1
|
Martín J, Rodríguez-Ruiz G, Navarro-Castilla Á, Barja I, López P. Blind date: female fossorial amphisbaenians prefer scent marks of large and healthy males. Integr Zool 2024; 19:1018-1033. [PMID: 38247017 DOI: 10.1111/1749-4877.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Selecting a good mate is a decision with important fitness consequences. For this reason, mate choice has promoted the evolution of sexual ornaments signaling the quality of an individual. In fossorial animals, inhabiting visually restricted underground environments, chemical senses should be very important for mate choice. We examined whether sexual chemical signals (substrate scent marks) produced by males of the Iberian worm lizard, Blanus cinereus, a strictly fossorial blind amphisbaenian, provide information to females on morphological traits and health state. We administered corticosterone (CORT) to males simulating a continuous stressor affecting their health. Females preferred settling at sites scent-marked by males in comparison with similar sites with female scent or unmarked sites, but the attractiveness of males' scent differed between individuals. Females preferred scent marks of larger/older males and with a higher immune response, while their body condition and CORT treatment were unrelated to female preferences. Chemical analyses showed that proportions of some compounds in precloacal secretions of males (used to produce scent marks) were correlated with the morphological (body size) and health state (immune response and body condition, but not CORT treatment) of these males. These results suggest that females may make site-selection decisions based on assessing the chemical characteristics of males' scent marks, which were reliably related to some of the traits of the male that produced the scent. Therefore, females might use chemical senses to increase the opportunities to find and mate with males of high quality, coping with the restrictions of the subterranean environment.
Collapse
Affiliation(s)
- José Martín
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Álvaro Navarro-Castilla
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, Madrid, Spain
| | - Pilar López
- Departmento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
2
|
Martín J, Rodríguez-Ruiz G, Cuervo JJ. Coping with drought? The hidden microhabitat selection and underground movements of amphisbaenians under summer drought conditions. Curr Zool 2024; 70:647-658. [PMID: 39463696 PMCID: PMC11502144 DOI: 10.1093/cz/zoad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/19/2023] [Indexed: 10/29/2024] Open
Abstract
Habitat selection is a dynamic process that depends on many environmental variables that can vary with weather conditions. This is important because, within a context of global change, extreme weather events, such as severe droughts, are predicted to become more frequent. We examined the patterns of microhabitat selection and underground movements (using PIT-tag telemetry) of a strictly fossorial reptile, the North African checkboard amphisbaenian Trogonophis wiegmanni, during the summer drought period. We aimed to test whether changes in strategies of habitat use and movements could allow this amphisbaenian to cope with unfavorable weather. We found that during the summer drought period, T. wiegmanni did not use the microhabitats in relationship to their availability, but particularly selected sites with high abundance of rocks but also areas under a high cover of bushes, where environmental conditions were more favorable. We also found, using PIT-tag telemetry, that the numbers of T. wiegmanni individuals located under rocks and their activity (number of days with movements) decreased largely in summer. However, the animals were not entirely inactive, but, especially males were active below the ground under bushes and made some relatively long underground hidden movements between favorable areas.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - José Javier Cuervo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
3
|
Tiatragul S, Brennan IG, Broady ES, Keogh JS. Australia's hidden radiation: Phylogenomics analysis reveals rapid Miocene radiation of blindsnakes. Mol Phylogenet Evol 2023; 185:107812. [PMID: 37207892 DOI: 10.1016/j.ympev.2023.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/24/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Affiliation(s)
- Sarin Tiatragul
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra 2601, ACT, Australia.
| | - Ian G Brennan
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra 2601, ACT, Australia.
| | - Elizabeth S Broady
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra 2601, ACT, Australia.
| | - J Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra 2601, ACT, Australia.
