1
|
Pan C, Li X, Jian C, Zhou Y, Wang A, Xiao D, Zhan J, He L. AhGSNOR1 negatively regulates Al-induced programmed cell death by regulating intracellular NO and redox levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112275. [PMID: 39341375 DOI: 10.1016/j.plantsci.2024.112275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
The toxicity of aluminum (Al) in acidic soil inhibits plant development and reduces crop yields. Programmed cell death (PCD) is one of the important mechanisms in the plant response to Al toxicity. However, it is yet unknown if S-nitrosoglutathione reductase (GSNOR) provides Al-PCD. Here, transcription and protein expression of AhGSNOR1 were both induced by Al stress. AhGSNOR1-overexpressing transgenic tobacco plants reduced Al-induced nitric oxide (NO) and S-nitrosothiol accumulation, the inhibitory effect of Al stress on root elongation and the degree of cell death, and enhanced antioxidant enzyme activity to effectively remove hydrogen peroxide. In addition, AhGSNOR1 directly interacted with AhTRXh in vivo. Expression of Trxh3 in AhGSNOR1-overexpressing transgenic plants was significantly upregulated, indicating that AhGSNOR1 positively regulated the transcriptional level of Trxh3. Together, these results suggested that AhGSNOR1 was a negative regulatory factor of Al-induced PCD and improved plant Al-tolerance by modulating intracellular NO and redox homeostasis.
Collapse
Affiliation(s)
- Chunliu Pan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; Guangxi Botanical Garden of Medicinal Plants, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Xia Li
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Changge Jian
- College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Yunyi Zhou
- Guangxi Botanical Garden of Medicinal Plants, Nanning, 530004, China
| | - Aiqin Wang
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China
| | - Jie Zhan
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China.
| | - Longfei He
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, 530004, China; College of Agriculture, Guangxi University, Nanning, 530004, China; Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Li X, Su G, Pan C, Zhan J, Wang A, Han Z, Xiao D, He L. TRX h2-PP2AC2 module serves as a convergence node for aluminum stress and leaf senescence signals, regulating cell death via ABA-mediated ROS pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2602-2622. [PMID: 39527458 DOI: 10.1111/tpj.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
ROS/redox signaling plays an important role in the regulation of signal transduction and acclimation pathways activated by multiple abiotic stresses and leaf senescence. However, the regulatory events that produce ROS under different stimuli are far from clear. Here, we report the elucidation of the molecular mechanism of an h type thioredoxin, AhTRX h2, positively regulates Al sensitivity and leaf senescence by promoting ROS. AhTRX h2 transcript levels increased greatly during both natural senescence and Al stress condition in peanut. Ectopic expression of AhTRX h2 in Arabidopsis conferred Al sensitivity as well as premature leaf senescence, manifested by multiple indices, including inhibiting root elongation, severe cell death, and accelerated expression of MC1 and CEX17. AhTRX h2 exhibited similar functions to AtTRX h2, as AhTRX h2 was able to restore the phenotypes of the AtTRX h2 defective mutant (trxh2-4) which showed Al tolerant and late senescence phenotypes. The knock down of AhTRX h2 markedly suppressed Al- and senescence-induced cell death in peanut. AhTRX h2 could recruit catalytic subunit of protein phosphatase 2A (PP2AC2) to form a stable complex. The interaction between AhTRX h2 and AtPP2AC2, as well as AhPP2AC2 and AtTRX h2 was also proved. Overexpression of AhPP2AC2 significantly enhanced Al sensitivity and leaf senescence in Arabidopsis. Protein stability assay revealed that AhTRX h2 was more stable during aging or aluminum stress. Moreover, PP2AC2 could greatly enhance the stability of AhTRX h2 in vivo. Consistent with these observations, overexpression of AhPP2AC2 effectively enhanced AhTRX h2-induced Al sensitivity and precocious leaf senescence. AhTRX h2 and AhPP2AC2 required ABA and ROS in response to cell death under Al stress and senescence, and it was evidence to suggest that ABA acted upstream of ROS in this process. Together, AhTRX h2 and AhPP2AC2 constitute a stable complex that promotes the accumulation of ABA and ROS, effectively regulate cell death. These findings suggest that TRX h2-PP2AC2-mediated pathway may be a widespread mechanism in regulating Al stress and leaf senescence.
