1
|
Storrie L, Loseto LL, Sutherland EL, MacPhee SA, O'Corry-Crowe G, Hussey NE. Do beluga whales truly migrate? Testing a key trait of the classical migration syndrome. MOVEMENT ECOLOGY 2023; 11:53. [PMID: 37649126 PMCID: PMC10469428 DOI: 10.1186/s40462-023-00416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/05/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Migration enables organisms to access resources in separate regions that have predictable but asynchronous spatiotemporal variability in habitat quality. The classical migration syndrome is defined by key traits including directionally persistent long-distance movements during which maintenance activities are suppressed. But recently, seasonal round-trip movements have frequently been considered to constitute migration irrespective of the traits required to meet this movement type, conflating common outcomes with common traits required for a mechanistic understanding of long-distance movements. We aimed to test whether a cetacean ceases foraging during so-called migratory movements, conforming to a trait that defines classical migration. METHODS We used location and dive data collected by satellite tags deployed on beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea population, which undertake long-distance directed movements between summer and winter areas. To identify phases of directionally persistent travel, behavioural states (area-restricted search, ARS; or Transit) were decoded using a hidden-Markov model, based on step length and turning angle. Established dive profiles were then used as a proxy for foraging, to test the hypothesis that belugas cease foraging during these long-distance transiting movements, i.e., they suppress maintenance activities. RESULTS Belugas principally made directed horizontal movements when moving between summer and winter residency areas, remaining in a Transit state for an average of 75.4% (range = 58.5-87.2%) of the time. All individuals, however, exhibited persistent foraging during Transit movements (75.8% of hours decoded as the Transit state had ≥ 1 foraging dive). These data indicate that belugas actively search for and/or respond to resources during these long-distance movements that are typically called a migration. CONCLUSIONS The long-distance movements of belugas do not conform to the traits defining the classical migration syndrome, but instead have characteristics of both migratory and nomadic behaviour, which may prove adaptive in the face of unpredictable environmental change. Such patterns are likely present in other cetaceans that have been labeled as migratory. Examination of not only horizontal movement state, but also the vertical behaviour of aquatic animals during directed movements is essential for identifying whether a species exhibits traits of the classical migration syndrome or another long-distance movement strategy, enabling improved ecological inference.
Collapse
Affiliation(s)
- Luke Storrie
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada.
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.
| | - Lisa L Loseto
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Emma L Sutherland
- Centre for Earth Observation Science, Department of Environment and Geography, The University of Manitoba, Winnipeg, MB, Canada
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Shannon A MacPhee
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada
| | - Greg O'Corry-Crowe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, USA
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| |
Collapse
|
2
|
Pathogen Exposure in White Whales ( Delphinapterus leucas) in Svalbard, Norway. Pathogens 2022; 12:pathogens12010058. [PMID: 36678406 PMCID: PMC9864568 DOI: 10.3390/pathogens12010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
The Svalbard white whale (Delphinapterus leucas) population is one of the smallest in the world, making it particularly vulnerable to challenges such as climate change and pathogens. In this study, serum samples from live captured (2001−2016) white whales from this region were investigated for influenza A virus (IAV) antibodies (Abs) (n = 27) and RNA (n = 25); morbillivirus (MV) Abs (n = 3) and RNA (n = 25); Brucella spp. Abs; and Toxoplasma gondii Abs (n = 27). IAV Abs were found in a single adult male that was captured in Van Mijenfjorden in 2001, although no IAV RNA was detected. Brucella spp. Abs were found in 59% of the sample group (16/27). All MV and T. gondii results were negative. The results show that Svalbard white whales have been exposed to IAV and Brucella spp., although evidence of disease is lacking. However, dramatic changes in climate and marine ecosystems are taking place in the Arctic, so surveillance of health parameters, including pathogens, is critical for tracking changes in the status of this vulnerable population.