| |
Collapse
|
4
|
Martín J, Ortega J, García-Roa R, Rodríguez-Ruiz G, Pérez-Cembranos A, Pérez-Mellado V. Coping with drought? Effects of extended drought conditions on soil invertebrate prey and diet selection by a fossorial amphisbaenian reptile. Curr Zool 2023; 69:367-376. [PMID: 37614919 PMCID: PMC10443610 DOI: 10.1093/cz/zoac056] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/15/2022] [Indexed: 08/25/2023] Open
Abstract
Arid climates are characterized by a summer drought period to which animals seem adapted. However, in some years, the drought can extend for unusually longer periods. Examining the effects of these current extreme weather events on biodiversity can help to understand the effects of climate change, as models predict an increase in drought severity. Here, we examined the effects of "unusual" extended drought on soil invertebrate prey availability and on diet composition (based on fecal contents) and diet selection of a fossorial amphisbaenian, the checkerboard worm lizard Trogonophis wiegmanni. Weather data show interannual variations in summer drought duration. The abundance and diversity of soil invertebrates in spring were high, and similar to those found in a "normal" early autumn, after some rain had ended with the summer drought. In contrast, in years with "unusual" extended drought, abundance, and diversity of soil invertebrates in early autumn were very low. Also, there were seasonal changes in amphisbaenians' diet; in autumn with drought, prey diversity, and niche breadth decreased with respect to spring and autumns after some rain had fallen. Amphisbaenians did not eat prey at random in any season, but made some changes in prey selection that may result from drought-related restrictions in prey availability. Finally, in spite that amphisbaenians showed some feeding flexibility, their body condition was lower in autumn than in spring, and much lower in autumn with drought. If extended drought became the norm in the future, amphisbaenians might suffer important negative effects for their health state.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Jesús Ortega
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Roberto García-Roa
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
- Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | | | | |
Collapse
|
5
|
Hsieh S, Łaska W, Uchman A. Intermittent and temporally variable bioturbation by some terrestrial invertebrates: implications for ichnology. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:11. [PMID: 36881175 PMCID: PMC9992032 DOI: 10.1007/s00114-023-01833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 03/08/2023]
Abstract
Bedding planes and vertical sections of many sedimentary rock formations reveal bioturbation structures, including burrows, produced by diverse animal taxa at different rates and durations. These variables are not directly measurable in the fossil record, but neoichnological observations and experiments provide informative analogues. Comparable to marine invertebrates from many phyla, a captive beetle larva burrowing over 2 weeks showed high rates of sediment disturbance within the first 100 h but slower rates afterwards. Tunnelling by earthworms and adult dung beetles is also inconstant-displacement of lithic material alternates with organic matter displacement, often driven by food availability with more locomotion when hungry. High rates of bioturbation, as with locomotion generally, result from internal and external drives, slowing down or stopping when needs are filled. Like other processes affecting sediment deposition and erosion, rates can drastically differ based on measured timescale, with short bursts of activity followed by hiatuses, concentrated in various seasons and ontogenetic stages for particular species. Assumptions of constant velocities within movement paths, left as traces afterward, may not apply in many cases. Arguments about energetic efficiency or optimal foraging based on ichnofossils have often overlooked these and related issues. Single bioturbation rates from short-term experiments in captivity may not be comparable to rates measured at an ecosystem level over a year or generalized across multiple time scales where conditions differ even for the same species. Neoichnological work, with an understanding of lifetime variabilities in bioturbation and their drivers, helps connect ichnology with behavioural biology and movement ecology.
Collapse
Affiliation(s)
- Shannon Hsieh
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.
| | - Weronika Łaska
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland.,Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, 101, 02-089, Żwirki i Wigury, Poland
| | - Alfred Uchman
- Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387, Kraków, Poland
| |
Collapse
|
6
|
Recio P, Rodríguez-Ruiz G, Sannolo M, Cuervo JJ, López P, Martín J. Conspecific scent marks may influence underground site selection by a fossorial reptile. Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-023-03305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Abstract
Conspecific cues often provide social information on habitat quality that is considered when deciding to settle at a specific site. The type of sensory cues useful for this will depend on the environment. For amphisbaenians, reptiles adapted to an underground life with highly reduced sight, chemoreception is especially useful to recognize conspecifics. Here, we first analyzed the lipophilic compounds from precloacal gland secretions of the amphisbaenian Blanus cinereus, showing that there were sex- and size-related variations in the proportions of the three major compounds. Then, we tested in the laboratory whether there was an underground site selection based on conspecific chemical cues (substrate scent marks) in two different contexts. In loose substrates, both male and female amphisbaenians tended to choose first the scent-marked substrates more often when the individual that produced the scent, independently of its sex, was relatively larger than the focal individual. In contrast, inside semi-permanent galleries, males, but not females, chose the scent-marked gallery more often when the scent donor, independently of its sex, was relatively smaller. These results suggest that the proportions of compounds in scent marks may allow amphisbaenians to estimate the body size of the producer and that this information affects their site selection decisions. However, the different substrate-dependent responses suggest a different meaning and usefulness of scent marks depending on the context.