Collapse
Affiliation(s)
- Xia Li
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Guijun Su
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
| | - Jie Zhan
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Aiqin Wang
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Zhuqiang Han
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530004, China
| | - Dong Xiao
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
| | - Longfei He
- Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, People's Republic of China
- College of Agriculture, Guangxi University, Nanning, 530004, People's Republic of China
- Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning, 530004, People's Republic of China
- Agricultural and Animal Husbandry Industry Development Research Institute, Guangxi University, Nanning, 530004, China
| |
Collapse
|
3
|
Ofoe R, Thomas RH, Asiedu SK, Wang-Pruski G, Fofana B, Abbey L. Aluminum in plant: Benefits, toxicity and tolerance mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1085998. [PMID: 36714730 PMCID: PMC9880555 DOI: 10.3389/fpls.2022.1085998] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Aluminum (Al) is the third most ubiquitous metal in the earth's crust. A decrease in soil pH below 5 increases its solubility and availability. However, its impact on plants depends largely on concentration, exposure time, plant species, developmental age, and growing conditions. Although Al can be beneficial to plants by stimulating growth and mitigating biotic and abiotic stresses, it remains unknown how Al mediates these effects since its biological significance in cellular systems is still unidentified. Al is considered a major limiting factor restricting plant growth and productivity in acidic soils. It instigates a series of phytotoxic symptoms in several Al-sensitive crops with inhibition of root growth and restriction of water and nutrient uptake as the obvious symptoms. This review explores advances in Al benefits, toxicity and tolerance mechanisms employed by plants on acidic soils. These insights will provide directions and future prospects for potential crop improvement.
Collapse
Affiliation(s)
- Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Raymond H. Thomas
- School of Science and the Environment, Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada
| | - Samuel K. Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Gefu Wang-Pruski
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| | - Bourlaye Fofana
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, Charlottetown, PE, Canada
| | - Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Bible Hill, NS, Canada
| |
Collapse
|
4
|
Luo S, Pan C, Liu S, Liao G, Li A, Wang Y, Wang A, Xiao D, He LF, Zhan J. Identification and functional characterization of the xyloglucan endotransglucosylase/hydrolase 32 (AhXTH32) in peanut during aluminum-induced programmed cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:161-168. [PMID: 36410145 DOI: 10.1016/j.plaphy.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The toxicity of aluminum (Al) in acidic soil is a prevalent problem and causes reduced crop yields. In the plant response to Al toxicity, programmed cell death (PCD) appears to be an important mechanism. The plant cell wall of crop roots is the predominant site targeted by Al. Here, studies of the capacities of different cell wall constituents (pectin, hemicellulose 1 {HC1} and HC2) to adsorb Al indicated that HC1 has the greater ability to bind Al. The activity of xyloglucan endotransglucosylase (XET) was significantly inhibited by Al in the Al-tolerant peanut cultivar '99-1507' compared to that in 'ZH 2' (Al-sensitive). Results from qPCR analysis suggested that the suppression of XET activity by Al was transcriptionally regulated and that xyloglucan endotransglucosylase/hydrolase 32 (AhXTH32) was the major contributor to these changes. The overexpression of AhXTH32 in Arabidopsis strongly inhibited root growth with a loss of viability in root cells and the occurrence of typical hallmarks of PCD, while largely opposite effects were observed after xth32 suppression. AhXTH32 contributed to the modulation XET and xyloglucan endohydrolase (XEH) activity in vivo. Taken together, our results demonstrate that Al-tolerant peanut cultivar root tips cell walls bind Al predominantly in the HC1 fraction, which results in the inhibition of AhXTH32, with consequences to root growth, Al sensitivity, the occurrence of PCD and the XET/XEH activity ratio.
