1
|
Barbosa JMG, Filho NRA. The human volatilome meets cancer diagnostics: past, present, and future of noninvasive applications. Metabolomics 2024; 20:113. [PMID: 39375265 DOI: 10.1007/s11306-024-02180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Cancer is a significant public health problem, causing dozens of millions of deaths annually. New cancer screening programs are urgently needed for early cancer detection, as this approach can improve treatment outcomes and increase patient survival. The search for affordable, noninvasive, and highly accurate cancer detection methods revealed a valuable source of tumor-derived metabolites in the human metabolome through the exploration of volatile organic compounds (VOCs) in noninvasive biofluids. AIM OF REVIEW This review discusses volatilomics-based approaches for cancer detection using noninvasive biomatrices (breath, saliva, skin secretions, urine, feces, and earwax). We presented the historical background, the latest approaches, and the required stages for clinical validation of volatilomics-based methods, which are still lacking in terms of making noninvasive methods available and widespread to the population. Furthermore, insights into the usefulness and challenges of volatilomics in clinical implementation steps for each biofluid are highlighted. KEY SCIENTIFIC CONCEPTS OF REVIEW We outline the methodologies for using noninvasive biomatrices with up-and-coming clinical applications in cancer diagnostics. Several challenges and advantages associated with the use of each biomatrix are discussed, aiming at encouraging the scientific community to strengthen efforts toward the necessary steps to speed up the clinical translation of volatile-based cancer detection methods, as well as discussing in favor of (i) hybrid applications (i.e., using more than one biomatrix) to describe metabolite modulations that can be "cancer volatile fingerprints" and (ii) in multi-omics approaches integrating genomics, transcriptomics, and proteomics into the volatilomic data, which might be a breakthrough for diagnostic purposes, onco-pathway assessment, and biomarker validations.
Collapse
Affiliation(s)
- João Marcos G Barbosa
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| | - Nelson R Antoniosi Filho
- Laboratório de Métodos de Extração E Separação (LAMES), Instituto de Química (IQ), Universidade Federal de Goiás (UFG), Campus II - Samambaia, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
2
|
Bayona C, Wrona M, Ranđelović T, Nerín C, Salafranca J, Ochoa I. Development of an organ-on-chip model for the detection of volatile organic compounds as potential biomarkers of tumour progression. Biofabrication 2024; 16:045002. [PMID: 38866002 DOI: 10.1088/1758-5090/ad5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Early detection of tumours remains a significant challenge due to their invasive nature and the limitations of current monitoring techniques. Liquid biopsies have emerged as a minimally invasive diagnostic approach, wherein volatile organic compounds (VOCs) show potential as compelling candidates. However, distinguishing tumour-specific VOCs is difficult due to the presence of gases from non-tumour tissues and environmental factors. Therefore, it is essential to develop preclinical models that accurately mimic the intricate tumour microenvironment to induce cellular metabolic changes and secretion of tumour-associated VOCs. In this study, a microfluidic device was used to recreate the ischaemic environment within solid tumours for the detection of tumour-derived VOCs. The system represents a significant advance in understanding the role of VOCs as biomarkers for early tumour detection and holds the potential to improve patient prognosis; particularly for inaccessible and rapidly progressing tumours such as glioblastoma.
Collapse
Affiliation(s)
- Clara Bayona
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Magdalena Wrona
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Teodora Ranđelović
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Cristina Nerín
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Jesús Salafranca
- Instituto de Investigación en Ingeniería de Aragón (I3A), Escuela de Ingeniería y Arquitectura (EINA), Departamento de Química Analítica, Universidad de Zaragoza, María de Luna 3 (Edificio Torres Quevedo), 50018 Zaragoza, Spain
| | - Ignacio Ochoa
- Tissue Microenvironment (TME) Lab, Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Le T, Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023; 265:124767. [PMID: 37327663 DOI: 10.1016/j.talanta.2023.124767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
Although there are new approaches in both cancer treatment and diagnosis, overall mortality is a major concern. New technologies have attempted to look at breath volatile organic compounds (VOCs) detection to diagnose cancer. Gas Chromatography and Mass Spectrometry (GC - MS) have remained the gold standard of VOC analysis for decades, but it has limitations in differentiating VOCs between cancer subtypes. To increase efficacy and accuracy, new methods to analyze these breath VOCs have been introduced, such as Solid Phase Microextraction/Gas Chromatography-Mass Spectrometry (SPME/GC-MS), Selected Ion Flow Tube - Mass Spectrometry (SIFT-MS), Proton Transfer Reaction - Mass Spectrometry (PRT-MS), Ion Mobility Spectrometry (IMS), and Colorimetric Sensors. This article highlights new technologies that have been studied and applied in the detection and quantification of breath VOCs for possible cancer diagnoses.
Collapse
Affiliation(s)
- Tien Le
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States
| | - Ronny Priefer
- Massachusetts College of Pharmacy and Health Sciences University, Boston, Ma, United States.
| |
Collapse
|
4
|
Myridakis A, Wen Q, Boshier PR, Parker AG, Belluomo I, Handakas E, Hanna GB. Global Urinary Volatolomics with (GC×)GC-TOF-MS. Anal Chem 2023; 95:17170-17176. [PMID: 37967208 PMCID: PMC10688225 DOI: 10.1021/acs.analchem.3c02523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 11/17/2023]
Abstract
Urinary volatolomics offers a noninvasive approach for disease detection and monitoring. Herein we present an improved methodology for global volatolomic profiling. Wide coverage was achieved by utilizing a multiphase sorbent for volatile organic compound (VOC) extraction. A single, midpolar column gas chromatography (GC) assay yielded substantially higher numbers of monitored VOCs compared to our previously reported single-sorbent method. Multidimensional GC (GC×GC) enhanced further biomarker discovery while data analysis was simplified by using a tile-based approach. At the same time, the required urine volume was reduced 5-fold from 2 to 0.4 mL. The applicability of the methodology was demonstrated in a pancreatic ductal adenocarcinoma cohort where previous findings were confirmed while a series of additional VOCs with diagnostic potential were discovered.
Collapse
Affiliation(s)
- Antonis Myridakis
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Centre
for Pollution Research & Policy, Environmental Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Qing Wen
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
- Department
of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Piers R. Boshier
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Aaron G. Parker
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Ilaria Belluomo
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| | - Evangelos Handakas
- Medical
Research Council Centre for Environment and Health, School of Public
Health, Imperial College London, London W12 0BZ, United Kingdom
| | - George B. Hanna
- Department
of Surgery and Cancer, Imperial College
London, London W12 0HS, United
Kingdom
| |
Collapse
|
5
|
Vassilenko V, Moura PC, Raposo M. Diagnosis of Carcinogenic Pathologies through Breath Biomarkers: Present and Future Trends. Biomedicines 2023; 11:3029. [PMID: 38002028 PMCID: PMC10669878 DOI: 10.3390/biomedicines11113029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The assessment of volatile breath biomarkers has been targeted with a lot of interest by the scientific and medical communities during the past decades due to their suitability for an accurate, painless, non-invasive, and rapid diagnosis of health states and pathological conditions. This paper reviews the most relevant bibliographic sources aiming to gather the most pertinent volatile organic compounds (VOCs) already identified as putative cancer biomarkers. Here, a total of 265 VOCs and the respective bibliographic sources are addressed regarding their scientifically proven suitability to diagnose a total of six carcinogenic diseases, namely lung, breast, gastric, colorectal, prostate, and squamous cell (oesophageal and laryngeal) cancers. In addition, future trends in the identification of five other forms of cancer, such as bladder, liver, ovarian, pancreatic, and thyroid cancer, through perspective volatile breath biomarkers are equally presented and discussed. All the results already achieved in the detection, identification, and quantification of endogenous metabolites produced by all kinds of normal and abnormal processes in the human body denote a promising and auspicious future for this alternative diagnostic tool, whose future passes by the development and employment of newer and more accurate collection and analysis techniques, and the certification for utilisation in real clinical scenarios.
