1
|
Mao JQ, Cheng L, Zhang YD, Xie GJ, Wang P. Chinese formula Guben-Jiannao Ye alleviates the dysfunction of circadian and sleep rhythms in APP/PS1 mice implicated in activation of the PI3K/AKT/mTOR signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118696. [PMID: 39151711 DOI: 10.1016/j.jep.2024.118696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Chinese formula Guben-Jiannao Ye (GBJNY) formula has a long history of usage in traditional Chinese medicine (TCM) for the treatment of learning and memory disorders as well as senile insomnia. This formulation is derived from Sun Simiao's five tonic pills. Furthermore, modern pharmacological investigations have revealed its ability to improve cognitive impairment and ameliorate sleep-wake circadian rhythm disorders. However, the precise mechanism underlying its efficacy remains elusive. AIM OF THE STUDY The current research explored the modulatory effects and possible mechanisms of GBJNY in circadian rhythm sleep-wake disorders and cognitive dysfunction in Alzheimer's disease using transcriptome sequencing and experimental validation. MATERIALS AND METHODS The LC-MS/MS tandem technology was utilized to qualitatively discern the active components present in GBJNY. The APP/PS1 mice received continuous treatment with GBJNY or Melatonin for 3 months. The learning and memory abilities of mice were assessed utilizing the Morris water maze (MWM) test, while sleep changes were studied utilizing the electroencephalogram (EEG) and electromyogram (EMG). Concurrently, mice's hippocampus clock gene rhythmicity was investigated. Subsequently, we employed HE staining, Golgi staining, and immunofluorescence to observe GBJNY's impact on synaptic damage and neuronal loss. We performed high-throughput sequencing to analyze the mRNA expression profiles of mice, aiming to identify differentially expressed genes (DEGs). Subsequently, we conducted GO and KEGG enrichment analyses to explore associated signaling pathways. Furthermore, we evaluated the expression levels of proteins involved in the PI3K/AKT/mTOR pathway and Aβ deposition in the hippocampus of mice. Through this comprehensive approach, we sought to elucidate and validate the potential mechanisms of action of GBJNY in APP/PS1 mice. RESULTS Results showed 216 DEGs. Following this, we conducted GO enrichment and KEGG pathway analyses to delve deeper into the distinctions and fundamental functions of the mRNA target genes. The enrichment analysis underscored the prominence of the PI3K/Akt/mTOR signaling pathway as the most pivotal among them. Through in vivo experiments, it was further demonstrated that the administration of GBJNY enhanced memory and learning capacities in APP/PS1 mice. Additionally, GBJNY treatment resulted in alterations in the sleep-wake circadian rhythm, characterized by reduced wakefulness and an increase in non-rapid eye movement (NREM) sleep. Moreover, alterations in the peak expression of Per1, Per2, Clock, Cry1, Cry2, and Bmal1 mRNA were noted in the hippocampus of treated mice. Particularly noteworthy were the observed reductions in amyloid-beta (Aβ) deposition within the hippocampus, improvements in neuronal synaptic integrity, and upregulation of mTOR, Akt, and PI3K protein expression in the hippocampal region. These findings underscore the critical involvement of the PI3K/Akt/mTOR signaling pathway in mitigating disturbances in sleep-wake circadian rhythms. CONCLUSIONS GBJNY enhanced the cognitive performance of APP/PS1 mice and altered clock gene expression patterns, alleviating sleep-wake circadian rhythm disruptions. The fundamental mechanism appears to be linked to the PI3K/Akt/mTOR pathway regulation, offering a foundation for potential clinical applications.