Collapse
|
3
|
Borgå K, McKinney MA, Routti H, Fernie KJ, Giebichenstein J, Hallanger I, Muir DCG. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1544-1576. [PMID: 35179539 DOI: 10.1039/d1em00469g] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This review summarizes current understanding of how climate change-driven physical and ecological processes influence the levels of persistent organic pollutants (POPs) and contaminants of emerging Arctic concern (CEACs) in Arctic biota and food webs. The review also highlights how climate change may interact with other stressors to impact contaminant toxicity, and the utility of modeling and newer research tools in closing knowledge gaps on climate change-contaminant interactions. Permafrost thaw is influencing the concentrations of POPs in freshwater ecosystems. Physical climate parameters, including climate oscillation indices, precipitation, water salinity, sea ice age, and sea ice quality show statistical associations with POPs concentrations in multiple Arctic biota. Northward range-shifting species can act as biovectors for POPs and CEACs into Arctic marine food webs. Shifts in trophic position can alter POPs concentrations in populations of Arctic species. Reductions in body condition are associated with increases in levels of POPs in some biota. Although collectively understudied, multiple stressors, including contaminants and climate change, may act to cumulatively impact some populations of Arctic biota. Models are useful for predicting the net result of various contrasting climate-driven processes on POP and CEAC exposures; however, for some parameters, especially food web changes, insufficient data exists with which to populate such models. In addition to the impact of global regulations on POP levels in Arctic biota, this review demonstrates that there are various direct and indirect mechanisms by which climate change can influence contaminant exposure, accumulation, and effects; therefore, it is important to attribute POP variations to the actual contributing factors to inform future regulations and policies. To do so, a broad range of habitats, species, and processes must be considered for a thorough understanding and interpretation of the consequences to the distribution, accumulation, and effects of environmental contaminants. Given the complex interactions between climate change, contaminants, and ecosystems, it is important to plan for long-term, integrated pan-Arctic monitoring of key biota and ecosystems, and to collect ancillary data, including information on climate-related parameters, local meteorology, ecology, and physiology, and when possible, behavior, when carrying out research on POPs and CEACs in biota and food webs of the Arctic.
Collapse
Affiliation(s)
- Katrine Borgå
- Department of Biosciences, University of Oslo, NO-0316 Oslo, Norway.
| | - Melissa A McKinney
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3 V9, Canada.
| | - Heli Routti
- Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| | | | | | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, L7S 1A1, Canada
| |
Collapse
|
4
|
Hamilton CD, Lydersen C, Aars J, Acquarone M, Atwood T, Baylis A, Biuw M, Boltunov AN, Born EW, Boveng P, Brown TM, Cameron M, Citta J, Crawford J, Dietz R, Elias J, Ferguson SH, Fisk A, Folkow LP, Frost KJ, Glazov DM, Granquist SM, Gryba R, Harwood L, Haug T, Heide‐Jørgensen MP, Hussey NE, Kalinek J, Laidre KL, Litovka DI, London JM, Loseto LL, MacPhee S, Marcoux M, Matthews CJD, Nilssen K, Nordøy ES, O’Corry‐Crowe G, Øien N, Olsen MT, Quakenbush L, Rosing‐Asvid A, Semenova V, Shelden KEW, Shpak OV, Stenson G, Storrie L, Sveegaard S, Teilmann J, Ugarte F, Von Duyke AL, Watt C, Wiig Ø, Wilson RR, Yurkowski DJ, Kovacs KM. Marine mammal hotspots across the circumpolar Arctic. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
5
|
Günther B, Jourdain E, Rubincam L, Karoliussen R, Cox SL, Arnaud Haond S. Feces DNA analyses track the rehabilitation of a free-ranging beluga whale. Sci Rep 2022; 12:6412. [PMID: 35440734 PMCID: PMC9018719 DOI: 10.1038/s41598-022-09285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Following the sudden appearance, and subsequent efforts to support the survival of a beluga whale (Delphinapterus leucas) speculated to have been previously trained off the coast of Norway, we investigate the animal's ability to readapt to life in the wild. Dietary DNA (dDNA) analysis was used to assess diet throughout this rehabilitation process, and during a return to unassisted foraging and self-feeding. Metabarcoding of feces collected throughout this process, confirmed the diversification of the beluga whale's diet to local prey. These findings are indicative of improved foraging behavior, and the ability of this individual to resume wild foraging following a period of dependency in managed care. New insight of digestion rates, and the time window during which prey detection through dDNA analysis is appropriate was also obtained. Beyond the case study presented here, we demonstrate the power of dDNA analysis as a non-intrusive tool to assess the diet of large mammals and track progress adapting to life in the wild following release from captivity and rehabilitation programs.