Collapse
Affiliation(s)
- Valentina Vassilenko
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | - Pedro Catalão Moura
- Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, NOVA University of Lisbon, Campus FCT-UNL, 2829-516 Caparica, Portugal;
| | | |
Collapse
|
6
|
Chuchueva N, Carta F, Nguyen HN, Luevano J, Lewis IA, Rios-Castillo I, Fanos V, King E, Swistushkin V, Reshetov I, Rusetsky Y, Shestakova K, Moskaleva N, Mariani C, Castillo-Carniglia A, Grapov D, Fahrmann J, La Frano MR, Puxeddu R, Appolonova SA, Brito A. Metabolomics of head and neck cancer in biofluids: an integrative systematic review. Metabolomics 2023; 19:77. [PMID: 37644353 DOI: 10.1007/s11306-023-02038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/27/2023] [Indexed: 08/31/2023]
Abstract
INTRODUCTION Head and neck cancer (HNC) is the fifth most common cancer globally. Diagnosis at early stages are critical to reduce mortality and improve functional and esthetic outcomes associated with HNC. Metabolomics is a promising approach for discovery of biomarkers and metabolic pathways for risk assessment and early detection of HNC. OBJECTIVES To summarize and consolidate the available evidence on metabolomics and HNC in plasma/serum, saliva, and urine. METHODS A systematic search of experimental research was executed using PubMed and Web of Science. Available data on areas under the curve was extracted. Metabolic pathway enrichment analysis were performed to identify metabolic pathways altered in HNC. Fifty-four studies were eligible for data extraction (33 performed in plasma/serum, 15 in saliva and 6 in urine). RESULTS Metabolites with high discriminatory performance for detection of HNC included single metabolites and combination panels of several lysoPCs, pyroglutamate, glutamic acid, glucose, tartronic acid, arachidonic acid, norvaline, linoleic acid, propionate, acetone, acetate, choline, glutamate and others. The glucose-alanine cycle and the urea cycle were the most altered pathways in HNC, among other pathways (i.e. gluconeogenesis, glycine and serine metabolism, alanine metabolism, etc.). Specific metabolites that can potentially serve as complementary less- or non-invasive biomarkers, as well as metabolic pathways integrating the data from the available studies, are presented. CONCLUSION The present work highlights utility of metabolite-based biomarkers for risk assessment, early detection, and prognostication of HNC, as well as facilitates incorporation of available metabolomics studies into multi-omics data integration and big data analytics for personalized health.
Collapse
Affiliation(s)
- Natalia Chuchueva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
- Central State Medical Academy, Moscow, Russia
| | - Filippo Carta
- Unit of Otorhinolaryngology, Department of Surgery, Azienda Ospedaliero-Universitaria Di Cagliari, University of Cagliari, Cagliari, Italy
| | - Hoang N Nguyen
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Jennifer Luevano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Isaiah A Lewis
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | - Vassilios Fanos
- Department of Pediatrics and Clinical Medicine, Section of Neonatal Intensive Care Unit, Puericulture Institute and Neonatal Section, Azienda Ospedaliero-Universitaria Di Cagliari, Cagliari University, Cagliari, Italy
| | - Emma King
- Cancer Research Center, University of Southampton, Southampton, UK
- Department of Otolaryngology, Poole Hospital National Health Service Foundation Trust, Longfleet Road, Poole, UK
| | | | - Igor Reshetov
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Yury Rusetsky
- Central State Medical Academy, Moscow, Russia
- Otorhinolaryngological Surgical Department With a Group of Head and Neck Diseases, National Medical Research Center of Children's Health, Moscow, Russia
| | - Ksenia Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Natalia Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Cinzia Mariani
- Unit of Otorhinolaryngology, Department of Surgery, Azienda Ospedaliero-Universitaria Di Cagliari, University of Cagliari, Cagliari, Italy
| | - Alvaro Castillo-Carniglia
- Society and Health Research Center, Facultad de Ciencias Sociales y Artes, Universidad Mayor, Santiago, Chile
- Millennium Nucleus for the Evaluation and Analysis of Drug Policies (nDP) and Millennium Nucleus on Sociomedicine (SocioMed), Santiago, Chile
| | | | | | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, USA
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, CA, USA
- Roy J.Carver Metabolomics Core Facility, University of Illinois, Urbana-Champaign, IL, USA
| | - Roberto Puxeddu
- King's College Hospital London, Dubai, United Arab Emirates
- Section of Otorhinolaryngology, Department of Surgery, University of Cagliari, Cagliari, Italy
| | - Svetlana A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia
- Russian Center of Forensic-Medical Expertise of Ministry of Health, Moscow, Russia
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology. I.M. Sechenov First, Moscow State Medical University, Moscow, Russia.
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow, Russia.
| |
Collapse
|
7
|
Llambrich M, Brezmes J, Cumeras R. The untargeted urine volatilome for biomedical applications: methodology and volatilome database. Biol Proced Online 2022; 24:20. [PMID: 36456991 PMCID: PMC9714113 DOI: 10.1186/s12575-022-00184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Chemically diverse in compounds, urine can give us an insight into metabolic breakdown products from foods, drinks, drugs, environmental contaminants, endogenous waste metabolites, and bacterial by-products. Hundreds of them are volatile compounds; however, their composition has never been provided in detail, nor has the methodology used for urine volatilome untargeted analysis. Here, we summarize key elements for the untargeted analysis of urine volatilome from a comprehensive compilation of literature, including the latest reports published. Current achievements and limitations on each process step are discussed and compared. 34 studies were found retrieving all information from the urine treatment to the final results obtained. In this report, we provide the first specific urine volatilome database, consisting of 841 compounds from 80 different chemical classes.