Collapse
Affiliation(s)
- Jian-Qin Mao
- Basic Medicine College, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Li Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Yu-Dan Zhang
- Health Medical Center, Hubei Minzu University, Enshi, 445000, China.
| | - Guang-Jing Xie
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| | - Ping Wang
- Engineering Research Center, Hubei University of Chinese Medicine, Wuhan, 430065, China; Hubei Shizhen Laboratory, Wuhan, 430065, China.
| |
Collapse
|
2
|
Barsanele PS, de Assis LVM, da Silva JJ, Furtado EMDO, Fernandes P, Cipolla-Neto J, Poletini MO, Moraes MN. Glaucoma-inducing retinal ganglion cell degeneration alters diurnal rhythm of key molecular components of the central clock and locomotor activity in mice. FASEB J 2024; 38:e70109. [PMID: 39441606 DOI: 10.1096/fj.202401105r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/06/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Glaucoma is a chronic optic neuropathy characterized by the progressive degeneration of retinal ganglion cells (RGC). These cells play a crucial role in transmitting visual and non-visual information to brain regions, including the suprachiasmatic nucleus (SCN), responsible for synchronizing biological rhythms. To understand how glaucoma affects circadian rhythm synchronization, we investigated potential changes in the molecular clock machinery in the SCN. We found that the progressive increase in intraocular pressure (IOP) negatively correlated with spontaneous locomotor activity (SLA). Transcriptome analysis revealed significant alterations in the SCN of glaucomatous mice, including downregulation of genes associated with circadian rhythms. In fact, we showed a loss of diurnal oscillation in the expression of vasoactive intestinal peptide (Vip), its receptor (Vipr2), and period 1 (Per1) in the SCN of glaucomatous mice. These findings were supported by the 7-h phase shift in the peak expression of arginine vasopressin (Avp) in the SCN of mice with glaucoma. Despite maintaining a 24-h period under both light/dark (LD) and constant dark (DD) conditions, glaucomatous mice exhibited altered SLA rhythms, characterized by decreased amplitude. Taken altogether, our findings provide evidence of how glaucoma affects the regulation of the central circadian clock and its consequence on the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Pietra Souza Barsanele
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Juliano Jefferson da Silva
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Eliz Maria de Oliveira Furtado
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Paola Fernandes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maristela Oliveira Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Nathália Moraes
- Laboratório de Cronobiologia Molecular, Departamento de Ciências Biológicas, Instituto de Ciências Ambientais Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, Brazil
- Programa de Pós-graduação em Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
- Laboratório de Neurobiologia, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Qi G, Tang H, Gong P, Liu Y, He C, Hu J, Kang S, Chen L, Qin S. Sex-specific hypothalamic neuropathology and glucose metabolism in an amyloidosis transgenic mouse model of Alzheimer's disease. Cell Biosci 2024; 14:120. [PMID: 39272160 PMCID: PMC11395863 DOI: 10.1186/s13578-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Amyloid toxicity and glucose metabolic disorders are key pathological features during the progression of Alzheimer's disease (AD). While the hypothalamus plays a crucial role in regulating systemic energy balance, the distribution of amyloid plaques in the preoptic, anterior, tuberal, and mammillary regions of the hypothalamus in AD mice, particularly across both sexes, remains largely unclear. Our ongoing research aims to explore hypothalamic neuropathology and glucose metabolic disturbances in a well-described APP/PS1 mouse model of AD. RESULTS Immunocytochemical staining revealed that Old-AD-Female mice exhibited a greater hypothalamic Amyloid β (Aβ) burden than their Old-AD-Male counterparts, with the mammillary bodies showing the most severe accumulation. Analysis of ionized calcium binding adaptor molecule 1 (IBA1) immunoreactivity and Iba1 mRNA indicated differential microgliosis based on sex, while tanycytic territory and ZO-1 tight junction protein expression remained stable in AD mice. Moreover, sex-specific peripheral glucose metabolic parameters (random and fasting blood glucose) seemed to be exacerbated by age. Old AD mice of both sexes exhibited limited hypothalamic activation (c-Fos + cells) in response to blood glucose fluctuations. Hypothalamic Glut 1 expression decreased in young but increased in old female AD mice compared with age-matched male AD mice. Pearson correlation analysis further supported a negative correlation between hypothalamic Aβ load and random blood glucose in old AD groups of both genders, shedding light on the mechanisms underlying this amyloidosis mouse model. CONCLUSION Aged APP/PS1 mice exhibit sex-specific hypothalamic neuropathology and differential glucose metabolism, highlighting distinct pathological mechanisms within each gender.