Significance statement
The presence of your conspecific in a site may indicate that this is a “quality” site to live in. If you are blind and live underground, smell is one of the best options for detecting conspecifics and assessing how good are your surroundings. Here, we test whether a blind amphisbaenian reptile that spends its life buried in sandy substrates uses conspecific chemical stimuli to choose where to settle. We found that this decision is influenced by the microhabitat type, sex, and the size difference between the individual that sniffs and the producer of the scent. Amphisbaenians seem to detect and assess conspecific traits based on the differences in compounds in their odors. Therefore, using conspecific scent to assess habitat quality may help fossorial animals to live underground.
Collapse
|
7
|
Martín J, Barja I, Rodríguez-Ruiz G, Recio P, Cuervo JJ. Hidden but Potentially Stressed: A Non-Invasive Technique to Quantify Fecal Glucocorticoid Levels in a Fossorial Amphisbaenian Reptile. Animals (Basel) 2022; 13:109. [PMID: 36611718 PMCID: PMC9817767 DOI: 10.3390/ani13010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
To understand wildlife responses to the changing environment, it is useful to examine their physiological responses and particularly their endocrine status. Here, we validated an enzyme immunoassay (EIA) to non-invasively quantify fecal corticosterone metabolites (FCM) in the fossorial amphisbaenian reptile Trogonophis wiegmanni from North Africa. We supplemented animals assigned to the treatment group with corticosterone dissolved in oil applied non-invasively on the skin for several days, while control groups received the oil-alone solution. Fresh feces were collected at the end of the supplementation period, and FCM levels were quantified by an EIA. Basal FCM levels were similar for both treatments and increased at the end of the test, but FCM increased significantly more in corticosterone-treated animals. A further examination of FCM levels in a wild population of this amphisbaenian did not find overall sexual, size or seasonal differences but showed a high range of variation among individuals. This suggests that different uncontrolled intrinsic or local environmental variables might increase the circulating glucocorticoid levels of different individuals. Our results confirmed the suitability of EIA for analyzing physiological changes in FCM in this amphisbaenian species. This technique may be useful for understanding and remediating the little-explored potential stressors of the soil environment that may negatively affect the health state of fossorial reptiles.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unit of Zoology, Department of Biology, Faculty of Sciences, Autonomous University of Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Autonomous University of Madrid, C/Darwin 2, 28049 Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Pablo Recio
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - José Javier Cuervo
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
8
|
Cabral H, Cacciali P, Santana DJ. Evolution of the rostral scale and mimicry in the genus Xenodon Boie, 1826 (Serpentes: Dipsadidae: Xenodontinae). Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Snakes are a stimulating life form from an evolutionary perspective. Despite the basic morphological body shape (limbless, with a tubular body), these vertebrates are extremely diverse. The Neotropical region is one of the most diverse regions for snakes in the world, with >650 known species. Within this great diversity, the genus Xenodon includes 12 species with interesting adaptations to terrestrial and semi-fossorial habitats. Members of this genus are mostly diurnal and terrestrial, feed mainly on anurans and exhibit Batesian mimicry of venomous snakes of the genera Bothrops or Micrurus. Here, through phylogenetic analysis and ancestral state estimation, we explore the evolution of the rostral scale and mimicry within the genus Xenodon. Our results suggest that the ancestral lineage of Xenodon had a rounded rostral scale and exhibited Bothrops mimicry. The evolution of the rostral scale in Xenodon might be related to abiotic factors, as an adaptation for open and forested habitats, and mimicry is likely to be related to biotic factors, as a defensive strategy resembling those of venomous snakes.