Collapse
Affiliation(s)
- Maria Llambrich
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Jesús Brezmes
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| | - Raquel Cumeras
- Department of Electrical Electronic Engineering and Automation, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Department of Nutrition and Metabolism, Metabolomics Interdisciplinary Group, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
- Oncology Department, Institut d’Investigació Sanitària Pere Virgili (IISPV), 43204, Reus, Spain
| |
Collapse
|
8
|
Cozzolino R, De Giulio B, Martignetti A, Forte G, Dallio M, Romeo M, Scognamiglio F, Ventriglia L, Stocchero M, Federico A. Urinary volatile Organic compounds in non-alcoholic fatty liver disease (NAFLD), type two diabetes mellitus (T2DM) and NAFLD-T2DM coexistence. Metabolomics 2022; 18:98. [PMID: 36441279 DOI: 10.1007/s11306-022-01960-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Accumulating evidence have shown a significant correlation between urinary volatile organic compounds (VOCs) profile and the manifestation of several physiological and pathological states, including liver diseases. Previous studies have investigated the urinary metabolic signature as a non-invasive tool for the early discrimination between non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH), which nowadays represents one of the most important challenges in this context, feasible only by carrying out liver biopsy. OBJECTIVES The aim of the study was to investigate the differences in the urinary VOCs profiles of non-alcoholic fatty liver disease (NAFLD) patients, diabetes mellitus (T2DM) subjects and NAFLD/T2DM patients. METHODS Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied to profile the urinary VOCs. Urine samples were analysed both under acid and alkaline conditions, to obtain a range of urinary volatiles with different physicochemical properties. RESULTS Urinary VOCs profiles of 13 NAFLD patients, 13 T2DM subjects and 13 NAFLD/T2DM patients were investigated by multivariate and univariate data analysis techniques which allowed to identify 21 volatiles under alkaline conditions able to describe the NAFLD/T2DM group concerning the other two groups. CONCLUSION Our results suggest that VOCs signatures can improve the knowledge of the pathological condition where NAFLD coexists with T2DM and discovering new features that are not simply the sum of the two diseases. These preliminary findings may be considered as hypothesis-generating, to be clearly confirmed by larger prospective investigations.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - Beatrice De Giulio
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy.
| | - A Martignetti
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - G Forte
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| | - M Dallio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Romeo
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - F Scognamiglio
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - L Ventriglia
- Hepatogastroenterology Division, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Piazza Miraglia 2, 80138, Naples, Italy
| | - M Stocchero
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - A Federico
- Institute of Food Science, National Research Council (CNR), via Roma 64, 83100, Avellino, Italy
| |
Collapse
|
9
|
Mapping of Urinary Volatile Organic Compounds by a Rapid Analytical Method Using Gas Chromatography Coupled to Ion Mobility Spectrometry (GC–IMS). Metabolites 2022; 12:metabo12111072. [DOI: 10.3390/metabo12111072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Volatile organic compounds (VOCs) are a differentiated class of molecules, continuously generated in the human body and released as products of metabolic pathways. Their concentrations vary depending on pathophysiological conditions. They are detectable in a wide variety of biological samples, such as exhaled breath, faeces, and urine. In particular, urine represents an easily accessible specimen widely used in clinics. The most used techniques for VOCs detections are expensive and time-consuming, thus not allowing for rapid clinical analysis. In this perspective, the aim of this study is a comprehensive characterisation of the urine volatilome by the development of an alternative rapid analytical method. Briefly, 115 urine samples are collected; sample treatment is not needed. VOCs are detected in the urine headspace using gas chromatography coupled to ion mobility spectrometry (GC–IMS) by an extremely fast analysis (10 min). The method is analytically validated; the analysis is sensitive and robust with results comparable to those reported with other techniques. Twenty-three molecules are identified, including ketones, aldehydes, alcohols, and sulphur compounds, whose concentration is altered in several pathological states such as cancer and metabolic disorders. Therefore, it opens new perspectives for fast diagnosis and screening, showing great potential for clinical applications.
Collapse
|
10
|
Volatilomics: An Emerging and Promising Avenue for the Detection of Potential Prostate Cancer Biomarkers. Cancers (Basel) 2022; 14:cancers14163982. [PMID: 36010975 PMCID: PMC9406416 DOI: 10.3390/cancers14163982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary The lack of highly specific and sensitive biomarkers for the early detection of prostate cancer (PCa) is a major barrier to its management. Volatilomics emerged as a non-invasive, simple, inexpensive, and easy-to-use approach for cancer screening, characterization of disease progression, and follow-up of the treatment’s success. We provide a brief overview of the potential of volatile organic metabolites (VOMs) for the establishment of PCa biomarkers from non-invasive matrices. Endogenous VOMs have been investigated as potential biomarkers since changes in these VOMs can be characteristic of specific disease processes. Recent studies have shown that the conjugation of the prostate-specific antigen (PSA) screening with other methodologies, such as risk calculators, biomarkers, and imaging tests, can attenuate overdiagnosis and under-detection issues. This means that the combination of volatilomics with other methodologies could be extremely valuable for the differentiation of clinical phenotypes in a group of patients, providing more personalized treatments. Abstract Despite the spectacular advances in molecular medicine, including genomics, proteomics, transcriptomics, lipidomics, and personalized medicine, supported by the discovery of the human genome, prostate cancer (PCa) remains the most frequent malignant tumor and a leading cause of oncological death in men. New methods for prognostic, diagnostic, and therapy evaluation are mainly based on the combination of imaging techniques with other methodologies, such as gene or protein profiling, aimed at improving PCa management and surveillance. However, the lack of highly specific and sensitive biomarkers for its early detection is a major hurdle to this goal. Apart from classical biomarkers, the study of endogenous volatile organic metabolites (VOMs) biosynthesized by different metabolic pathways and found in several biofluids is emerging as an innovative, efficient, accessible, and non-invasive approach to establish the volatilomic biosignature of PCa patients, unravelling potential biomarkers. This review provides a brief overview of the challenges of PCa screening methods and emergent biomarkers. We also focus on the potential of volatilomics for the establishment of PCa biomarkers from non-invasive matrices.
Collapse
|
11
|
Gasparri R, Capuano R, Guaglio A, Caminiti V, Canini F, Catini A, Sedda G, Paolesse R, Di Natale C, Spaggiari L. Volatolomic urinary profile analysis for diagnosis of the early stage of lung cancer. J Breath Res 2022; 16. [PMID: 35952625 DOI: 10.1088/1752-7163/ac88ec] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022]
Abstract
Nowadays in clinical practice there is a pressing need for potential biomarkers that can identify lung cancer at early stage before becoming symptomatic or detectable by conventional means. Several researchers have independently pointed out that the volatile organic compounds (VOCs) profile can be considered as a lung cancer fingerprint useful for diagnosis. In particular, 16% of volatiles contributing to the human volatilome are found in urine, which is therefore an ideal sample medium. Its analysis through non-invasive, relatively low-cost and straightforward techniques could offer great potential for the early diagnosis of lung cancer. In this study, urinary VOCs were analysed with a gas chromatography-ion mobility spectrometer (GC-IMS) and an electronic nose (e-nose) made by a matrix of twelve quartz microbalances (QMBs) complemented by a photoionization detector (PID). This clinical prospective study involved 127 individuals, divided into two groups: 46 with lung cancer stage I-II-III confirmed by computerized tomography (CT) or positron emission tomography-(PET) imaging techniques and histology (biopsy), and 81 healthy controls. Both instruments provided a multivariate signal which, after being analysed by a machine learning algorithm, identified eight VOCs that could distinguish lung cancer patients from healthy ones. The eight VOCs are 2-pentanone, 2-hexenal, 2-hexen-1-ol, hept-4-en-2-ol, 2-heptanone, 3-octen-2-one, 4-methylpentanol, 4-methyl-octane. Results show that GC-IMS identifies lung cancer with respect to the control group with a diagnostic accuracy of 88%. Sensitivity resulted as being 85%, and specificity was 90% - Area Under the Receiver Operating Characteristics (AUROC): 0.91. The contribution made by the e-nose was also important, even though the results were slightly less sensitive with an accuracy of 71.6%. Moreover, of the eight VOCs identified as potential biomarkers, five VOCs had a high sensitivity (p≤ 0.06) for early stage (stage I) lung cancer.