Collapse
Affiliation(s)
- Guibo Qi
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Han Tang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Pifang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yitong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenzhao He
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jianian Hu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Siying Kang
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Liang Chen
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Wang T, Wang H, Chu Y, Bao M, Li X, Zhang G, Feng J. Daily Brain Metabolic Rhythms of Wild Nocturnal Bats. Int J Mol Sci 2024; 25:9850. [PMID: 39337348 PMCID: PMC11432702 DOI: 10.3390/ijms25189850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Circadian rhythms are found in a wide range of organisms and have garnered significant research interest in the field of chronobiology. Under normal circadian function, metabolic regulation is temporally coordinated across tissues and behaviors within a 24 h period. Metabolites, as the closest molecular regulation to physiological phenotype, have dynamic patterns and their relationship with circadian regulation remains to be fully elucidated. In this study, untargeted brain metabolomics was employed to investigate the daily rhythms of metabolites at four time points corresponding to four typical physiological states in Vespertilio sinensis. Key brain metabolites and associated physiological processes active at different time points were detected, with 154 metabolites identified as rhythmic. Analyses of both metabolomics and transcriptomics revealed that several important physiological processes, including the pentose phosphate pathway and oxidative phosphorylation, play key roles in regulating rhythmic physiology, particularly in hunting and flying behaviors. This study represents the first exploration of daily metabolic dynamics in the bat brain, providing insights into the complex regulatory network of circadian rhythms in mammals at a metabolic level. These findings serve as a valuable reference for future studies on circadian rhythms in nocturnal mammals.
Collapse
Affiliation(s)
- Tianhui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Hui Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Yujia Chu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Mingyue Bao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Xintong Li
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
| | - Guoting Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
| | - Jiang Feng
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (T.W.); (Y.C.); (M.B.); (X.L.); (G.Z.)
- Jilin Provincial International Cooperation Key Laboratory for Biological Control of Agricultural Pests, Changchun 130118, China
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
5
|
Carrero L, Antequera D, Municio C, Carro E. Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease? Neural Regen Res 2024; 19:1967-1972. [PMID: 38227523 DOI: 10.4103/1673-5374.390962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/07/2023] [Indexed: 01/17/2024] Open
Abstract
Dysfunction in circadian rhythms is a common occurrence in patients with Alzheimer's disease. A predominant function of the retina is circadian synchronization, carrying information to the brain through the retinohypothalamic tract, which projects to the suprachiasmatic nucleus. Notably, Alzheimer's disease hallmarks, including amyloid-β, are present in the retinas of Alzheimer's disease patients, followed/associated by structural and functional disturbances. However, the mechanistic link between circadian dysfunction and the pathological changes affecting the retina in Alzheimer's disease is not fully understood, although some studies point to the possibility that retinal dysfunction could be considered an early pathological process that directly modulates the circadian rhythm.
Collapse
Affiliation(s)
- Laura Carrero
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
- PhD Program in Neuroscience, Autonoma de Madrid University, Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Cristina Municio
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), Madrid, Spain; Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| | - Eva Carro
- Neurobiology of Alzheimer's Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Madrid, Spain; Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Yin J, Tuo CM, Yu KY, Hu XH, Fan YY, Wu MN. Diurnal Characteristics of the Orexin System Genes and Its Effects on Pathology at Early Stage in 3xTg-AD Mice. Neuromolecular Med 2023; 25:632-643. [PMID: 37843792 DOI: 10.1007/s12017-023-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of β-amyloid protein (Aβ) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aβ and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aβ and p-tau, and accelerate the development of AD.