Collapse
Affiliation(s)
- Babett Günther
- ISEM (Institut des Sciences de l'Evolution), Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.
- MARBEC (Marine Biodiversity Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Sète, France.
| | | | | | | | - Sam L Cox
- MaREI Centre, Environmental Research Institute, University College Cork, Cork, Ireland
- School of Biological, Earth, and Environmental Sciences, University College Cork, Cork, Ireland
| | - Sophie Arnaud Haond
- MARBEC (Marine Biodiversity Exploitation and Conservation), Univ Montpellier, CNRS, Ifremer, IRD, Sète, France
| |
Collapse
|
6
|
Zahn MJ, Rankin S, McCullough JLK, Koblitz JC, Archer F, Rasmussen MH, Laidre KL. Acoustic differentiation and classification of wild belugas and narwhals using echolocation clicks. Sci Rep 2021; 11:22141. [PMID: 34772963 PMCID: PMC8589986 DOI: 10.1038/s41598-021-01441-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
Belugas (Delphinapterus leucas) and narwhals (Monodon monoceros) are highly social Arctic toothed whales with large vocal repertoires and similar acoustic profiles. Passive Acoustic Monitoring (PAM) that uses multiple hydrophones over large spatiotemporal scales has been a primary method to study their populations, particularly in response to rapid climate change and increasing underwater noise. This study marks the first acoustic comparison between wild belugas and narwhals from the same location and reveals that they can be acoustically differentiated and classified solely by echolocation clicks. Acoustic recordings were made in the pack ice of Baffin Bay, West Greenland, during 2013. Multivariate analyses and Random Forests classification models were applied to eighty-one single-species acoustic events comprised of numerous echolocation clicks. Results demonstrate a significant difference between species' acoustic parameters where beluga echolocation was distinguished by higher frequency content, evidenced by higher peak frequencies, center frequencies, and frequency minimums and maximums. Spectral peaks, troughs, and center frequencies for beluga clicks were generally > 60 kHz and narwhal clicks < 60 kHz with overlap between 40-60 kHz. Classification model predictive performance was strong with an overall correct classification rate of 97.5% for the best model. The most important predictors for species assignment were defined by peaks and notches in frequency spectra. Our results provide strong support for the use of echolocation in PAM efforts to differentiate belugas and narwhals acoustically.
Collapse
Affiliation(s)
- Marie J Zahn
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, 98105, USA.