Collapse
Affiliation(s)
- Roberto Gasparri
- Department of Thoracic Surgery, Istituto Europeo di Oncologia, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Rosamaria Capuano
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alessandra Guaglio
- General toracic surgery, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Milano, Lombardia, 20141, ITALY
| | - Valentina Caminiti
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Federico Canini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Alexandro Catini
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Giulia Sedda
- Department of Thoracic Surgery, European Institute of Oncology, Via Giuseppe Ripamonti, 435, Milan, Milan, 20141, ITALY
| | - Roberto Paolesse
- Department of Chemical Science and Technology, Via della Ricerca Scientifica, University of Rome 'Tor Vergata', Rome, Rome, 00133, ITALY
| | - Corrado Di Natale
- Department of Electronic Engineering, Universita di Roma 'Tor Vergata', via di tor Vergata 133, 00133 Roma, Roma, 00133, ITALY
| | - Lorenzo Spaggiari
- Division of Thoracic Surgery, European Institute of Oncology, Via Ripamonti 435, Milano, Lombardia, 20141, ITALY
| |
Collapse
|
12
|
Namgong C, Kim JH, Lee MH, Midkiff D. Non-invasive cancer detection in canine urine through Caenorhabditis elegans chemotaxis. Front Vet Sci 2022; 9:932474. [PMID: 36016810 PMCID: PMC9396970 DOI: 10.3389/fvets.2022.932474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of death in companion animals, and successful early treatment has been a challenge in the veterinary field. We have developed the Non-Invasive Cancer Screening (N.C.S.) Study to perform cancer detection through the analysis of canine urine samples. The test makes use of the strong olfactory system of the nematode Caenorhabditis elegans, which was previously shown to positively respond to urine samples from human cancer patients. We performed a proof-of-concept study to optimize the detection capability in urine samples obtained from dogs with naturally occurring cancers. In this study, we established a scale for identifying the cancer risk based on the magnitude of the chemotaxis index of C. elegans toward a canine urine sample. Through validation, the N.C.S. Study achieved a sensitivity of 85%, showing that it is highly sensitive to indicate the presence of cancer across multiple types of common canine cancers. The test also showed a 90% specificity to cancer samples, indicating a low rate of over-identifying cancer risk. From these results, we have demonstrated the ability to perform low-cost, non-invasive cancer detection in companion animals—a method that can increase the ability to perform cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chan Namgong
- Animal Cancer Dx, Raleigh, NC, United States
- *Correspondence: Chan Namgong
| | - Jong Hyuk Kim
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
- IntelligentComparative Oncology Lab, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC, United States
| | - Daniel Midkiff
- Animal Cancer Dx, Raleigh, NC, United States
- Daniel Midkiff
| |
Collapse
|
13
|
Leemans M, Bauër P, Cuzuel V, Audureau E, Fromantin I. Volatile Organic Compounds Analysis as a Potential Novel Screening Tool for Breast Cancer: A Systematic Review. Biomark Insights 2022; 17:11772719221100709. [PMID: 35645556 PMCID: PMC9134002 DOI: 10.1177/11772719221100709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction An early diagnosis is crucial in reducing mortality among people who have breast cancer (BC). There is a shortfall of characteristic early clinical symptoms in BC patients, highlighting the importance of investigating new methods for its early detection. A promising novel approach is the analysis of volatile organic compounds (VOCs) produced and emitted through the metabolism of cancer cells. Methods The purpose of this systematic review is to outline the published research regarding BC-associated VOCs. For this, headspace analysis of VOCs was explored in patient-derived body fluids, animal model-derived fluids, and BC cell lines to identify BC-specific VOCs. A systematic search in PubMed and Web of Science databases was conducted according to the PRISMA guidelines. Results Thirty-two studies met the criteria for inclusion in this review. Results highlight that VOC analysis can be promising as a potential novel screening tool. However, results of in vivo, in vitro and case-control studies have delivered inconsistent results leading to a lack of inter-matrix consensus between different VOC sampling methods. Discussion Discrepant VOC results among BC studies have been obtained, highly due to methodological discrepancies. Therefore, methodological issues leading to disparities have been reviewed and recommendations have been made on the standardisation of VOC collection and analysis methods for BC screening, thereby improving future VOC clinical validation studies.
Collapse
Affiliation(s)
| | - Pierre Bauër
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| | - Vincent Cuzuel
- Institut de Recherche Criminelle de la Gendarmerie Nationale, Caserne Lange, Cergy Pontoise Cedex, France
| | - Etienne Audureau
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Assistance Publique – Hôpitaux de Paris, Hôpital Henri Mondor, Service de Santé Publique, Créteil, France
| | - Isabelle Fromantin
- Univ Paris Est Créteil, INSERM, IMRB, Créteil, France
- Institut Curie, Ensemble hospitalier, Unité Plaies et Cicatrisation, Paris, France
| |
Collapse
|
14
|
Urinary Volatile Organic Compound Testing in Fast-Track Patients with Suspected Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14092127. [PMID: 35565258 PMCID: PMC9099958 DOI: 10.3390/cancers14092127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The current pathway for the investigation of possible colorectal cancer includes the use of colonoscopy. This is an invasive and unpleasant procedure, and currently, a large number of those performed are normal. Previous research has demonstrated that urinary volatile organic compounds (VOCs) can be used to detect cancer, including colorectal cancer. However, these studies have only taken place in patients already known to have cancer. This study aimed to assess the role of urinary VOC analysis in the NHS two weeks wait for cancer pathway. Three analytical techniques were used to analyze urine samples of 558 patients during the standard NHS assessment pathway. It demonstrated that gas chromatography-mass spectrometry (GCMS) has excellent sensitivity and specificity for the identification of cancer and polyps in this patient group. These results show a potential role for urinary VOC analysis in the NHS cancer screening pathway, to reduce the need for invasive colonoscopy testing. Abstract Colorectal symptoms are common but only infrequently represent serious pathology, including colorectal cancer (CRC). A large number of invasive tests are presently performed for reassurance. We investigated the feasibility of urinary volatile organic compound (VOC) testing as a potential triage tool in patients fast-tracked for assessment for possible CRC. A prospective, multi-center, observational feasibility study was performed across three sites. Patients referred to NHS fast-track pathways for potential CRC provided a urine sample that underwent Gas Chromatography-Mass Spectrometry (GC-MS), Field Asymmetric Ion Mobility Spectrometry (FAIMS), and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) analysis. Patients underwent colonoscopy and/or CT colonography and were grouped as either CRC, adenomatous polyp(s), or controls to explore the diagnostic accuracy of VOC output data supported by an artificial neural network (ANN) model. 558 patients participated with 23 (4%) CRC diagnosed. 59% of colonoscopies and 86% of CT colonographies showed no abnormalities. Urinary VOC testing was feasible, acceptable to patients, and applicable within the clinical fast track pathway. GC-MS showed the highest clinical utility for CRC and polyp detection vs. controls (sensitivity = 0.878, specificity = 0.882, AUROC = 0.896) but it is labour intensive. Urinary VOC testing and analysis are feasible within NHS fast-track CRC pathways. Clinically meaningful differences between patients with cancer, polyps, or no pathology were identified suggesting VOC analysis may have future utility as a triage tool.