Collapse
Affiliation(s)
- Jing Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chun-Mei Tuo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Hong Hu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Carrero L, Antequera D, Alcalde I, Megias D, Ordoñez-Gutierrez L, Gutierrez C, Merayo-Lloves J, Wandosell F, Municio C, Carro E. Altered Clock Gene Expression in Female APP/PS1 Mice and Aquaporin-Dependent Amyloid Accumulation in the Retina. Int J Mol Sci 2023; 24:15679. [PMID: 37958666 PMCID: PMC10648501 DOI: 10.3390/ijms242115679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-β (Aβ) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aβ deposits in retinal layers. Since brain Aβ transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aβ deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aβ, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.
Collapse
Affiliation(s)
- Laura Carrero
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
- PhD Program in Neuroscience, Autonoma de Madrid University, 28049 Madrid, Spain
| | - Desireé Antequera
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Ignacio Alcalde
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Diego Megias
- Advanced Optical Microscopy Unit, Unidades Centrales Científico-Técnicas, Instituto de Salud Carlos III, 28222 Madrid, Spain;
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Gutierrez
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández-Vega, Universidad de Oviedo, Fundación de Investigación Oftalmológica, 28012 Oviedo, Spain; (I.A.); (J.M.-L.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Francisco Wandosell
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.O.-G.); (F.W.)
| | - Cristina Municio
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| | - Eva Carro
- Neurobiology of Alzheimer’s Disease Unit, Functional Unit for Research into Chronic Diseases, Instituto de Salud Carlos III, Network Centre for Biomedical Research in Neurodegenerative Diseases (CIBERNED), ISCIII, 28029 Madrid, Spain; (L.C.); (D.A.); (C.G.)
| |
Collapse
|
8
|
Weigel TK, Guo CL, Güler AD, Ferris HA. Altered circadian behavior and light sensing in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539086. [PMID: 37205532 PMCID: PMC10187209 DOI: 10.1101/2023.05.02.539086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Circadian symptoms have long been observed in Alzheimer's disease (AD) and often appear before cognitive symptoms, but the mechanisms underlying circadian alterations in AD are poorly understood. We studied circadian re-entrainment in AD model mice using a "jet lag" paradigm, observing their behavior on a running wheel after a six hour advance in the light:dark cycle. Female 3xTg mice, which carry mutations producing progressive amyloid beta and tau pathology, re-entrained following jet lag more rapidly than age-matched wild type controls at both 8 and 13 months of age. This re-entrainment phenotype has not been previously reported in a murine AD model. Because microglia are activated in AD and in AD models, and inflammation can affect circadian rhythms, we hypothesized that microglia contribute to this re-entrainment phenotype. To test this, we used the colony stimulating factor 1 receptor (CSF1R) inhibitor PLX3397, which rapidly depletes microglia from the brain. Microglia depletion did not alter re-entrainment in either wild type or 3xTg mice, demonstrating that microglia activation is not acutely responsible for the re-entrainment phenotype. To test whether mutant tau pathology is necessary for this behavioral phenotype, we repeated the jet lag behavioral test with the 5xFAD mouse model, which develops amyloid plaques, but not neurofibrillary tangles. As with 3xTg mice, 7-month-old female 5xFAD mice re-entrained more rapidly than controls, demonstrating that mutant tau is not necessary for the re-entrainment phenotype. Because AD pathology affects the retina, we tested whether differences in light sensing may contribute to altered entrainment behavior. 3xTg mice demonstrated heightened negative masking, an SCN-independent circadian behavior measuring responses to different levels of light, and re-entrained dramatically faster than WT mice in a jet lag experiment performed in dim light. 3xTg mice show a heightened sensitivity to light as a circadian cue that may contribute to accelerated photic re-entrainment. Together, these experiments demonstrate novel circadian behavioral phenotypes with heightened responses to photic cues in AD model mice which are not dependent on tauopathy or microglia.
Collapse
|