| | - Shannon Rankin
- Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Jennifer L K McCullough
- Pacific Islands Fisheries Science Center, NOAA, 1845 Wasp Boulevard, Building 176, Honolulu, HI, 96818, USA
| | - Jens C Koblitz
- Max Planck Institute of Animal Behavior, Advanced Research Technology Unit, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Frederick Archer
- Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | | | - Kristin L Laidre
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, 98105, USA
- Polar Science Center, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA, 98105, USA
| |
Collapse
|
7
|
Zahn MJ, Laidre KL, Stilz P, Rasmussen MH, Koblitz JC. Vertical sonar beam width and scanning behavior of wild belugas (Delphinapterus leucas) in West Greenland. PLoS One 2021; 16:e0257054. [PMID: 34499678 PMCID: PMC8428689 DOI: 10.1371/journal.pone.0257054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/22/2021] [Indexed: 11/18/2022] Open
Abstract
Echolocation signals of wild beluga whales (Delphinapterus leucas) were recorded in 2013 using a vertical, linear 16-hydrophone array at two locations in the pack ice of Baffin Bay, West Greenland. Individual whales were localized for 4:42 minutes of 1:04 hours of recordings. Clicks centered on the recording equipment (i.e. on-axis clicks) were isolated to calculate sonar parameters. We report the first sonar beam estimate of in situ recordings of wild belugas with an average -3 dB asymmetrical vertical beam width of 5.4°, showing a wider ventral beam. This narrow beam width is consistent with estimates from captive belugas; however, our results indicate that beluga sonar beams may not be symmetrical and may differ in wild and captive contexts. The mean apparent source level for on-axis clicks was 212 dB pp re 1 μPa and whales were shown to vertically scan the array from 120 meters distance. Our findings support the hypothesis that highly directional sonar beams and high source levels are an evolutionary adaptation for Arctic odontocetes to reduce unwanted surface echoes from sea ice (i.e., acoustic clutter) and effectively navigate through leads in the pack ice (e.g., find breathing holes). These results provide the first baseline beluga sonar metrics from free-ranging animals using a hydrophone array and are important for acoustic programs throughout the Arctic, particularly for acoustic classification between belugas and narwhals (Monodon monoceros).
Collapse
Affiliation(s)
- Marie J Zahn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Kristin L Laidre
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America.,Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, United States of America
| | - Peter Stilz
- Animal Physiology, Institute for Neurobiology, University of Tübingen, Tübingen, Germany
| | | | - Jens C Koblitz
- Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Descamps S, Ramírez F. Species and spatial variation in the effects of sea ice on Arctic seabird populations. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13389] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Francisco Ramírez
- Institut de Ciències del Mar (ICM‐CSIC) Department of Renewable Marine Resources Passeig Maritim de la Barceloneta Barcelona Spain
| |
Collapse
|
9
|
van Weelden C, Towers JR, Bosker T. Impacts of climate change on cetacean distribution, habitat and migration. CLIMATE CHANGE ECOLOGY 2021. [DOI: 10.1016/j.ecochg.2021.100009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Csapó HK, Grabowski M, Węsławski JM. Coming home - Boreal ecosystem claims Atlantic sector of the Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144817. [PMID: 33736126 DOI: 10.1016/j.scitotenv.2020.144817] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 05/22/2023]
Abstract
The Atlantification of the European Arctic has been an increasingly discussed topic in polar science over the past two decades. The alteration of local marine ecosystems towards a more temperate state and the appearance/range expansion of subarctic-boreal species at higher latitudes is a complex phenomenon induced mainly by the changing properties of Atlantic water (AW) transported from the south. Areas under the direct influence of AW experience biological Atlantification of their communities on all trophic levels, resulting in the growing complexity of arctic food webs. Here, besides summarising the main documented messages of biological Atlantification, we take a critical view on the threat posed on Arctic marine communities. We take into account the formation of the Arctic marine fauna, as well as the nature of (re)colonisation of Arctic sites by boreal organisms when evaluating the extent of the issue. We take a look at the history of Arctic colonisations by boreal organisms in an attempt to identify 'neonative taxa returning home'. We also highlight the role of floating plastic debris as an 'instrument from the toolbox of the Anthropocene' aiding the distribution of marine taxa.
Collapse
Affiliation(s)
- Hedvig Kriszta Csapó
- Polish Academy of Sciences, Institute of Oceanology, 81-712 Sopot, Poland; University of Lodz, Faculty of Biology & Environmental Protection, Department of Invertebrate Zoology & Hydrobiology, 90-237 Lodz, Poland.