Collapse
|
15
|
Yang X, Chi H, Tian Y, Li T, Wang Y. Research Progress of Graphene and Its Derivatives towards Exhaled Breath Analysis. BIOSENSORS 2022; 12:bios12020048. [PMID: 35200309 PMCID: PMC8869631 DOI: 10.3390/bios12020048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022]
Abstract
The metabolic process of the human body produces a large number of gaseous biomarkers. The tracking and monitoring of certain diseases can be achieved through the detection of these markers. Due to the superior specific surface area, large functional groups, good optical transparency, conductivity and interlayer spacing, graphene, and its derivatives are widely used in gas sensing. Herein, the development of graphene and its derivatives in gas-phase biomarker detection was reviewed in terms of the detection principle and the latest detection methods and applications in several common gases, etc. Finally, we summarized the commonly used materials, preparation methods, response mechanisms for NO, NH3, H2S, and volatile organic gas VOCs, and other gas detection, and proposed the challenges and prospective applications in this field.
Collapse
|
16
|
Hu W, Wu W, Jian Y, Haick H, Zhang G, Qian Y, Yuan M, Yao M. Volatolomics in healthcare and its advanced detection technology. NANO RESEARCH 2022; 15:8185-8213. [PMID: 35789633 PMCID: PMC9243817 DOI: 10.1007/s12274-022-4459-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 05/21/2023]
Abstract
Various diseases increasingly challenge the health status and life quality of human beings. Volatolome emitted from patients has been considered as a potential family of markers, volatolomics, for diagnosis/screening. There are two fundamental issues of volatolomics in healthcare. On one hand, the solid relationship between the volatolome and specific diseases needs to be clarified and verified. On the other hand, effective methods should be explored for the precise detection of volatolome. Several comprehensive review articles had been published in this field. However, a timely and systematical summary and elaboration is still desired. In this review article, the research methodology of volatolomics in healthcare is critically considered and given out, at first. Then, the sets of volatolome according to specific diseases through different body sources and the analytical instruments for their identifications are systematically summarized. Thirdly, the advanced electronic nose and photonic nose technologies for volatile organic compounds (VOCs) detection are well introduced. The existed obstacles and future perspectives are deeply thought and discussed. This article could give a good guidance to researchers in this interdisciplinary field, not only understanding the cutting-edge detection technologies for doctors (medicinal background), but also making reference to clarify the choice of aimed VOCs during the sensor research for chemists, materials scientists, electronics engineers, etc.
Collapse
Affiliation(s)
- Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi’an, 730107 China
| | - Weiwei Wu
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Yingying Jian
- Interdisciplinary Research Center of Smart Sensors, School of Advanced Materials and Nanotechnology, Xidian University, Xi’an, 730107 China
| | - Hossam Haick
- Faculty of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200002 Israel
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, 710061 China
| | - Yun Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006 China
| | - Miaomiao Yuan
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033 China
| | - Mingshui Yao
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 310006 China
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, 606-8501 Japan
| |
Collapse
|
17
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
18
|
Pinto J, Amaro F, Lima AR, Carvalho-Maia C, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. Urinary Volatilomics Unveils a Candidate Biomarker Panel for Noninvasive Detection of Clear Cell Renal Cell Carcinoma. J Proteome Res 2021; 20:3068-3077. [PMID: 33797920 DOI: 10.1021/acs.jproteome.0c00936] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer usually associated with asymptomatic development and risk of systemic progression. Hence, reliable molecular biomarkers of ccRCC are needed to provide early and minimally invasive detection. In this study, urinary volatilome profiling of patients diagnosed with ccRCC (n = 75), and cancer-free controls (n = 75), was performed to investigate the presence of a volatile signature characteristic of ccRCC. Volatile organic compounds (VOCs) in general, and more specifically volatile carbonyl compounds (VCCs), present in urine were extracted by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). Supervised multivariate models showed a good discriminatory power of ccRCC patients from controls in urine. Overall, 22 volatile metabolites were found significantly altered between the two groups, including aldehydes, ketones, aromatic hydrocarbons, and terpenoids. A candidate six-biomarker panel, comprising octanal, 3-methylbutanal, benzaldehyde, 2-furaldehyde, 4-heptanone, and p-cresol, depicted the best performance for ccRCC detection with 83% sensitivity, 79% specificity, and 81% accuracy. Moreover, the ccRCC urinary volatilome signature suggested dysregulation of energy metabolism and overexpression of enzymes associated with carcinogenesis. These findings provide the molecular basis for the fine-tuning of gas-sensing materials for application in the development of a bioelectronic sensor.
Collapse
Affiliation(s)
- Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology & Epigenetics Group-Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.,Fernando Pessoa Energy, Environment and Health Research Unit (FP-ENAS), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
19
|
Pinto J, Carapito Â, Amaro F, Lima AR, Carvalho-Maia C, Martins MC, Jerónimo C, Henrique R, Bastos MDL, Guedes de Pinho P. Discovery of Volatile Biomarkers for Bladder Cancer Detection and Staging through Urine Metabolomics. Metabolites 2021; 11:metabo11040199. [PMID: 33810601 PMCID: PMC8066175 DOI: 10.3390/metabo11040199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Timely diagnosis is crucial to improve the long-term survival of bladder cancer (BC) patients. The discovery of new BC biomarkers based in urine analysis is very attractive because this biofluid is in direct contact with the inner bladder layer, in which most of the neoplasms develop, and is non-invasively collected. Hence, this work aimed to unveil alterations in the urinary volatile profile of patients diagnosed with BC compared with cancer-free individuals, as well as differences among patients diagnosed at different tumor stages, to identify candidate biomarkers for non-invasive BC diagnosis and staging. Urine analysis was performed by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results unveiled that BC patients have a distinct urinary volatile profile characterized by higher levels of several alkanes and aromatic compounds, and lower levels of aldehydes, ketones and monoterpenes. Seventeen significantly altered volatiles were used to evaluate the performance for overall BC detection, disclosing 70% sensitivity, 89% specificity and 80% accuracy. Moreover, distinct urinary volatile profiles were found among patients diagnosed at different tumor stages (Ta/Tis, T1 and ≥T2). This work identified distinct urinary volatile signatures of BC patients with potential for non-invasive detection and staging of bladder cancer.
Collapse
Affiliation(s)
- Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
- Correspondence: (J.P.); (Â.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (J.P. & A.C. & P.G.d.P.)
| | - Ângela Carapito
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
- Correspondence: (J.P.); (Â.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (J.P. & A.C. & P.G.d.P.)
| | - Filipa Amaro
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
| | - Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
| | - Carina Carvalho-Maia
- Cancer Biology & Epigenetics Group–Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (C.C.-M.); (M.C.M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Maria Conceição Martins
- Cancer Biology & Epigenetics Group–Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (C.C.-M.); (M.C.M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group–Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (C.C.-M.); (M.C.M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group–Research Centre, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (C.C.-M.); (M.C.M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar–University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (F.A.); (A.R.L.); (M.d.L.B.)
