1
|
Moghazy HM, Abdelhaliem NG, Mohammed SA, Hassan A, Abdelrahman A. Liraglutide versus pramlintide in protecting against cognitive function impairment through affecting PI3K/AKT/GSK-3β/TTBK1 pathway and decreasing Tau hyperphosphorylation in high-fat diet- streptozocin rat model. Pflugers Arch 2024; 476:779-795. [PMID: 38536493 PMCID: PMC11033245 DOI: 10.1007/s00424-024-02933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 04/05/2024]
Abstract
The American Diabetes Association guidelines (2021) confirmed the importance of raising public awareness of diabetes-induced cognitive impairment, highlighting the links between poor glycemic control and cognitive impairment. The characteristic brain lesions of cognitive dysfunction are neurofibrillary tangles (NFT) and senile plaques formed of amyloid-β deposition, glycogen synthase kinase 3 beta (GSK3β), and highly homologous kinase tau tubulin kinase 1 (TTBK1) can phosphorylate Tau proteins at different sites, overexpression of these enzymes produces extensive phosphorylation of Tau proteins making them insoluble and enhance NFT formation, which impairs cognitive functions. The current study aimed to investigate the potential contribution of liraglutide and pramlintide in the prevention of diabetes-induced cognitive dysfunction and their effect on the PI3K/AKT/GSK-3β/TTBK1 pathway in type 2 diabetic (T2D) rat model. T2D was induced by administration of a high-fat diet for 10 weeks, then injection of a single dose of streptozotocin (STZ); treatment was started with either pramlintide (200 μg/kg/day sc) or liraglutide (0.6 mg/kg/day sc) for 6 weeks in addition to the HFD. At the end of the study, cognitive functions were assessed by novel object recognition and T-maze tests. Then, rats were sacrificed for biochemical and histological assessment of the hippocampal tissue. Both pramlintide and liraglutide treatment revealed equally adequate control of diabetes, prevented the decline in memory function, and increased PI3K/AKT expression while decreasing GSK-3β/TTBK1 expression; however, liraglutide significantly decreased the number of Tau positive cells better than pramlintide did. This study confirmed that pramlintide and liraglutide are promising antidiabetic medications that could prevent associated cognitive disorders in different mechanisms.
Collapse
Affiliation(s)
- Hoda M Moghazy
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | | | | | - Asmaa Hassan
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
2
|
Scott A, Palmer D, Newell B, Lin I, Cayton CA, Paulson A, Remde P, Richard JM. Ventral Pallidal GABAergic Neuron Calcium Activity Encodes Cue-Driven Reward Seeking and Persists in the Absence of Reward Delivery. J Neurosci 2023; 43:5191-5203. [PMID: 37339880 PMCID: PMC10342224 DOI: 10.1523/jneurosci.0013-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/10/2023] [Indexed: 06/22/2023] Open
Abstract
Reward-seeking behavior is often initiated by environmental cues that signal reward availability. This is a necessary behavioral response; however, cue reactivity and reward-seeking behavior can become maladaptive. To better understand how cue-elicited reward seeking becomes maladaptive, it is important to understand the neural circuits involved in assigning appetitive value to rewarding cues and actions. Ventral pallidum (VP) neurons are known to contribute to cue-elicited reward-seeking behavior and have heterogeneous responses in a discriminative stimulus (DS) task. The VP neuronal subtypes and output pathways that encode distinct aspects of the DS task remain unknown. Here, we used an intersectional viral approach with fiber photometry to record bulk calcium activity in VP GABAergic (VP GABA) neurons in male and female rats as they learned and performed the DS task. We found that VP GABA neurons are excited by reward-predictive cues but not neutral cues and that this response develops over time. We also found that this cue-evoked response predicts reward-seeking behavior and that inhibiting this VP GABA activity during cue presentation decreases reward-seeking behavior. Additionally, we found increased VP GABA calcium activity at the time of expected reward delivery, which occurred even on trials when reward was omitted. Together, these findings suggest that VP GABA neurons encode reward expectation, and calcium activity in these neurons encodes the vigor of cue-elicited reward seeking.SIGNIFICANCE STATEMENT VP circuitry is a major driver of cue-evoked behaviors. Previous work has found that VP neurons have heterogenous responses and contributions to reward-seeking behavior. This functional heterogeneity is because of differences of neurochemical subtypes and projections of VP neurons. Understanding the heterogenous responses among and within VP neuronal cell types is a necessary step in further understanding how cue-evoked behavior becomes maladaptive. Our work explores the canonical GABAergic VP neuron and how the calcium activity of these cells encodes components of cue-evoked reward seeking, including the vigor and persistence of reward seeking.
