1
|
Canal-Garcia A, Branca RM, Francis PT, Ballard C, Winblad B, Lehtiö J, Nilsson P, Aarsland D, Pereira JB, Bereczki E. Proteomic signatures of Alzheimer's disease and Lewy body dementias: A comparative analysis. Alzheimers Dement 2024. [PMID: 39711511 DOI: 10.1002/alz.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION We aimed to identify unique proteomic signatures of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease dementia (PDD). METHODS We conducted a comparative proteomic analysis of 33 post mortem brains from AD, DLB, and PDD individuals without dementia focusing on prefrontal, cingulate, and parietal cortices, using weighted gene co-expression network analyses with differential enrichment analysis. RESULTS Network modules revealed hub proteins common to all dementias. Lewy body dementias differed from AD by reduced levels of the autophagy protein p62 (SQSTM1), whereas DLB was distinguished from both AD and PDD by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) across brain regions. An increase in mitochondrial and synaptic proteins was related to better cognition whereas enrichment in the extracellular matrix, complement system, and autophagy proteins was associated with greater cognitive impairment. DISCUSSION Our study offers valuable insights into the network-based biomarker characterization of molecular signatures of AD, DLB, and PDD. HIGHLIGHTS Reduced levels of the autophagy protein p62 (SQSTM1) differentiated Lewy body dementias from Alzheimer's disease (AD) across multiple brain regions. Dementia with Lewy bodies (DLB) was distinguished from both AD and Parkinson's disease dementia (PDD) by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) levels across brain regions. Key mitochondrial oxidative phosphorylation proteins (e.g., COX7A2, TOMM40L, NDUFV1), and synaptic proteins (e.g., GABRB3, GABRB2, GLUA3, GLUA4, SNAP47, dynamin1) were more abundant in preserved cognitive states. Extracellular matrix proteins and members of the complement system (decorin, biglycan, C4A, C4B) showed a strong positive correlation with cognitive decline.
Collapse
Affiliation(s)
- Anna Canal-Garcia
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rui M Branca
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paul T Francis
- King's College London, Wolfson Centre for Age-Related Diseases, London, UK
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Clive Ballard
- University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Stockholm, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Stockholm, Sweden
| | - Dag Aarsland
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Stockholm, Sweden
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Joana B Pereira
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erika Bereczki
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, BioClinicum, Stockholm, Sweden
| |
Collapse
|
2
|
Thierry M, Ponce J, Martà-Ariza M, Askenazi M, Faustin A, Leitner D, Pires G, Kanshin E, Drummond E, Ueberheide B, Wisniewski T. The influence of APOE ε4 on the pTau interactome in sporadic Alzheimer's disease. Acta Neuropathol 2024; 147:91. [PMID: 38772917 PMCID: PMC11108952 DOI: 10.1007/s00401-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/12/2024] [Accepted: 05/12/2024] [Indexed: 05/23/2024]
Abstract
APOEε4 is the major genetic risk factor for sporadic Alzheimer's disease (AD). Although APOEε4 is known to promote Aβ pathology, recent data also support an effect of APOE polymorphism on phosphorylated Tau (pTau) pathology. To elucidate these potential effects, the pTau interactome was analyzed across APOE genotypes in the frontal cortex of 10 advanced AD cases (n = 5 APOEε3/ε3 and n = 5 APOEε4/ε4), using a combination of anti-pTau pS396/pS404 (PHF1) immunoprecipitation (IP) and mass spectrometry (MS). This proteomic approach was complemented by an analysis of anti-pTau PHF1 and anti-Aβ 4G8 immunohistochemistry, performed in the frontal cortex of 21 advanced AD cases (n = 11 APOEε3/ε3 and n = 10 APOEε4/ε4). Our dataset includes 1130 and 1330 proteins enriched in IPPHF1 samples from APOEε3/ε3 and APOEε4/ε4 groups (fold change ≥ 1.50, IPPHF1 vs IPIgG ctrl). We identified 80 and 68 proteins as probable pTau interactors in APOEε3/ε3 and APOEε4/ε4 groups, respectively (SAINT score ≥ 0.80; false discovery rate (FDR) ≤ 5%). A total of 47/80 proteins were identified as more likely to interact with pTau in APOEε3/ε3 vs APOEε4/ε4 cases. Functional enrichment analyses showed that they were significantly associated with the nucleoplasm compartment and involved in RNA processing. In contrast, 35/68 proteins were identified as more likely to interact with pTau in APOEε4/ε4 vs APOEε3/ε3 cases. They were significantly associated with the synaptic compartment and involved in cellular transport. A characterization of Tau pathology in the frontal cortex showed a higher density of plaque-associated neuritic crowns, made of dystrophic axons and synapses, in APOEε4 carriers. Cerebral amyloid angiopathy was more frequent and severe in APOEε4/ε4 cases. Our study supports an influence of APOE genotype on pTau-subcellular location in AD. These results suggest a facilitation of pTau progression to Aβ-affected brain regions in APOEε4 carriers, paving the way to the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Manon Thierry