- Correspondence: (J.P.); (Â.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (J.P. & A.C. & P.G.d.P.)
| |
Collapse
|
20
|
Aggarwal P, Baker J, Boyd MT, Coyle S, Probert C, Chapman EA. Optimisation of Urine Sample Preparation for Headspace-Solid Phase Microextraction Gas Chromatography-Mass Spectrometry: Altering Sample pH, Sulphuric Acid Concentration and Phase Ratio. Metabolites 2020; 10:metabo10120482. [PMID: 33255680 PMCID: PMC7760603 DOI: 10.3390/metabo10120482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Headspace-solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) can be used to measure volatile organic compounds (VOCs) in human urine. However, there is no widely adopted standardised protocol for the preparation of urine samples for analysis resulting in an inability to compare studies reliably between laboratories. This paper investigated the effect of altering urine sample pH, volume, and vial size for optimising detection of VOCs when using HS-SPME-GC-MS. This is the first, direct comparison of H2SO4, HCl, and NaOH as treatment techniques prior to HS-SPME-GC-MS analysis. Altering urine sample pH indicates that H2SO4 is more effective at optimising detection of VOCs than HCl or NaOH. H2SO4 resulted in a significantly larger mean number of VOCs being identified per sample (on average, 33.5 VOCs to 24.3 in HCl or 12.2 in NaOH treated urine) and more unique VOCs, produced a more diverse range of classes of VOCs, and led to less HS-SPME-GC-MS degradation. We propose that adding 0.2 mL of 2.5 M H2SO4 to 1 mL of urine within a 10 mL headspace vial is the optimal sample preparation prior to HS-SPME-GC-MS analysis. We hope the use of our optimised method for urinary HS-SPME-GC-MS analysis will enhance our understanding of human disease and bolster metabolic biomarker identification.
Collapse
Affiliation(s)
- Prashant Aggarwal
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (P.A.); (J.B.); (C.P.)
- School of Medicine, Cedar House, University of Liverpool, Liverpool L69 3GE, UK
| | - James Baker
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (P.A.); (J.B.); (C.P.)
- School of Medicine, Cedar House, University of Liverpool, Liverpool L69 3GE, UK
| | - Mark T. Boyd
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, Cancer Research Centre, University of Liverpool, Liverpool L3 9TA, UK;
| | - Séamus Coyle
- Palliative Care Institute Liverpool, Cancer Research Centre, University of Liverpool, Liverpool L3 9TA, UK;
- Clatterbridge Cancer Centre, Liverpool L7 8YA, UK
| | - Chris Probert
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (P.A.); (J.B.); (C.P.)
| | - Elinor A. Chapman
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3BX, UK; (P.A.); (J.B.); (C.P.)
- Palliative Care Institute Liverpool, Cancer Research Centre, University of Liverpool, Liverpool L3 9TA, UK;
- School of Medical Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
- Correspondence:
| |
Collapse
|
21
|
Chernov VI, Choynzonov EL, Kulbakin DE, Menkova EN, Obkhodskaya EV, Obkhodskiy AV, Popov AS, Rodionov EO, Sachkov VI, Sachkova AS. Non-Invasive Diagnosis of Malignancies Based on the Analysis of Markers in Exhaled Air. Diagnostics (Basel) 2020; 10:diagnostics10110934. [PMID: 33187053 PMCID: PMC7696783 DOI: 10.3390/diagnostics10110934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/24/2022] Open
Abstract
Novel non-invasive methods for the diagnosis of malignancies should be effective for early diagnosis, reproducible, inexpensive, and independent from the human factor. Our aim was to establish the applicability of the non-invasive method, based on the analysis of air exhaled by patients who are at different stages of oropharyngeal, larynx and lung cancer. The diagnostic device includes semiconductor sensors capable of measuring the concentrations of gas components in exhaled air, with the high sensitivity of 1 ppm. The neural network uses signals from these sensors to perform classification and identify cancer patients. Prior to the diagnostic procedure of the non-invasive method, we clarified the extent and stage of the tumor according to current international standards and recommendations for the diagnosis of malignancies. The statistical dataset for neural network training and method validation included samples from 121 patients with the most common tumor localizations (lungs, oropharyngeal region and larynx). The largest number of cases (21 patients) were lung cancer, while the number of patients with oropharyngeal or laryngeal cancer varied from 1 to 9, depending on tumor localization (oropharyngeal, tongue, oral cavity, larynx and mucosa of the lower jaw). In the case of lung cancer, the parameters of the diagnostic device are determined as follows: sensitivity—95.24%, specificity—76.19%. For oropharyngeal cancer and laryngeal cancer, these parameters were 67.74% and 87.1%, respectively. This non-invasive method could lead to relevant medicinal findings and provide an opportunity for clinical utility and patient benefit upon early diagnosis of malignancies.
Collapse
Affiliation(s)
- Vladimir I. Chernov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, 634009 Tomsk, Russia; (V.I.C.); (E.L.C.); (D.E.K.); (E.N.M.); (E.O.R.)
| | - Evgeniy L. Choynzonov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, 634009 Tomsk, Russia; (V.I.C.); (E.L.C.); (D.E.K.); (E.N.M.); (E.O.R.)
| | - Denis E. Kulbakin
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, 634009 Tomsk, Russia; (V.I.C.); (E.L.C.); (D.E.K.); (E.N.M.); (E.O.R.)
| | - Ekaterina N. Menkova
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, 634009 Tomsk, Russia; (V.I.C.); (E.L.C.); (D.E.K.); (E.N.M.); (E.O.R.)
| | - Elena V. Obkhodskaya
- Laboratory of Chemical Technologies, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (E.V.O.); (A.V.O.); (A.S.P.)
| | - Artem V. Obkhodskiy
- Laboratory of Chemical Technologies, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (E.V.O.); (A.V.O.); (A.S.P.)
- School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia;
| | - Aleksandr S. Popov
- Laboratory of Chemical Technologies, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (E.V.O.); (A.V.O.); (A.S.P.)
- School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia;
| | - Evgeniy O. Rodionov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, 634009 Tomsk, Russia; (V.I.C.); (E.L.C.); (D.E.K.); (E.N.M.); (E.O.R.)
| | - Victor I. Sachkov
- Laboratory of Chemical Technologies, National Research Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia; (E.V.O.); (A.V.O.); (A.S.P.)
- Correspondence:
| | - Anna S. Sachkova
- School of Nuclear Science & Engineering, National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk, Russia;
| |
Collapse
|
22
|
da Costa BRB, De Martinis BS. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2020; 18:27-37. [PMID: 34820523 PMCID: PMC8600992 DOI: 10.1016/j.clinms.2020.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022]
Abstract
The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.