Collapse
Affiliation(s)
- Alexandra Scott
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dakota Palmer
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
| | - Bailey Newell
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Iris Lin
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Christelle A Cayton
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anika Paulson
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Paige Remde
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jocelyn M Richard
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
3
|
Bashore FM, Marquez AB, Chaikuad A, Howell S, Dunn AS, Beltran AA, Smith JL, Drewry DH, Beltran AS, Axtman AD. Modulation of tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis. Sci Rep 2023; 13:6118. [PMID: 37059819 PMCID: PMC10104807 DOI: 10.1038/s41598-023-32854-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
Tau tubulin kinase 1 and 2 (TTBK1/2) are highly homologous kinases that are expressed and mediate disease-relevant pathways predominantly in the brain. Distinct roles for TTBK1 and TTBK2 have been delineated. While efforts have been devoted to characterizing the impact of TTBK1 inhibition in diseases like Alzheimer's disease and amyotrophic lateral sclerosis, TTBK2 inhibition has been less explored. TTBK2 serves a critical function during cilia assembly. Given the biological importance of these kinases, we designed a targeted library from which we identified several chemical tools that engage TTBK1 and TTBK2 in cells and inhibit their downstream signaling. Indolyl pyrimidinamine 10 significantly reduced the expression of primary cilia on the surface of human induced pluripotent stem cells (iPSCs). Furthermore, analog 10 phenocopies TTBK2 knockout in iPSCs, confirming a role for TTBK2 in ciliogenesis.
Collapse
Affiliation(s)
- Frances M Bashore
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ariana B Marquez
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, 60438, Frankfurt, Germany
| | - Stefanie Howell
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrea S Dunn
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alvaro A Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adriana S Beltran
- Human Pluripotent Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Ahamad S, Hema K, Gupta D. Identification of Novel Tau-Tubulin Kinase 2 Inhibitors Using Computational Approaches. ACS OMEGA 2023; 8:13026-13037. [PMID: 37065061 PMCID: PMC10099139 DOI: 10.1021/acsomega.3c00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Tau tubulin kinase 2 (TTBK2) associated with multiple diseases is one of the kinases which phosphorylates tau and tubulin. Numerous efforts have been made to understand the role of TTBK2 in protein folding mechanisms and misfolding behavior. The misfolded protein intermediates form polymers with unwanted aggregation properties that initiate several diseases, including Alzheimer's. The availability of TTBK2 inhibitors can enhance the understanding of the molecular mechanism of action of the kinase and assist in developing novel therapeutics. In the quest for TTBK2 inhibitors, this study focuses on screening two chemical libraries (ChEMBL and ZINC-FDA). The molecular docking, RO5/absorption, distribution, metabolism, and excretion/toxicity, density functional theory, molecular dynamics (MD) simulations, and molecular mechanics with generalized Born and surface area solvation techniques enabled shortlisting of the four most active compounds, namely, ChEMBL1236395, ChEMBL2104398, ChEMBL3427435, and ZINC000000509440. Moreover, 500 ns MD simulation was performed for each complex, which provided valuable insights into the structural changes in the complexes. The relative fluctuation, solvent accessible surface area, atomic gyration, compactness covariance, and free energy landscapes revealed that the compounds could stabilize the TTBK2 protein. Overall, this study would be valuable for the researchers targeting the development of novel TTBK2 inhibitors.
Collapse
|
5
|
Qi B, Song Y, Chen C, Zhao L, Ma W, Meng S, Zhuang X, Lin H, Liang J, Cui Y, Xie K. Molecular hydrogen attenuates sepsis-induced cognitive dysfunction through regulation of tau phosphorylation. Int Immunopharmacol 2023; 114:109603. [PMID: 36538853 DOI: 10.1016/j.intimp.2022.109603] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Sepsis-associated encephalopathy (SAE) is a cognitive dysfunction caused by sepsis. Hyperphosphorylated tau is considered to play a significant role in the progression of neurodegenerative disease and also contributes to cognitive dysfunction in septic mice. Molecular hydrogen (H2) plays an antioxidant and anti-inflammatory role, and plays a protective role in septic mice. This study explored the possible effects of H2 on cognition and tau phosphorylation in a mouse model of SAE. METHODS The model of sepsis was established in C57BL/6J male mice by cecal ligation and puncture surgery. Mice treated with 2 % H2 inhalation for 60 min at 1 h and 6 h after surgery, respectively. HY-15769, the inhibitor of Tau Tubulin Kinase 1 (TTBK1), was injected 1 h before the surgery. The 7-day survival rates of the mice were recorded. Cognitive behavior was tested with both novel object recognition and the Y-maze novelty arm recognition on day 7 after surgery. Hematoxylin-eosin staining was used to observe the histological damage in CA1 region of hippocampus. The expression of inflammatory factors in hippocampus was assessed by Elisa. Western blotting was adopted to determine the tau phosphorylation levels at AT8 epitopes (pSer202 and pThr205) and T22 epitopes (neurofibrillary tangle protein oligomer), and the GSK3β phosphorylation levels (Tyr216), as well as p-Ser422 and TTBK1 levels in the hippocampus. The number of dendritic spine and mushroom type of dendritic spines in the hippocampus were assessed by Golgi staining. RESULTS The survival rate, visual and spatial learning ability, and memory ability were improved in septic mice treated with H2. After H2 treatment, the density of dendritic spine, mushroom type of dendritic spine, and the number of normal hippocampal neurons were progressively elevated. H2 decreased the levels of phosphorylated tau protein, tau oligomer and TTBK1, as well as the phosphorylation of tau key kinase. Furthermore, the injection of HY-15769 (a TTBK1 inhibitor) protected SAE through the similar way. CONCLUSION The protective effect of H2 on cognitive dysfunction induced by SAE may be achieved by inhibiting tau phosphorylation, which is perhaps related with the inhibition of TTBK1.