| | - Michał Grabowski
- University of Lodz, Faculty of Biology & Environmental Protection, Department of Invertebrate Zoology & Hydrobiology, 90-237 Lodz, Poland
| | | |
Collapse
|
11
|
Pecuchet L, Blanchet MA, Frainer A, Husson B, Jørgensen LL, Kortsch S, Primicerio R. Novel feeding interactions amplify the impact of species redistribution on an Arctic food web. GLOBAL CHANGE BIOLOGY 2020; 26:4894-4906. [PMID: 32479687 DOI: 10.1111/gcb.15196] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Species are redistributing globally in response to climate warming, impacting ecosystem functions and services. In the Barents Sea, poleward expansion of boreal species and a decreased abundance of Arctic species are causing a rapid borealization of the Arctic communities. This borealization might have profound consequences on the Arctic food web by creating novel feeding interactions between previously non co-occurring species. An early identification of new feeding links is crucial to predict their ecological impact. However, detection by traditional approaches, including stomach content and isotope analyses, although fundamental, cannot cope with the speed of change observed in the region, nor with the urgency of understanding the consequences of species redistribution for the marine ecosystem. In this study, we used an extensive food web (metaweb) with nearly 2,500 documented feeding links between 239 taxa coupled with a trait data set to predict novel feeding interactions and to quantify their potential impact on Arctic food web structure. We found that feeding interactions are largely determined by the body size of interacting species, although species foraging habitat and metabolic type are also important predictors. Further, we found that all boreal species will have at least one potential resource in the Arctic region should they redistribute therein. During 2014-2017, 11 boreal species were observed in the Arctic region of the Barents Sea. These incoming species, which are all generalists, change the structural properties of the Arctic food web by increasing connectance and decreasing modularity. In addition, these boreal species are predicted to initiate novel feeding interactions with the Arctic residents, which might amplify their impact on Arctic food web structure affecting ecosystem functioning and vulnerability. Under the ongoing species redistribution caused by environmental change, we propose merging a trait-based approach with ecological network analysis to efficiently predict the impacts of range-shifting species on food webs.
Collapse
Affiliation(s)
- Laurene Pecuchet
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Marie-Anne Blanchet
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - André Frainer
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute for Nature Research (NINA), Tromsø, Norway
| | | | | | - Susanne Kortsch
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland
| | - Raul Primicerio
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Villanger GD, Kovacs KM, Lydersen C, Haug LS, Sabaredzovic A, Jenssen BM, Routti H. Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard - A comparison of concentrations in plasma sampled 15 years apart. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114497. [PMID: 32302893 DOI: 10.1016/j.envpol.2020.114497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 03/28/2020] [Accepted: 03/29/2020] [Indexed: 06/11/2023]
Abstract
The objective of the present study was to investigate recent concentrations of perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard and compare them to concentrations found in white whales sampled from that same area 15 years ago. Plasma collected from live-captured white whales from two time periods (2013-2014, n = 9, and 1996-2001, n = 11) were analysed for 19 different PFASs. The 11 PFASs detected included seven C8-C14 perfluoroalkyl carboxylates (PFCAs) and three C6-C8 perfluoroalkyl sulfonates (PFSAs) as well as perfluorooctane sulfonamide (FOSA). Recent plasma concentrations (2013-2014) of the dominant PFAS in white whales, perfluorooctane sulfonate (PFOS; geometric mean = 22.8 ng/mL), was close to an order of magnitude lower than reported in polar bears (Ursus maritimus) from Svalbard. PFOS concentrations in white whales were about half the concentrations in harbour (Phoca vitulina) and ringed (Pusa hispida) seals, similar to hooded seals (Cystophora cristata) and higher than in walruses (Odobenus rosmarus) from that same area. From 1996 to 2001 to 2013-2014, plasma concentrations of PFOS decreased by 44%, whereas four C9-12 PFCAs and total PFCAs increased by 35-141%. These results follow a similar trend to what has been reported in other studies of Arctic marine mammals from Svalbard. The most dramatic change has been the decline of PFOS concentrations since 2000, corresponding to the production phase-out of PFOS and related compounds in many countries around the year 2000 and a global restriction on these substances in 2009. Still, the continued dominance of PFOS in white whales, and increasing concentration trends for several PFCAs, even though exposure is relatively low, calls for continued monitoring of concentrations of both PFCAs and PFSAs and investigation of biological effects.