Collapse
Key Words
- Biomarkers
- CAS, chemical abstracts service
- CYP450, cytochrome P450
- Cancer
- FAIMS, high-field asymmetric waveform ion mobility spectrometry
- GC, gas chromatography
- HS, headspace
- IMS, ion mobility spectrometry
- LC, liquid chromatography
- MS, mass spectrometry or mass spectrometric
- Mass Spectrometry
- Metabolomics
- NT, needle trap
- PSA, prostate-specific antigen
- PTR, proton transfer reaction
- PTV, programed temperature vaporizer
- ROS, reactive oxygen species
- SBSE, stir bar sorptive extraction
- SIFT, selected ion flow tube
- SPME, solid phase microextraction
- Urine
- VOCs
- VOCs, volatile organic compounds
- eNose, electronic nose
Collapse
Affiliation(s)
- Bruno Ruiz Brandão da Costa
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto – Universidade de São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP 14040-903, Brazil
| | - Bruno Spinosa De Martinis
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto - Universidade de São Paulo. Av., Bandeirantes, 3900, Ribeirão Preto, SP 14040-900, Brazil
| |
Collapse
|
23
|
Lima AR, Pinto J, Carvalho-Maia C, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. A Panel of Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers. Cancers (Basel) 2020; 12:cancers12082017. [PMID: 32717987 PMCID: PMC7464354 DOI: 10.3390/cancers12082017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our group recently developed a urinary 6-biomarker panel for the diagnosis of prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and cancer-free controls was analyzed to further validate the discriminative power of that panel. Additionally, urine from patients diagnosed with bladder cancer (BC) and renal cancer (RC) were included to evaluate the site-specificity of the panel. Results confirmed the ability of the 6-biomarker panel to discriminate PCa patients from controls, but not from other urological cancers. To overcome this limitation, an untargeted approach was performed to unveil discriminant metabolites among the three cancer types. A 10-biomarker panel comprising the original panel plus four new metabolites was established to discriminate PCa from controls, BC, and RC, with 76% sensitivity, 90% specificity, and 92% accuracy. This improved panel also disclosed better accuracy than serum PSA test and provides the basis for a new non-invasive early detection tool for PCa.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Carina Carvalho-Maia
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Fernando Pessoa Energy, Environment and Health Research Unit (FP-ENAS), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| |
Collapse
|
24
|
Becker R. Non-invasive cancer detection using volatile biomarkers: Is urine superior to breath? Med Hypotheses 2020; 143:110060. [PMID: 32683218 DOI: 10.1016/j.mehy.2020.110060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/16/2022]
Abstract
In recent years numerous reports have highlighted the options of chemical breath analysis with regard to non-invasive cancer detection. Certain volatile organic compounds (VOC) supposedly present in higher amounts or in characteristic patterns have been suggested as potential biomarkers. However, so far no clinical application based on a specific set of compounds appears to exist. Numerous reports on the capability of sniffer dogs and sensor arrays or electronic noses to distinguish breath of cancer patients and healthy controls supports the concept of genuine cancer-related volatile profiles. However, the actual compounds responsible for the scent are completely unknown and there is no correlation with the potential biomarkers suggested on basis of chemical trace analysis. It is outlined that specific features connected with the VOC analysis in breath - namely small concentrations of volatiles, interfering background concentrations, considerable sampling effort and sample instability, impracticability regarding routine application - stand in the way of substantial progress. The underlying chemical-analytical challenge can only be met considering the severe susceptibility of VOC determination to these adverse conditions. Therefore, the attention is drawn to the needs for appropriate quality assurance/quality control as the most important feature for the reliable quantification of volatiles present in trace concentration. Consequently, the advantages of urine as an alternative matrix for volatile biomarker search in the context of diagnosing lung and other cancers are outlined with specific focus on quality assurance and practicability in clinical chemistry. The headspace over urine samples as the VOC source allows adapting gas chromatographical procedures well-established in water analysis. Foremost, the selection of urine over breath as non-invasive matrix should provide considerably more resilience to adverse effects during sampling and analysis. The most important advantage of urine over breath is seen in the option to partition, dispense, mix, spike, store, and thus to dispatch taylor-made urine samples on demand for quality control measures. Although it is still open at this point if cancer diagnosis supported by non-invasively sampled VOC profiles will ultimately reach clinical application the advantages of urine over breath should significantly facilitate urgently required steps beyond the current proof-of-concept stage and towards standardisation.
Collapse
Affiliation(s)
- Roland Becker
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| |
Collapse
|
25
|
Konings H, Stappers S, Geens M, De Winter BY, Lamote K, van Meerbeeck JP, Specenier P, Vanderveken OM, Ledeganck KJ. A Literature Review of the Potential Diagnostic Biomarkers of Head and Neck Neoplasms. Front Oncol 2020; 10:1020. [PMID: 32670885 PMCID: PMC7332560 DOI: 10.3389/fonc.2020.01020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Head and neck neoplasms have a poor prognosis because of their late diagnosis. Finding a biomarker to detect these tumors in an early phase could improve the prognosis and survival rate. This literature review provides an overview of biomarkers, covering the different -omics fields to diagnose head and neck neoplasms in the early phase. To date, not a single biomarker, nor a panel of biomarkers for the detection of head and neck tumors has been detected with clinical applicability. Limitations for the clinical implementation of the investigated biomarkers are mainly the heterogeneity of the study groups (e.g., small population in which the biomarker was tested, and/or only including high-risk populations) and a low sensitivity and/or specificity of the biomarkers under study. Further research on biomarkers to diagnose head and neck neoplasms in an early stage, is therefore needed.
Collapse
Affiliation(s)
- Heleen Konings
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sofie Stappers
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Margot Geens
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Benedicte Y De Winter
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Kevin Lamote
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jan P van Meerbeeck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium.,Department of Pneumology, Antwerp University Hospital, Edegem, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pol Specenier
- Department of Oncology, Antwerp University Hospital, Edegem, Belgium.,Center for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Olivier M Vanderveken
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Department of Otorhinolaryngology-Head and Neck Surgery, Antwerp University Hospital, Edegem, Belgium.,Department of Translational Neurosciences, Antwerp University, Antwerp, Belgium
| | - Kristien J Ledeganck
- Laboratorium of Experimental Medicine and Pediatrics and Member of the Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
26
|
|
27
|
Dharmawardana N, Woods C, Watson DI, Yazbeck R, Ooi EH. A review of breath analysis techniques in head and neck cancer. Oral Oncol 2020; 104:104654. [PMID: 32200303 DOI: 10.1016/j.oraloncology.2020.104654] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 02/01/2023]
Abstract
Cancers of the head and neck region are a severely disabling group of diseases with no method for early detection. Analysis of exhaled breath volatile organic compounds shows promise as biomarkers for early detection and disease monitoring. This article reviews breath analysis in the setting of head and neck cancer, with a practical focus on breath sampling techniques, detection technologies and valid data analysis methods. Title and abstract keyword searches were conducted on PubMed and Embase databases to identify English language studies without a time-period limitation. The main inclusion criteria were human studies comparing head and neck cancer patients to healthy controls using exhaled breath analysis. Multiple breath collection techniques, three major detection technologies and multiple data analysis methods were identified. However, the variability in techniques and lack of methodological standardization does not allow for adequate study replication or data pooling. Twenty-two volatile organic compounds identified in five studies have been reported to discriminate head and neck cancer patients from healthy controls. Breath analysis for detection of head and neck cancer shows promise as a non-invasive detection tool. However, methodological standardization is paramount for future research study design to provide the potential for translating these techniques into routine clinical use.