Collapse
Affiliation(s)
- Bo Qi
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu Song
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chen Chen
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Anesthesiology, Tianjin Beichen Hospital, Tianjin 300134, China
| | - Lina Zhao
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wanjie Ma
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuqi Meng
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiaoli Zhuang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Huayi Lin
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Liang
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yan Cui
- Department of Pathogen Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin 300070, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
6
|
Chan JCY, Gorski SM. Unlocking the gate to GABARAPL2. Biol Futur 2022; 73:157-169. [PMID: 35486231 DOI: 10.1007/s42977-022-00119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
GABARAPL2 was initially characterized for its involvement in protein transport and membrane fusion events, but has since gained notoriety for its role in autophagy. GABARAPL2 is frequently studied alongside its GABARAP subfamily members, GABARAP and GABARAPL1. Although functional redundancy exists among the subfamily members, a complex network of molecular interactions, physiological processes and pathologies can be primarily related to GABARAPL2. GABARAPL2 has a multifaceted role, ranging from cellular differentiation to intracellular degradation. Much of what we know about GABARAPL2 is gained through identifying its interacting partners-a list that is constantly growing. In this article, we review both the autophagy-dependent and autophagy-independent roles of GABARAPL2, and emphasize their implications for both health and disease.
Collapse
Affiliation(s)
- Jennifer C Y Chan
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Sharon M Gorski
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, V5Z 1L3, Canada. .,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
7
|
Tian Y, Wang Y, Jablonski AM, Hu Y, Sugam JA, Koglin M, Stachel SJ, Zhou H, Uslaner JM, Parmentier-Batteur S. Tau-tubulin kinase 1 phosphorylates TDP-43 at disease-relevant sites and exacerbates TDP-43 pathology. Neurobiol Dis 2021; 161:105548. [PMID: 34752923 DOI: 10.1016/j.nbd.2021.105548] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/09/2021] [Accepted: 11/02/2021] [Indexed: 12/01/2022] Open
Abstract
TDP-43 pathology is a hallmark of Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal lobar degeneration (FTLD). Namely, both diseases feature aggregated and phosphorylated TDP-43 containing inclusions in the cytoplasm and a loss of nuclear TDP-43 in affected neurons. It has been reported that tau tubulin kinase (TTBK)1/2 phosphorylate TDP-43 and TTBK1/2 overexpression induced neuronal loss and behavioral deficits in a C. elegans model of ALS. Here we aimed to elucidate the molecular mechanisms of TTBK1 in TDP-43 pathology. TTBK1 levels were observed to be elevated in ALS patients' post-mortem motor cortex. Also, TTBK1 was found to phosphorylate TDP-43 at disease-relevant sites in vitro directly, and this phosphorylation accelerated TDP-43 formation of high molecular species. Overexpression of TTBK1 in mammalian cells induced TDP-43 phosphorylation and the construction of high molecular species, concurrent with TDP-43 mis-localization and cytoplasmic inclusions. In addition, when TTBK1 was knocked down or pharmacologically inhibited, TDP-43 phosphorylation and aggregation were significantly alleviated. Functionally, TTBK1 knockdown could rescue TDP-43 overexpression-induced neurite and neuronal loss in iPSC-derived GABAergic neurons. These findings suggest that phosphorylation plays a critical role in the pathogenesis of TDP-43 pathology and that TTBK1 inhibition may have therapeutic potential for the treatment of ALS and FTLD.
Collapse
Affiliation(s)
- Yuan Tian
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA.
| | - Yi Wang
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Angela M Jablonski
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Yinghui Hu
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Jonathan A Sugam
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Markus Koglin
- Mass Spectrometry & Biophysics, MRL, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Shawn J Stachel
- Chemistry, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Heather Zhou
- Genetics and Pharmacogenomics, MRL, Merck & Co., Inc, 2000 Galloping Hill Rd, Kenilworth, NJ 07033, USA
| | - Jason M Uslaner
- Neuroscience, MRL, Merck & Co., Inc, 770 Sumneytown Pike, West Point, PA 19486, USA
| | | |
Collapse
|