1
|
Li J, Han Z, Ma C, Chi H, Jia D, Zhang K, Feng Z, Han B, Qi M, Li G, Li X, Xue H. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection. Ann Clin Transl Neurol 2024; 11:2176-2187. [PMID: 38924338 PMCID: PMC11330232 DOI: 10.1002/acn3.52138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The molecular era of glioma diagnosis and treatment has arrived, and a single rapid histopathology is no longer sufficient for surgery. This study sought to present an automatic integrated gene detection system (AIGS), which enables rapid intraoperative detection of IDH/TERTp mutations. METHODS A total of 78 patients with gliomas were included in this study. IDH/TERTp mutations were detected intraoperatively using AIGS in 41 of these patients, and they were guided to surgical resection (AIGS detection group). The remaining 37 underwent histopathology-guided conventional surgical resection (non-AIGS detection group). The clinical utility of this technique was evaluated by comparing the accuracy of glioma subtype diagnosis before and after TERTp mutation results were obtained by pathologists and the extent of resection (EOR) and patient prognosis for molecular pathology-guided glioma surgery. RESULTS With NGS/Sanger sequencing and chromosome detection as the gold standard, the accuracy of AIGS results was 100%. And the timing was well matched to the intraoperative rapid pathology report. After obtaining the TERTp mutation detection results, the accuracy of the glioma subtype diagnosis made by the pathologists increased by 19.51%. Molecular pathology-guided surgical resection of gliomas significantly increased EOR (99.06% vs. 93.73%, p < 0.0001) and also improved median OS (26.77 vs. 13.47 months, p = 0.0289) and median PFS (15.90 vs. 10.57 months, p = 0.0181) in patients with glioblastoma. INTERPRETATION Using AIGS intraoperatively to detect IDH/TERTp mutations to accurately diagnose glioma subtypes can help achieve maximum safe resection of gliomas, which in turn improves the survival prognosis of patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Zhe Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Deze Jia
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Bo Han
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Mei Qi
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| |
Collapse
|
2
|
DeBoy EA, Nicosia AM, Liyanarachchi S, Iyer SS, Shah MH, Ringel MD, Brock P, Armanios M. Telomere-lengthening germline variants predispose to a syndromic papillary thyroid cancer subtype. Am J Hum Genet 2024; 111:1114-1124. [PMID: 38688277 PMCID: PMC11179366 DOI: 10.1016/j.ajhg.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common endocrine malignancy. 10% to 15% of individuals show familial clustering with three or more affected members, but the factors underlying this risk are unknown. In a group of recently studied individuals with POT1 pathogenic variants and ultra-long telomere length, PTC was the second most common solid tumor. We tested whether variants in POT1 and four other telomere-maintenance genes associated with familial cancer underlie PTC susceptibility. Among 470 individuals, we identified pathogenic or likely pathogenic variants in three genes encoding telomere-binding proteins: POT1, TINF2, and ACD. They were found in 4.5% and 1.5% of familial and unselected cases, respectively. Individuals harboring these variants had ultra-long telomere length, and 15 of 18 (83%) developed other cancers, of which melanoma, lymphoma, and sarcoma were most common. Among individuals with PTC and melanoma, 22% carried a deleterious germline variant, suggesting that a long telomere syndrome might be clinically recognizable. Successive generations had longer telomere length than their parents and, at times, developed more cancers at younger ages. Tumor sequencing identified a single oncogenic driver, BRAF p.Val600Glu, in 10 of 10 tumors studied, but no telomere-maintenance mechanism, including at the TERT promoter. These data identify a syndromic subset of PTCs with locus heterogeneity and telomere lengthening as a convergent mechanism. They suggest these germline variants lower the threshold to cancer by obviating the need for an acquired telomere-maintenance mechanism in addition to sustaining the longevity of oncogenic mutations.
Collapse
Affiliation(s)
- Emily A DeBoy
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna M Nicosia
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Sheila S Iyer
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manisha H Shah
- Department of Internal Medicine, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Matthew D Ringel
- Department of Molecular Medicine and Therapeutics, Columbus, OH, USA; Department of Internal Medicine, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Pamela Brock
- Department of Internal Medicine, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Mary Armanios
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Telomere Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Waitkus MS, Erman EN, Reitman ZJ, Ashley DM. Mechanisms of telomere maintenance and associated therapeutic vulnerabilities in malignant gliomas. Neuro Oncol 2024; 26:1012-1024. [PMID: 38285162 PMCID: PMC11145458 DOI: 10.1093/neuonc/noae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Indexed: 01/30/2024] Open
Abstract
A majority of cancers (~85%) activate the enzyme telomerase to maintain telomere length over multiple rounds of cellular division. Telomerase-negative cancers activate a distinct, telomerase-independent mechanism of telomere maintenance termed alternative lengthening of telomeres (ALT). ALT uses homologous recombination to maintain telomere length and exhibits features of break-induced DNA replication. In malignant gliomas, the activation of either telomerase or ALT is nearly ubiquitous in pediatric and adult tumors, and the frequency with which these distinct telomere maintenance mechanisms (TMMs) is activated varies according to genetically defined glioma subtypes. In this review, we summarize the current state of the field of TMMs and their relevance to glioma biology and therapy. We review the genetic alterations and molecular mechanisms leading to telomerase activation or ALT induction in pediatric and adult gliomas. With this background, we review emerging evidence on strategies for targeting TMMs for glioma therapy. Finally, we comment on critical gaps and issues for moving the field forward to translate our improved understanding of glioma telomere maintenance into better therapeutic strategies for patients.