Collapse
Affiliation(s)
- Shuzhen Luo
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Chunliu Pan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Songying Liu
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Yalun Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Long-Fei He
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China; Key Laboratory of Crop Cultivation and Tillage, College of Agriculture, Guangxi University, Nanning, Guangxi, China; Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Xie Q, Yuan Z, Hou H, Zhao H, Chen H, Ni X. Effects of ROS and caspase-3-like protein on the growth and aerenchyma formation of Potamogeton perfoliatus stem. PROTOPLASMA 2023; 260:307-325. [PMID: 35689107 DOI: 10.1007/s00709-022-01780-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Aerenchyma formation plays an important role in the survival of Potamogeton perfoliatus in submerged environment. To understand the regulatory role of reactive oxygen species (ROS) and caspase 3-like protein signaling molecules in aerenchyma formation, we investigated the effects of exogenous NADPH oxidase inhibitor (diphenyleneiodonium chloride, DPI), catalase inhibitor (3-amino-1,2,4-triazole, AT), and caspase-3-like protein inhibitor (AC-DEVD-CHO, DEVD) on morphological and physiological characteristics and aerenchyma formation in P. perfoliatus. The results showed that after DPI treatment, caspase-3-like protein activity decreased, ROS-related enzyme activities increased, and H2O2 content decreased, thereby inhibiting aerenchyma formation. When the concentration of DPI was approximately 1 μmol/L, the inhibitory effect was the most obvious. On the contrary, after the AT treatment, caspase-3-like protein activity increased, ROS-related enzyme activities decreased, and the H2O2 content increased, ultimately promoting aerenchyma formation, and the promotion was the most obvious under treatment with approximately 500 μmol/L AT. After DEVD treatment, the inhibition of vegetative growth caused by DPI or AT treatment was alleviated, significantly reducing caspase-3-like activity and inhibiting aerenchyma development. The results of this study show that ROS has a positive regulatory effect on aerenchyma formation, and caspase-3-like protein is activated to promote ROS-mediated aerenchyma formation. This experiment provides a new theoretical basis for further exploration of the signal transduction effects of ROS and caspase-3-like protein in plant cells and their roles in plant development.
Collapse
Affiliation(s)
- Qinmi Xie
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China
| | - Zhongxun Yuan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Hou
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China
| | - Hongliang Zhao
- School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Hao Chen
- School of Agriculture, Ningxia University, Yinchuan, 750000, China
| | - Xilu Ni
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration of North-Western China, Ningxia University, Yinchuan, 750000, China.
- Key Lab for Restoration and Reconstruction of Degraded Ecosystem in North-Western China (Ministry of Education), School of Ecology and Environment, Ningxia University, Yinchuan, 750000, China.
- Ningxia Helan Mountain Forest Ecosystem Research Station, State Forestry Administration, Yinchuan, 750000, China.
| |
Collapse
|
6
|
Integration of Small RNA and Degradome Sequencing Reveals the Regulatory Network of Al-Induced Programmed Cell Death in Peanut. Int J Mol Sci 2021; 23:ijms23010246. [PMID: 35008672 PMCID: PMC8745729 DOI: 10.3390/ijms23010246] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Peanut is one of the most important oil crops in the world. In China, the peanut is highly produced in its southern part, in which the arable land is dominated by acid soil. At present, miRNAs have been identified in stress response, but their roles and mechanisms are not clear, and no miRNA studies have been found related to aluminum (Al)-induced programmed cell death (PCD). In the present study, transcriptomics, sRNAs, and degradome analysis in the root tips of two peanut cultivars ZH2 (Al-sensitive, S) and 99-1507 (Al-tolerant, T) were carried out. Here, we generated a comprehensive resource focused on identifying key regulatory miRNA-target circuits that regulate PCD under Al stress. Through deep sequencing, 2284 miRNAs were identified and 147 miRNAs were differentially expressed under Al stress. Furthermore, 19237 target genes of 749 miRNAs were validated by degradome sequencing. GO and KEGG analyses of differential miRNA targets showed that the pathways of synthesis and degradation of ketone bodies, citrate cycle (TCA cycle), and peroxisome were responded to Al stress. The combined analysis of the degradome data sets revealed 89 miRNA-mRNA interactions that may regulate PCD under Al stress. Ubiquitination may be involved in Al-induced PCD in peanut. The regulatory networks were constructed based on the differentially expressed miRNAs and their targets related to PCD. Our results will provide a useful platform to research on PCD induced by Al and new insights into the genetic engineering for plant stress response.