Collapse
Affiliation(s)
- Hugo Cabral
- Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista , São José do Rio Preto, SP , Brazil
- Instituto de Investigación Biológica del Paraguay , Del Escudo 1607, Asunción , Paraguay
- Asociación Guyra Paraguay , Avenida Coronel Carlos Bóveda, Parque Asunción Verde, Viñas Cué , Paraguay
| | - Pier Cacciali
- Instituto de Investigación Biológica del Paraguay , Del Escudo 1607, Asunción , Paraguay
- Asociación Guyra Paraguay , Avenida Coronel Carlos Bóveda, Parque Asunción Verde, Viñas Cué , Paraguay
| | - Diego José Santana
- Mapinguari Lab, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul , 79002-970, Campo Grande, MS , Brazil
| |
Collapse
|
9
|
Martín J, Barja I, Rodríguez-Ruiz G, Recio P, García LV. Soil pollution by heavy metals correlates with levels of faecal glucocorticoid metabolites of a fossorial amphisbaenian reptile. CONSERVATION PHYSIOLOGY 2021; 9:coab085. [PMID: 34804536 PMCID: PMC8599815 DOI: 10.1093/conphys/coab085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Soil degradation may have strong negative consequences for soil biodiversity, but these potential effects are understudied and poorly understood. Concentration of nesting seabirds may be a source of soil pollution by heavy metals, which are incorporated into the food chain and may have toxicological effects in vertebrates, especially in fossorial animals with low dispersal ability. We examined whether contamination by heavy metals, derived from seagull depositions, and other soil characteristics, may affect the levels of faecal glucocorticoid metabolites (as a potential indicator of physiological stress) of the fossorial amphisbaenian reptile Trogonophis wiegmanni. We found a relationship between soil pollution by heavy metals and increased levels of faecal corticosterone metabolite of the amphisbaenians that live buried in those soils. This can be due to the strong endocrine disruption effect of heavy metals. In addition, there was an independent effect of the soil texture, with amphisbaenians showing higher levels of faecal corticosterone metabolite in soils with less sand and more silt and clay, which are more energetically costly to dig. Long-term exposure to high glucocorticoid levels might have serious effects on health state and fitness of fossorial animals that may be unnoticed. Our study emphasizes that, to prevent future conservation problems, we need to perform periodic surveys on the physiological health state of the little-known subterranean biodiversity.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel Barja
- Etho-Physiology Group, Unidad de Zoología, Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pablo Recio
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Luis V García
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| |
Collapse
|
10
|
Martín J, Recio P, Rodríguez-Ruiz G, Barja I, Gutiérrez E, García LV. Relationships between soil pollution by heavy metals and melanin-dependent coloration of a fossorial amphisbaenian reptile. Integr Zool 2021; 17:596-607. [PMID: 34047065 DOI: 10.1111/1749-4877.12562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Melanin is the basis of coloration in many animals, and although it is often used in communication, thermoregulation, or camouflage, melanin has many other physiological functions. For example, in polluted habitats, melanin can have a detoxifying function. Melanic coloration would help to sequester in the skin the heavy metal contaminants from inside the body, which will be expelled to the exterior when the skin is sloughed. Moreover, animals should have evolved more melanic colorations in more polluted habitats ("industrial melanism" hypothesis). We examined whether the fossorial amphisbaenian reptile, Trogonophis wiegmanni, is able to eliminate heavy metals, derived from soil pollution by seagull depositions, through sloughing its skin. Our results suggest a covariation between levels of soil pollution by heavy metals and the concentration of heavy metals in the sloughed skins of amphisbaenians. This suggests that amphisbaenians may expel heavy metals from their bodies when they slough the skins. We also tested whether amphisbaenians inhabiting soils with higher levels of heavy metal pollution had darker (melanin-dependent) body colorations. However, contrary to predictions from the "industrial melanization" hypothesis, we found a negative relationship between soil pollution and proportions of melanic coloration. This contradictory result could, however, be explained because heavy metals have endocrine disruption effects that increase physiological stress, and higher stress levels could result in decreased melanogenesis. We suggest that although amphisbaenians might have some detoxifying mechanism linked to melanin in the skin, this process might be negatively affected by stress and result ineffective under conditions of high soil pollution.
Collapse
Affiliation(s)
- José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Pablo Recio
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Gonzalo Rodríguez-Ruiz
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Isabel Barja
- Departamento de Zoología, Facultad de Biología, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Eduardo Gutiérrez
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| | - Luis V García
- Departamento de Biogeoquímica, Ecología Vegetal y Microbiana, Instituto de Recursos Naturales y Agrobiología de Sevilla, CSIC, Sevilla, Spain
| |
Collapse
|