Collapse
Affiliation(s)
- Matthew S Waitkus
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Elise N Erman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Zachary J Reitman
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - David M Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
4
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
5
|
Conrad JW, Sowers ML, Yap DY, Cherryhomes E, Pettitt BM, Khanipov K, Sowers LC. Transition Mutations in the hTERT Promoter Are Unrelated to Potential i-motif Formation in the C-Rich Strand. Biomolecules 2023; 13:1308. [PMID: 37759708 PMCID: PMC10526324 DOI: 10.3390/biom13091308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Increased expression of the human telomere reverse transcriptase (hTERT) in tumors promotes tumor cell survival and diminishes the survival of patients. Cytosine-to-thymine (C-to-T) transition mutations (C250T or C228T) in the hTERT promoter create binding sites for transcription factors, which enhance transcription. The G-rich strand of the hTERT promoter can form G-quadruplex structures, whereas the C-rich strand can form an i-motif in which multiple cytosine residues are protonated. We considered the possibility that i-motif formation might promote cytosine deamination to uracil and C-to-T mutations. We computationally probed the accessibility of cytosine residues in an i-motif to attack by water. We experimentally examined regions of the C-rich strand to form i-motifs using pH-dependent UV and CD spectra. We then incubated the C-rich strand with and without the G-rich complementary strand DNA under various conditions, followed by deep sequencing. Surprisingly, deamination rates did not vary substantially across the 46 cytosines examined, and the two mutation hotspots were not deamination hotspots. The appearance of mutational hotspots in tumors is more likely the result of the selection of sequences with increased promoter binding affinity and hTERT expression.
Collapse
Affiliation(s)
- James W. Conrad
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark L. Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- MD-PhD Combined Degree Program, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Dianne Y. Yap
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ellie Cherryhomes
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - B. Montgomery Pettitt
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Lawrence C. Sowers
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
6
|
Alalami H, Bannykh S, Fan X, Hu J. Very long-term survival of an older glioblastoma patient after treatment with cilengitide: a case report. CNS Oncol 2023; 12:CNS96. [PMID: 37092563 PMCID: PMC10171035 DOI: 10.2217/cns-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Less than 1% of patients survive longer than 10 years. A 77-year-old woman was diagnosed with MGMT-methylated GBM in 2009. The patient received cilengitide as part of the CENTRIC clinical trial in conjunction with standard radiation and chemotherapy. Though the study was halted in 2013, our patient received cilengitide until 2016 with no radiographic evidence of recurrence thus far. This is the oldest reported GBM patient with greater than 10-year survival. Her exceptional response may have been influenced by MGMT promoter methylation status and PTEN expression.
Collapse
Affiliation(s)
- Huda Alalami
- Neurology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Serguei Bannykh
- Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xuemo Fan
- Pathology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jethro Hu
- Neurology, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
7
|
Hasanau TN, Pisarev EP, Kisil OV, Zvereva ME. The TERT Promoter: A Key Player in the Fight for Cancer Cell Immortality. BIOCHEMISTRY (MOSCOW) 2023; 88:S21-S38. [PMID: 37069112 DOI: 10.1134/s000629792314002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The review describes the role of telomeres and telomerase in tumor progression, as well as various mechanisms of the activation of telomerase reverse transcriptase (TERT) expression in CNS tumors and other cancers. The main mechanism of TERT activation involves acquisition of somatic mutations by the TERT gene promoter (TERTp). The article presents information on the TERTp structure and transcription factors directly interacting with TERTp and regulating its transcription. The prospects of using the mutational status of TERTp as a prognostic marker of CNS malignancies and other tumors with a common profile of TERTp mutations are discussed.
Collapse
Affiliation(s)
- Tsimur N Hasanau
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eduard P Pisarev
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Olga V Kisil
- Gause Institute of New Antibiotics, Moscow, 119021, Russia
| | - Maria E Zvereva
- Natural Compounds Department, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
8
|
Barger CJ, Suwala AK, Soczek KM, Wang AS, Kim MY, Hong C, Doudna JA, Chang SM, Phillips JJ, Solomon DA, Costello JF. Conserved features of TERT promoter duplications reveal an activation mechanism that mimics hotspot mutations in cancer. Nat Commun 2022; 13:5430. [PMID: 36114166 PMCID: PMC9481613 DOI: 10.1038/s41467-022-33099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
Mutations in the TERT promoter represent the genetic underpinnings of tumor cell immortality. Beyond the two most common point mutations, which selectively recruit the ETS factor GABP to activate TERT, the significance of other variants is unknown. In seven cancer types, we identify duplications of wildtype sequence within the core promoter region of TERT that have strikingly similar features including an ETS motif, the duplication length and insertion site. The duplications recruit a GABP tetramer by virtue of the native ETS motif and its precisely spaced duplicated counterpart, activate the promoter and are clonal in a TERT expressing multifocal glioblastoma. We conclude that recurrent TERT promoter duplications are functionally and mechanistically equivalent to the hotspot mutations that confer tumor cell immortality. The shared mechanism of these divergent somatic genetic alterations suggests a strong selective pressure for recruitment of the GABP tetramer to activate TERT.