Collapse
|
7
|
Xiao D, Li X, Zhou YY, Wei L, Keovongkod C, He H, Zhan J, Wang AQ, He LF. Transcriptome analysis reveals significant difference in gene expression and pathways between two peanut cultivars under Al stress. Gene 2021; 781:145535. [PMID: 33631240 DOI: 10.1016/j.gene.2021.145535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Aluminum (Al) toxicity is an important factor in limiting peanut growth on acidic soil. The molecular mechanisms underlying peanut responses to Al stress are largely unknown. In this study, we performed transcriptome analysis of the root tips (0-1 cm) of peanut cultivar ZH2 (Al-sensitive) and 99-1507 (Al-tolerant) respectively. Root tips of peanuts that treated with 100 μM Al for 8 h and 24 h were analyzed by RNA-Seq, and a total of 8,587 differentially expressed genes (DEGs) were identified. GO and KEGG pathway analysis excavated a group of important Al-responsive genes related to organic acid transport, metal cation transport, transcription regulation and programmed cell death (PCD). These homologs were promising targets to modulate Al tolerance in peanuts. It was found that the rapid transcriptomic response to Al stress in 99-1507 helped to activate effective Al tolerance mechanisms. Protein and protein interaction analysis indicated that MAPK signal transduction played important roles in the early response to Al stress in peanuts. Moreover, weighted correlation network analysis (WGCNA) identified a predicted EIL (EIN3-like) gene with greatly increased expression as an Al-associated gene, and revealed a link between ethylene signaling transduction and Al resistance related genes in peanut, which suggested the enhanced signal transduction mediated the rapid transcriptomic responses. Our results revealed key pathways and genes associated with Al stress, and improved the understanding of Al response in peanut.
Collapse
Affiliation(s)
- Dong Xiao
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China.
| | - Xia Li
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Yun-Yi Zhou
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Li Wei
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Chanthaphoone Keovongkod
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Huyi He
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Jie Zhan
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China
| | - Ai-Qin Wang
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China
| | - Long-Fei He
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning 530004, PR China.
| |
Collapse
|
8
|
Barros VA, Chandnani R, de Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV. Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. FRONTIERS IN PLANT SCIENCE 2020; 11:565339. [PMID: 33281841 PMCID: PMC7688899 DOI: 10.3389/fpls.2020.565339] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/20/2020] [Indexed: 06/01/2023]
Abstract
Crop tolerance to multiple abiotic stresses has long been pursued as a Holy Grail in plant breeding efforts that target crop adaptation to tropical soils. On tropical, acidic soils, aluminum (Al) toxicity, low phosphorus (P) availability and drought stress are the major limitations to yield stability. Molecular breeding based on a small suite of pleiotropic genes, particularly those with moderate to major phenotypic effects, could help circumvent the need for complex breeding designs and large population sizes aimed at selecting transgressive progeny accumulating favorable alleles controlling polygenic traits. The underlying question is twofold: do common tolerance mechanisms to Al toxicity, P deficiency and drought exist? And if they do, will they be useful in a plant breeding program that targets stress-prone environments. The selective environments in tropical regions are such that multiple, co-existing regulatory networks may drive the fixation of either distinctly different or a smaller number of pleiotropic abiotic stress tolerance genes. Recent studies suggest that genes contributing to crop adaptation to acidic soils, such as the major Arabidopsis Al tolerance protein, AtALMT1, which encodes an aluminum-activated root malate transporter, may influence both Al tolerance and P acquisition via changes in root system morphology and architecture. However, trans-acting elements such as transcription factors (TFs) may be the best option for pleiotropic control of multiple abiotic stress genes, due to their small and often multiple binding sequences in the genome. One such example is the C2H2-type zinc finger, AtSTOP1, which is a transcriptional regulator of a number of Arabidopsis Al tolerance genes, including AtMATE and AtALMT1, and has been shown to activate AtALMT1, not only in response to Al but also low soil P. The large WRKY family of transcription factors are also known to affect a broad spectrum of phenotypes, some of which are related to acidic soil abiotic stress responses. Hence, we focus here on signaling proteins such as TFs and protein kinases to identify, from the literature, evidence for unifying regulatory networks controlling Al tolerance, P efficiency and, also possibly drought tolerance. Particular emphasis will be given to modification of root system morphology and architecture, which could be an important physiological "hub" leading to crop adaptation to multiple soil-based abiotic stress factors.
