department of Pathology, ARUP Laboratories, University of Utah Medical Center, University of Utah, Salt Lake City, UT, USA
| | - Katherine E Varley
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
44
|
Wang Y, Mashock M, Tong Z, Mu X, Chen H, Zhou X, Zhang H, Zhao G, Liu B, Li X. Changing Technologies of RNA Sequencing and Their Applications in Clinical Oncology. Front Oncol 2020; 10:447. [PMID: 32328458 PMCID: PMC7160325 DOI: 10.3389/fonc.2020.00447] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
RNA sequencing (RNAseq) is one of the most commonly used techniques in life sciences, and has been widely used in cancer research, drug development, and cancer diagnosis and prognosis. Driven by various biological and technical questions, the techniques of RNAseq have progressed rapidly from bulk RNAseq, laser-captured micro-dissected RNAseq, and single-cell RNAseq to digital spatial RNA profiling, spatial transcriptomics, and direct in situ sequencing. These different technologies have their unique strengths, weaknesses, and suitable applications in the field of clinical oncology. To guide cancer researchers to select the most appropriate RNAseq technique for their biological questions, we will discuss each of these technologies, technical features, and clinical applications in cancer. We will help cancer researchers to understand the key differences of these RNAseq technologies and their optimal applications.
Collapse
Affiliation(s)
- Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Michael Mashock
- Department of Pathology & Laboratory Medicine, UCLA Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Zhuang Tong
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Hong Chen
- Qiqihaer First Hospital, Qiqihar, China
| | - Xin Zhou
- Qiqihaer First Hospital, Qiqihar, China
| | - Hong Zhang
- Department of Pathology & Laboratory Medicine, UCLA Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Gexin Zhao
- Department of Pathology & Laboratory Medicine, UCLA Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Bin Liu
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xinmin Li
- Department of Pathology & Laboratory Medicine, UCLA Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| |
Collapse
|
45
|
Ihle CL, Owens P. Integrating the immune microenvironment of prostate cancer induced bone disease. Mol Carcinog 2020; 59:822-829. [PMID: 32233011 DOI: 10.1002/mc.23192] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/03/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer for men in the U.S. but does not impede patient survival until the disease is metastatic. Metastatic lesions most frequently occur in the bone, which exhibits a distinct microenvironment of immune and bone cell populations. Advances in the diagnosis and treatment of primary PCa allow for the use of tailored therapeutic approaches based on biomarkers, protein expression, and histopathology. Understanding the molecular and cellular characteristics of primary tumors has advanced therapeutic development and survival for patients with PCa. Personalized medicine has only recently emerged for the treatment of metastatic bone lesions. Tumor induced bone disease (TIBD) in patients with PCa can be classified into lytic, blastic, or mixed pathologies, with most patients exhibiting the blastic phenotype. Progress has been made in treating TIBD, but metastatic PCa has yet to be cured. Immune checkpoint inhibitors have exhibited limited responses in immunosuppressive PCa tumors, but have yet to be assessed in metastatic sites which may be susceptible to an increased inflammatory response. Recent discoveries have uncovered distinct tumor microenvironments (TMEs) of blastic and lytic bone metastases from patients with PCa, identifying actionable targets for therapeutic applications, including immune checkpoint inhibitors and targeted therapeutics. Enrichment for macrophages and T cells in patient samples suggests metastatic sites may be reappraised as immunologically targetable, despite their immunologically "cold" primary tumors. The practice of performing bone biopsies will help identify unique cellular and protein targets in the bone TME that can guide therapy decisions.
Collapse
Affiliation(s)
- Claire L Ihle
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, Colorado
| |
Collapse
|