Collapse
Affiliation(s)
- Carter J Barger
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Abigail K Suwala
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Department of Neuropathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Katarzyna M Soczek
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Albert S Wang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Min Y Kim
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - David A Solomon
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA.
| |
Collapse
|
9
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
10
|
Hasanau T, Pisarev E, Kisil O, Nonoguchi N, Le Calvez-Kelm F, Zvereva M. Detection of TERT Promoter Mutations as a Prognostic Biomarker in Gliomas: Methodology, Prospects, and Advances. Biomedicines 2022; 10:728. [PMID: 35327529 PMCID: PMC8945783 DOI: 10.3390/biomedicines10030728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
This article reviews the existing approaches to determining the TERT promoter mutational status in patients with various tumoral diseases of the central nervous system. The operational characteristics of the most common methods and their transferability in medical practice for the selection or monitoring of personalized treatments based on the TERT status and other related molecular biomarkers in patients with the most common tumors, such as glioblastoma, oligodendroglioma, and astrocytoma, are compared. The inclusion of new molecular markers in the course of CNS clinical management requires their rapid and reliable assessment. Availability of molecular evaluation of gliomas facilitates timely decisions regarding patient follow-up with the selection of the most appropriate treatment protocols. Significant progress in the inclusion of molecular biomarkers for their subsequent clinical application has been made since 2016 when the WHO CNS classification first used molecular markers to classify gliomas. In this review, we consider the methodological approaches used to determine mutations in the promoter region of the TERT gene in tumors of the central nervous system. In addition to classical molecular genetical methods, other methods for determining TERT mutations based on mass spectrometry, magnetic resonance imaging, next-generation sequencing, and nanopore sequencing are reviewed with an assessment of advantages and disadvantages. Beyond that, noninvasive diagnostic methods based on the determination of the mutational status of the TERT promoter are discussed.
Collapse
Affiliation(s)
- Tsimur Hasanau
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Eduard Pisarev
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Olga Kisil
- Gause Institute of New Antibiotics, 119021 Moscow, Russia;
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan;
| | - Florence Le Calvez-Kelm
- Genomic Epidemiology Branch, International Agency for Research on Cancer (IARC), 69372 Lyon, France;
| | - Maria Zvereva
- Chair of Chemistry of Natural Compounds, Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Arita H, Ichimura K. Prognostic significance of TERT promoter mutations in adult-type diffuse gliomas. Brain Tumor Pathol 2022; 39:121-129. [DOI: 10.1007/s10014-021-00424-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022]
|
12
|
Pagni S, Mills JD, Frankish A, Mudge JM, Sisodiya SM. Non-coding regulatory elements: Potential roles in disease and the case of epilepsy. Neuropathol Appl Neurobiol 2021; 48:e12775. [PMID: 34820881 DOI: 10.1111/nan.12775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 12/27/2022]
Abstract
Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA.
Collapse
Affiliation(s)
- Susanna Pagni
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Amsterdam UMC, Department of (Neuro)Pathology, Amsterdam Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Jonathan M Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| |
Collapse
|
13
|
Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 2021; 49:11629-11642. [PMID: 34086966 PMCID: PMC8599731 DOI: 10.1093/nar/gkab460] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer – a major lesion of UV radiation-induced products – or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 – two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
14
|
TERT Promoter Alterations in Glioblastoma: A Systematic Review. Cancers (Basel) 2021; 13:cancers13051147. [PMID: 33800183 PMCID: PMC7962450 DOI: 10.3390/cancers13051147] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Glioblastoma is the most common malignant primary brain tumor in adults. Glioblastoma accounts for 2 to 3 cases per 100,000 persons in North America and Europe. Glioblastoma classification is now based on histopathological and molecular features including isocitrate dehydrogenase (IDH) mutations. At the end of the 2000s, genome-wide sequencing of glioblastoma identified recurrent somatic genetic alterations involved in oncogenesis. Among them, the alterations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are highly recurrent and occur in 70% to 80% of all glioblastomas, including glioblastoma IDH wild type and glioblastoma IDH mutated. This review focuses on recent advances related to physiopathological mechanisms, diagnosis, and clinical implications. Abstract Glioblastoma, the most frequent and aggressive primary malignant tumor, often presents with alterations in the telomerase reverse transcriptase promoter. Telomerase is responsible for the maintenance of telomere length to avoid cell death. Telomere lengthening is required for cancer cell survival and has led to the investigation of telomerase activity as a potential mechanism that enables cancer growth. The aim of this systematic review is to provide an overview of the available data concerning TERT alterations and glioblastoma in terms of incidence, physiopathological understanding, and potential therapeutic implications.
Collapse
|