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
| | - Jackeline Ponce
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Mitchell Martà-Ariza
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Arline Faustin
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Dominique Leitner
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
- Department of Neurology, Comprehensive Epilepsy Center, Grossman School of Medicine, New York University, New York, NY, USA
| | - Geoffrey Pires
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA
| | - Evgeny Kanshin
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Eleanor Drummond
- Brain and Mind Centre, School of Medical Science, University of Sydney, Sydney, Australia
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, Proteomics Laboratory, Grossman School of Medicine, New York University, New York, NY, USA
| | - Thomas Wisniewski
- Department of Neurology, Center for Cognitive Neurology, Grossman School of Medicine, New York University, Science Building, Rm 1023J, 435 East 30th Street, New York, NY, USA.
- Departments of Pathology and Psychiatry, Grossman School of Medicine, New York University, Science Building, Rm 1017, 435 East 30 Street, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger MT, Sclafani OR, Fu V, Beckett ER, Vigers M, Buée L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision proteoform design for 4R tau isoform selective templated aggregation. Proc Natl Acad Sci U S A 2024; 121:e2320456121. [PMID: 38568974 PMCID: PMC11009657 DOI: 10.1073/pnas.2320456121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/29/2024] [Indexed: 04/05/2024] Open
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naive 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Photothermal Spectroscopy Corp., Santa Barbara, CA93101
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, São Paulo09600-000, Brazil
| | - Matthew T. Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Olivia R. Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Emily R. Beckett
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, Lille Neuroscience & CognitionLilleF-59000, France
- Laboratoire d'Excellence Development of Innovative Strategies for a Transdisciplinary Approach to Alzheimer's Disease, Alzheimer & Tauopathies Team, LilleF-59000, France
| | - Isabelle Landrieu
- Center National de la Recherche Scientifique Équipe de Recherche 9002–Integrative Structural Biology, LilleF-59000, France
- University of Lille, Inserm, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, U1167–Risk Factors and Molecular Determinants of Aging-Related DiseasesLilleF-59000, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA93106
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA93106
- Department of Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA93106
| |
Collapse
|
4
|
Longhini AP, DuBose A, Lobo S, Vijayan V, Bai Y, Rivera EK, Sala-Jarque J, Nikitina A, Carrettiero DC, Unger M, Sclafani O, Fu V, Vigers M, Buee L, Landrieu I, Shell S, Shea JE, Han S, Kosik KS. Precision Proteoform Design for 4R Tau Isoform Selective Templated Aggregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555649. [PMID: 37693456 PMCID: PMC10491155 DOI: 10.1101/2023.08.31.555649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Prion-like spread of disease-specific tau conformers is a hallmark of all tauopathies. A 19-residue probe peptide containing a P301L mutation and spanning the R2/R3 splice junction of tau, folds and stacks into seeding-competent fibrils and induces aggregation of 4R, but not 3R tau. These tau peptide fibrils propagate aggregated intracellular tau over multiple generations, have a high β-sheet content, a colocalized lipid signal, and adopt a well-defined U-shaped fold found in 4R tauopathy brain-derived fibrils. Fully atomistic replica exchange molecular dynamics (MD) simulations were used to compute the free energy landscapes of the conformational ensemble of the peptide monomers. These identified an aggregation-prohibiting β-hairpin structure and an aggregation-competent U-fold unique to 4R tauopathy fibrils. Guided by MD simulations, we identified that the N-terminal-flanking residues to PHF6, which slightly vary between 4R and 3R isoforms, modulate seeding. Strikingly, when a single amino acid switch at position 305 replaced the serine of 4R tau with a lysine from the corresponding position in the first repeat of 3R tau, the seeding induced by the 19-residue peptide was markedly reduced. Conversely, a 4R tau mimic with three repeats, prepared by replacing those amino acids in the first repeat with those amino acids uniquely present in the second repeat, recovered aggregation when exposed to the 19-residue peptide. These peptide fibrils function as partial prions to recruit naïve 4R tau-ten times the length of the peptide-and serve as a critical template for 4R tauopathy propagation. These results hint at opportunities for tau isoform-specific therapeutic interventions.