Collapse
Affiliation(s)
- Vanessa A. Barros
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Laiane S. Maciel
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Jurandir V. Magalhaes
- Embrapa Maize and Sorghum, Sete Lagoas, Brazil
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leon V. Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
9
|
Thanthrige N, Jain S, Bhowmik SD, Ferguson BJ, Kabbage M, Mundree S, Williams B. Centrality of BAGs in Plant PCD, Stress Responses, and Host Defense. TRENDS IN PLANT SCIENCE 2020; 25:1131-1140. [PMID: 32467063 DOI: 10.1016/j.tplants.2020.04.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 05/02/2023]
Abstract
Programmed cell death (PCD) is a genetically regulated process for the selective demise of unwanted and damaged cells. Although our understanding of plant PCD pathways has advanced significantly, doubts remain on the extent of conservation of animal apoptosis in plants. At least at the primary sequence level, plants do not encode the regulators of animal apoptosis. Structural analyses have enabled the identification of the B cell lymphoma 2 (Bcl-2)-associated athanogene (BAG) family of co-chaperones in plants. This discovery suggests that some aspects of animal PCD are conserved in plants, while the varied subcellular localization of plant BAGs indicates that they may have evolved distinct functions. Here we review plant BAG proteins, with an emphasis on their roles in the regulation of plant PCD.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Sachin Jain
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sudipta Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett J Ferguson
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mehdi Kabbage
- Department of Plant Pathology, University of Wisconsin-, Madison, WI 53706, USA
| | - Sagadevan Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
10
|
Graças JP, Ranocha P, Vitorello VA, Savelli B, Jamet E, Dunand C, Burlat V. The Class III Peroxidase Encoding Gene AtPrx62 Positively and Spatiotemporally Regulates the Low pH-Induced Cell Death in Arabidopsis thaliana Roots. Int J Mol Sci 2020; 21:ijms21197191. [PMID: 33003393 PMCID: PMC7582640 DOI: 10.3390/ijms21197191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022] Open
Abstract
Exogenous low pH stress causes cell death in root cells, limiting root development, and agricultural production. Different lines of evidence suggested a relationship with cell wall (CW) remodeling players. We investigated whether class III peroxidase (CIII Prx) total activity, CIII Prx candidate gene expression, and reactive oxygen species (ROS) could modify CW structure during low pH-induced cell death in Arabidopsis thaliana roots. Wild-type roots displayed a good spatio-temporal correlation between the low pH-induced cell death and total CIII Prx activity in the early elongation (EZs), transition (TZs), and meristematic (MZs) zones. In situ mRNA hybridization showed that AtPrx62 transcripts accumulated only in roots treated at pH 4.6 in the same zones where cell death was induced. Furthermore, roots of the atprx62-1 knockout mutant showed decreased cell mortality under low pH compared to wild-type roots. Among the ROS, there was a drastic decrease in O2●− levels in the MZs of wild-type and atprx62-1 roots upon low pH stress. Together, our data demonstrate that AtPrx62 expression is induced by low pH and that the produced protein could positively regulate cell death. Whether the decrease in O2●− level is related to cell death induced upon low pH treatment remains to be elucidated.