Collapse
Affiliation(s)
- Nuwan Dharmawardana
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia.
| | - Charmaine Woods
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
| | - David I Watson
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Roger Yazbeck
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Eng H Ooi
- College of Medicine and Public Health, Flinders University, Bedford Park, Australia; Department of Otorhinolaryngology-Head and Neck Surgery, Flinders Medical Centre, Bedford Park, Australia
| |
Collapse
|
28
|
Kulas P, Seidel M, Bozzato A, Schick B, Sessler DI, Kreuer S, Hüppe T. Volatile organic compounds in head and neck squamous cell carcinoma-An in vitro pilot study. Biomed Chromatogr 2020; 34:e4811. [PMID: 32059060 DOI: 10.1002/bmc.4811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 02/02/2020] [Accepted: 02/11/2020] [Indexed: 11/07/2022]
Abstract
Owing to the lack of specific symptoms, diagnosis of head and neck squamous cell carcinoma (HNSCC) may be delayed. We evaluated volatile organic compounds in tumor samples from patients suffering from HNSCC and tested the hypothesis that there is a characteristic altered composition in the headspace of HNSCC compared with control samples from the same patient with normal squamous epithelium. These results provide the basis for future noninvasive breath analysis in HNSCC. Headspace air of suspected tumor and contralateral control samples in 20 patients were analyzed using ion-mobility spectrometry. Squamous cell carcinoma was diagnosed in 16 patients. In total, we observed 93 different signals in headspace measurements. Squamous cell carcinomas revealed significantly higher levels of volatile cyclohexanol (0.54 ppbv , 25th to 75th percentiles 0.35-0.86) compared with healthy squamous epithelium (0.24 ppbv , 25th to 75th percentiles 0.12-0.3; p < 0.001). In conclusion, head and neck squamous cell carcinoma emitted significantly higher levels of volatile cyclohexanol in headspace compared with normal squamous epithelium. These findings form the basis for future breath analysis for diagnosis, therapy control and the follow-up of HNSSC to improve therapy and aftercare.
Collapse
Affiliation(s)
- Philipp Kulas
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Martin Seidel
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Alessandro Bozzato
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Bernhard Schick
- Department of Otorhinolaryngology, Head and Neck Surgery, Saarland University Medical Center, Homburg (Saar), Germany
| | - Daniel I Sessler
- Department of Outcomes Research, Anesthesiology Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sascha Kreuer
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| | - Tobias Hüppe
- Center of Breath Research, Department of Anesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Homburg (Saar), Germany
| |
Collapse
|
29
|
Janfaza S, Khorsand B, Nikkhah M, Zahiri J. Digging deeper into volatile organic compounds associated with cancer. Biol Methods Protoc 2019; 4:bpz014. [PMID: 32161807 PMCID: PMC6994028 DOI: 10.1093/biomethods/bpz014] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Volatile organic compounds (VOCs), produced and emitted through the metabolism of cancer cells or the body's immune system, are considered novel cancer biomarkers for diagnostic purposes. Of late, a large number of work has been done to find a relationship between VOCs' signature of body and cancer. Cancer-related VOCs can be used to detect several types of cancers at the earlier stages which in turn provide a significantly higher chance of survival. Here we aim to provide an updated picture of cancer-related VOCs based on recent findings in this field focusing on cancer odor database.
Collapse
Affiliation(s)
- Sajjad Janfaza
- School of Engineering, University of British Columbia, Kelowna, BC, Canada
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Babak Khorsand
- Department of Computer Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| | - Javad Zahiri
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Jalal Ale Ahmad Highway, Tehran 14117, Iran
| |
Collapse
|
30
|
Xu Y, Li H, Zhang X, Jin H, Jin Q, Shen W, Zou J, Deng S, Cheung W, Kam W, Zhang X, Jian J. Light-Regulated Electrochemical Reaction Assisted Core-Shell Heterostructure for Detecting Specific Volatile Markers with Controllable Sensitivity and Selectivity. ACS Sens 2019; 4:1081-1089. [PMID: 30912423 DOI: 10.1021/acssensors.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breath analysis has been considered a noninvasive, safe, and reliable way to diagnose cancer at very early stage. Rapid detection of cancer volatile markers in breath samples via a portable sensing device will lay the foundation of future early cancer diagnosis. Nevertheless, unsatisfactory sensitivity and specificity of these sensing devices restrain the clinical application of breath analysis. Herein, we proposed the strategy of designing the light-regulated electrochemical reaction assisted core-shell heterostructure to address the issue of concern; that is, the photoactive shell will be designed for trigging the light-regulated electrochemical reaction and enhancing the sensitivity while a catalytic active core will play the function of removing interference gases. After screening of various core candidates, Fe2O3 was found to exhibit relatively low conversion rate to 3-methylhexane, which is one of the representative volatile markers for breath analysis, suggesting that mutual interference would be eliminated by Fe2O3. Based on this assumption, an electrochemical sensor comprising core-shell Fe2O3@ZnO-SE (vs Mn-based RE) was fabricated and sensing properties to 6 kinds of volatile markers was evaluated. Interestingly, the thickness of ZnO shell significantly influenced the response behavior; typically, the Fe2O3@ZnO with shell thickness of 4.8 nm offers the sensor high selectivity to 3-methylhexane. In contrast, significantly mutual response interference is observed for the Fe2O3@ZnO with extremely thick/thin shell. Particularly, sensing properties are greatly enhanced upon illumination; a detection limit to 3-methylhexane can even be as low as 0.072 ppm which will be useful in clinic application. Besides, the high selectivity of the sensor to 3-methylhexane is further confirmed by the testing of simulated breath samples. In summary, we anticipate that the strategy proposed in this research will be a starting point for artificially tailoring the sensitivity and selectivity of future sensing devices.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Han Jin
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- The State Key Laboratory of Bielectronics, Sountheast University, Nanjing, 210096, P. R. China
| | | | - Wenfeng Shen
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | | | - Shengwei Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | | | | | | | | |
Collapse
|
31
|
Grape and Wine Metabolomics to Develop New Insights Using Untargeted and Targeted Approaches. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4040092] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical analysis of grape juice and wine has been performed for over 50 years in a targeted manner to determine a limited number of compounds using Gas Chromatography, Mass-Spectrometry (GC-MS) and High Pressure Liquid Chromatography (HPLC). Therefore, it only allowed the determination of metabolites that are present in high concentration, including major sugars, amino acids and some important carboxylic acids. Thus, the roles of many significant but less concentrated metabolites during wine making process are still not known. This is where metabolomics shows its enormous potential, mainly because of its capability in analyzing over 1000 metabolites in a single run due to the recent advancements of high resolution and sensitive analytical instruments. Metabolomics has predominantly been adopted by many wine scientists as a hypothesis-generating tool in an unbiased and non-targeted way to address various issues, including characterization of geographical origin (terroir) and wine yeast metabolic traits, determination of biomarkers for aroma compounds, and the monitoring of growth developments of grape vines and grapes. The aim of this review is to explore the published literature that made use of both targeted and untargeted metabolomics to study grapes and wines and also the fermentation process. In addition, insights are also provided into many other possible avenues where metabolomics shows tremendous potential as a question-driven approach in grape and wine research.
Collapse
|