Collapse
Affiliation(s)
- Andrew P. Longhini
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Austin DuBose
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Samuel Lobo
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Vishnu Vijayan
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Yeran Bai
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Photothermal Spectroscopy Corp., Santa Barbara, CA 93101, USA
| | - Erica Keane Rivera
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Julia Sala-Jarque
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Arina Nikitina
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Daniel C. Carrettiero
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, Brazil
| | - Matthew Unger
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Olivia Sclafani
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Valerie Fu
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
| | - Michael Vigers
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, LilNCog – Lille Neuroscience & Cognition, F-59000 Lille, France
- LabEx DISTALZ, Alzheimer & Tauopathies Team, F-59000 Lille, France
| | - Isabelle Landrieu
- CNRS EMR9002 – BSI - Integrative Structural Biology F-59000 Lille, France
| | - Scott Shell
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Joan E. Shea
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000 Lille, France. Department of Physics, University of California, Santa Barbara, Santa Barbara, CA
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| | - Kenneth S. Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
- Molecular, Cell and Developmental Biology, University of California Santa Barbara, Santa Barbara, California, USA
- Lead Contacts
| |
Collapse
|
5
|
Pinkerton M, Lourenco G, Pacheco MT, Halliday GM, Kiernan MC, Tan RH. Survival in sporadic ALS is associated with lower p62 burden in the spinal cord. J Neuropathol Exp Neurol 2023; 82:769-773. [PMID: 37414530 PMCID: PMC10440721 DOI: 10.1093/jnen/nlad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
The autophagy marker p62 appears as a consistent component of pathological aggregates in amyotrophic lateral sclerosis (ALS) and its modulation to facilitate protein degradation has been proposed as a potential therapeutic target. Importantly, recent studies have implicated diffuse phosphorylated TDP-43 inclusions that are immuno-negative for p62 in more rapid disease, highlighting the need for better understanding of p62 involvement in ALS pathogenesis. The present study set out to assess p62 pathology in the motor neurons of 31 patients with sporadic ALS that had either a short (<2 years) or longer (4-7 years) disease duration to determine its association with pTDP-43 pathology, motor neuron loss, and survival in sporadic disease. Our results identified significantly more cytoplasmic p62 aggregates in the spinal cord of patients with a shorter survival. Disease duration demonstrated a negative association with p62 burden and density of remaining motor neurons in the spinal cord, suggesting that survival in sporadic ALS is associated with the successful clearance of lower motor neurons with p62 aggregates. These findings implicate the autophagy pathway in ALS survival and provide support for further study of p62 as a potential prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Monica Pinkerton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Guinevere Lourenco
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Wang M, Li B, Liu Y, Zhang M, Huang C, Cai T, Jia Y, Huang X, Ke H, Liu S, Yang S. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14:1107507. [PMID: 36814500 PMCID: PMC9939528 DOI: 10.3389/fphar.2023.1107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Sleep disorders are common clinical psychosomatic disorders that can co-exist with a variety of conditions. In humans and animal models, sleep deprivation (SD) is closely related with gastrointestinal diseases. Shu-Xie Decoction (SX) is a traditional Chinese medicine (TCM) with anti-nociceptive, anti-inflammatory, and antidepressant properties. SX is effective in the clinic for treating patients with abnormal sleep and/or gastrointestinal disorders, but the underlying