Collapse
Affiliation(s)
- Gro D Villanger
- Norwegian Institute of Public Health, Oslo, Norway; Norwegian Polar Institute, Tromsø, Norway.
| | | | | | - Line S Haug
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Bjørn M Jenssen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | | |
Collapse
|
13
|
Vacquié-Garcia J, Lydersen C, Marques TA, Andersen M, Kovacs KM. First abundance estimate for white whales Delphinapterus leucas in Svalbard, Norway. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Svalbard Archipelago (Norway) is experiencing rapid declines in the seasonal duration and extent of sea-ice cover, and local tidewater glaciers are melting. These environmental changes represent a threat to ice-associated species in the region, including white whales Delphinapterus leucas. However, no estimates of stock size or trends are available for this stock. An aerial survey was conducted during the summer of 2018, covering the coastlines of all major islands in Svalbard, as well fjords and open ocean areas. A total count was attempted for the coastlines, while coverage of the fjords and open ocean areas was designed as distance-sampling line transects. In total, 265 white whales were detected in 22 groups along the 4965 km of coastline coverage. No whales were observed on fjord (1481 km) or open ocean transects (535 km). After correcting for surface availability using behavioural data from the same area (in summer) and making adjustments for small areas not flown during the survey, the stock size was estimated to be 549 individuals (95% CI: 436%%CONV_ERR%%723). This estimate is surprisingly low given that this species is one of the most frequently observed cetaceans in the area, but it confirms suspicions based on difficulties in finding animals when operating white whale tagging programmes over the past decade. This first population estimate is important in the context of the rapid environmental change taking place in the Arctic and for providing a baseline for comparison with future estimates.
Collapse
Affiliation(s)
| | - C Lydersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - TA Marques
- Centre for Research into Ecological & Environmental Modelling (Scottish Oceans Institute), Buchanan Gardens, St Andrews, KY16 9LY, UK
- Departamento de Biologia Animal, Centro de Estatística e Aplicações da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - M Andersen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - KM Kovacs
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| |
Collapse
|
14
|
Hamilton CD, Vacquié-Garcia J, Kovacs KM, Ims RA, Kohler J, Lydersen C. Contrasting changes in space use induced by climate change in two Arctic marine mammal species. Biol Lett 2019; 15:20180834. [PMID: 30836888 DOI: 10.1098/rsbl.2018.0834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Global warming is inducing major environmental changes in the Arctic. These changes will differentially affect species owing to differences in climate sensitivity and behavioural plasticity. Arctic endemic marine mammals are expected to be impacted significantly by ongoing changes in their key habitats owing to their long life cycles and dependence on ice. Herein, unique biotelemetry datasets for ringed seals (RS; Pusa hispida) and white whales (WW; Delphinapterus leucas) from Svalbard, Norway, spanning two decades (1995-2016) are used to investigate how these species have responded to reduced sea-ice cover and increased Atlantic water influxes. Tidal glacier fronts were traditionally important foraging areas for both species. Following a period with dramatic environmental change, RS now spend significantly more time near tidal glaciers, where Arctic prey presumably still concentrate. Conversely, WW spend significantly less time near tidal glacier fronts and display spatial patterns that suggest that they are foraging on Atlantic fishes that are new to the region. Differences in levels of dietary specialization and overall behavioural plasticity are likely reasons for similar environmental pressures affecting these species differently. Climate change adjustments through behavioural plasticity will be vital for species survival in the Arctic, given the rapidity of change and limited dispersal options.
Collapse
Affiliation(s)
| | | | - Kit M Kovacs
- 1 Norwegian Polar Institute, Fram Centre , Tromsø , Norway
| | - Rolf A Ims
- 2 University of Tromsø, The Arctic University of Norway , Tromsø , Norway
| | - Jack Kohler
- 1 Norwegian Polar Institute, Fram Centre , Tromsø , Norway
| | | |
Collapse
|