mechanisms are not known. This study investigated the mechanisms by which SX alleviates SD-induced colon injury in vivo. Methods: C57BL/6 mice were placed on an automated sleep deprivation system for 72 h to generate an acute sleep deprivation (ASD) model, and low-dose SX (SXL), high-dose SX (SXH), or S-zopiclone (S-z) as a positive control using the oral gavage were given during the whole ASD-induced period for one time each day. The colon length was measured and the colon morphology was visualized using hematoxylin and eosin (H&E) staining. ROS and the redox biomarkers include reduced glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected. Quantitative real-time PCR (qRT-PCR), molecular docking, immunofluorescence and western blotting assays were performed to detect the antioxidant signaling pathways. Results: ASD significantly increased FBG levels, decreased colon length, moderately increased the infiltration of inflammatory cells in the colon mucosa, altered the colon mucosal structure, increased the levels of ROS, GSH, MDA, and SOD activity compared with the controls. These adverse effects were significantly alleviated by SX treatment. ASD induced nuclear translocation of NRF2 in the colon mucosal cells and increased the expression levels of p62, NQO1, and HO1 transcripts and proteins, but these effects were reversed by SX treatment. Conclusion: SX decoction ameliorated ASD-induced oxidative stress and colon injury by suppressing the p62/KEAP1/NRF2/HO1/NQO1 signaling pathway. In conclusion, combined clinical experience, SX may be a promising drug for sleep disorder combined with colitis.
Collapse
Affiliation(s)
- Mengyuan Wang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bo Li
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Yijiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengting Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Teng Cai
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yibing Jia
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Huang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongfei Ke
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Shuyu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| |
Collapse
|
7
|
Kavanagh T, Halder A, Drummond E. Tau interactome and RNA binding proteins in neurodegenerative diseases. Mol Neurodegener 2022; 17:66. [PMID: 36253823 PMCID: PMC9575286 DOI: 10.1186/s13024-022-00572-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Pathological tau aggregation is a primary neuropathological feature of many neurodegenerative diseases. Intriguingly, despite the common presence of tau aggregates in these diseases the affected brain regions, clinical symptoms, and morphology, conformation, and isoform ratio present in tau aggregates varies widely. The tau-mediated disease mechanisms that drive neurodegenerative disease are still unknown. Tau interactome studies are critically important for understanding tauopathy. They reveal the interacting partners that define disease pathways, and the tau interactions present in neuropathological aggregates provide potential insight into the cellular environment and protein interactions present during pathological tau aggregation. Here we provide a combined analysis of 12 tau interactome studies of human brain tissue, human cell culture models and rodent models of disease. Together, these studies identified 2084 proteins that interact with tau in human tissue and 1152 proteins that interact with tau in rodent models of disease. Our combined analysis of the tau interactome revealed consistent enrichment of interactions between tau and proteins involved in RNA binding, ribosome, and proteasome function. Comparison of human and rodent tau interactome studies revealed substantial differences between the two species. We also performed a second analysis to identify the tau interacting proteins that are enriched in neurons containing granulovacuolar degeneration or neurofibrillary tangle pathology. These results revealed a timed dysregulation of tau interactions as pathology develops. RNA binding proteins, particularly HNRNPs, emerged as early disease-associated tau interactors and therefore may have an important role in driving tau pathology.
Collapse
Affiliation(s)
- Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Aditi Halder
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 94 Mallett Street, Sydney, NSW Australia
| |
Collapse
|
8
|
LaCroix MS, Mirbaha H, Shang P, Zandee S, Foong C, Prat A, White CL, Stuve O, Diamond MI. Tau seeding in cases of multiple sclerosis. Acta Neuropathol Commun 2022; 10:146. [PMID: 36221144 PMCID: PMC9552360 DOI: 10.1186/s40478-022-01444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/08/2022] [Indexed: 11/10/2022] Open
Abstract
Relapsing remitting multiple sclerosis (MS) is an inflammatory demyelinating disorder of the central nervous system that in many cases leads to progressive MS, a neurodegenerative disease. Progressive MS is untreatable and relentless, and its cause is unknown. Prior studies of MS have documented neuronal accumulation of phosphorylated tau protein, which characterizes another heterogeneous group of neurogenerative disorders, the tauopathies. Known causes of tauopathy are myriad, and include point mutations within the tau gene, amyloid beta accumulation, repeated head trauma, and viral infection. We and others have proposed that tau has essential features of a prion. It forms intracellular assemblies that can exit a cell, enter a secondary cell, and serve as templates for their own replication in a process termed "seeding." We have previously developed specialized "biosensor" cell systems to detect and quantify tau seeds in brain tissues. We hypothesized that progressive MS is a tauopathy, potentially triggered by inflammation. We tested for and detected tau seeding in frozen brain tissue of 6/8 subjects with multiple sclerosis. We then evaluated multiple brain regions from a single subject for whom we had detailed clinical history. We observed seeding outside of MS plaques that was enriched by immunopurification with two anti-tau antibodies (HJ8.5 and MD3.1). Immunohistochemistry with AT8 and MD3.1 confirmed prior reports of tau accumulation in MS. Although larger studies are required, our data suggest that progressive MS may be considered a secondary tauopathy.
Collapse
Affiliation(s)
- Michael S LaCroix
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Hilda Mirbaha
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ping Shang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephanie Zandee
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montreal, Quebec, H2X 0A9, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Chan Foong
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alexandre Prat
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Neuroimmunology Research Laboratory, Montreal, Quebec, H2X 0A9, Canada
- Department of Neurosciences, Faculty of Medicine, Université de Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Charles L White
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Olaf Stuve
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, NL10.120, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Morteza Bagi H, Ahmadi S, Tarighat F, Rahbarghazi R, Soleimanpour H. Interplay between exosomes and autophagy machinery in pain management: State of the art. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100095. [PMID: 35720640 PMCID: PMC9198378 DOI: 10.1016/j.ynpai.2022.100095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/04/2022] [Accepted: 06/04/2022] [Indexed: 05/30/2023]
Abstract
Despite recent progress regarding inexpensive medical approaches, many individuals suffer from moderate to severe pain globally. The discovery and advent of exosomes, as biological nano-sized vesicles, has revolutionized current knowledge about underlying mechanisms associated with several pathological conditions. Indeed, these particles are touted as biological bio-shuttles with the potential to carry specific signaling biomolecules to cells in proximity and remote sites, maintaining cell-to-cell communication in a paracrine manner. A piece of evidence points to an intricate relationship between exosome biogenesis and autophagy signaling pathways at different molecular levels. A close collaboration of autophagic response with exosome release can affect the body's hemostasis and physiology of different cell types. This review is a preliminary attempt to highlight the possible interface of autophagy flux and exosome biogenesis on pain management with a special focus on neuropathic pain. It is thought that this review article will help us to understand the interplay of autophagic response and exosome biogenesis in the management of pain under pathological conditions. The application of therapies targeting autophagy pathway and exosome abscission can be an alternative strategy in the regulation of pain.
Collapse
Key Words
- Autophagy
- CESC-Exo, cartilage endplate stem cell-derived Exo
- Cell Therapy
- ER, endoplasmic reticulum
- ESCRT, endosomal sorting complex required for transport
- HSPA8, heat shock protein family A member 8
- LAMP2, lysosomal‑associated membrane protein type 2
- LAT1, large amino acid transporter
- LTs, leukotrienes
- MAPK8/JNK, mitogen-activated protein kinase 8p-/c-Jun N-terminal Kinase
- MMP, matrix metalloproteinase
- MVBs, multivesicular bodies
- NFKB/NF-κB, nuclear factor of kappa light polypeptide gene enhancer in B cells
- NPCs, nucleus pulposus cells
- NPCs-Exo, NPCs-derived Exo
- Neural Exosome
- Pain Management
- SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptors
- TLR4, Toll-like receptor 4
- TRAF6, TNF receptor-associated factor 6
- nSMase, ceramide-generating enzyme neutral sphingomyelinases
Collapse
Affiliation(s)
- Hamidreza Morteza Bagi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Ahmadi
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faezeh Tarighat
- Emergency and Trauma Care Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Soleimanpour
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|