Collapse
Affiliation(s)
- Jonathas Pereira Graças
- Escola Superior de Agricultura "Luiz de Queiroz", University of São Paulo, 13418-900 São Paulo, Brazil
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | | | - Bruno Savelli
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, 31320 Auzeville-Tolosane, France
| |
Collapse
|
11
|
He H, He LF. Nitric oxide is a suppressor of aluminum-induced mitochondria and caspase-like protease-dependent programmed cell death in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1640566. [PMID: 31291833 PMCID: PMC6768225 DOI: 10.1080/15592324.2019.1640566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 06/27/2019] [Indexed: 06/09/2023]
Abstract
Aluminum (Al) promotes programmed cell death (PCD) in plants. Although a lot of knowledge about the mechanisms of Al tolerance has been learned, how Al-induced PCD is regulated by nitric oxide (NO) is poorly understood. Mitochondrion is the regulatory center for PCD. We found that Al reduced the level of mitochondrial NO/H2O2, promoted the opening of mitochondrial permeability transition pore, decreased mitochondrial inner membrane potential (∆ψm), and increased caspase-like protease activity. NO-specific scavenger cPTIO enhanced these effects that were reversed by NO donor sodium nitroprusside. Our data suggest that NO suppresses Al-induced PCD by improving mitochondrial physiological properties.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, PR China
- Cash Crops Research Institute, Guangix Academy of Agricultural Sciences, Nanning 530004, PR China
| | - Long-Fei He
- College of Agronomy, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Guangxi University, Nanning, PR China
| |
Collapse
|
12
|
He H, Oo TL, Huang W, He LF, Gu M. Nitric oxide acts as an antioxidant and inhibits programmed cell death induced by aluminum in the root tips of peanut (Arachis hypogaea L.). Sci Rep 2019; 9:9516. [PMID: 31267033 PMCID: PMC6606607 DOI: 10.1038/s41598-019-46036-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/17/2019] [Indexed: 11/09/2022] Open
Abstract
Aluminum (Al) causes programmed cell death (PCD) in plants. Our previous studies have confirmed that nitric oxide (NO) inhibits Al-induced PCD in the root tips of peanut. However, the mechanism by which NO inhibits Al-induced PCD is unclear. Here the effects of NO on mitochondrial reactive oxygen species (ROS), malondialdehyde (MDA), activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX), expression of alternative oxidase (AhAOX) and cytochrome oxidase (AhCOX) were investigated in peanut (Arachis hypogaea L.) root tips treated with Al. The results showed that Al stress induced rapid accumulation of H2O2 and MDA and increased the ratio of SOD/APX. The up-regulation of AhAOX and AhCOX expressions was not enough to inhibit PCD occurrence. Sodium nitroprusside (SNP, a NO donor) decreased the ratio of SOD/APX and eliminated excess H2O2 and MDA, thereby inhibiting Al-induced PCD in the root tips of peanut. The expression of AhAOX and AhCOX was significantly enhanced in Al-induced PCD treated with SNP. But cPTIO (a NO specific scavenger) supply had the opposite effect. Taken together, these results suggested that lipid peroxidation induced by higher levels of H2O2 was an important cause of Al-induced PCD. NO-mediated inhibition of Al-induced PCD was related to a significant elimination of H2O2 accumulation by decreasing the ratio of SOD/APX and up-regulating the expression of AhAOX and AhCOX.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi University, Nanning, 530004, P.R. China.,Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, P.R. China
| | - Thet Lwin Oo
- College of Agronomy, Guangxi University, Nanning, 530004, P.R. China
| | - Wenjing Huang
- College of Agronomy, Guangxi University, Nanning, 530004, P.R. China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, 530004, P.R. China. .,Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, Nanning, 530004, P.R. China.
| | - Minghua Gu
- College of Agronomy, Guangxi University, Nanning, 530004, P.R. China
| |
Collapse
|
13
|
Liu G, Ren P, Yang F, Dou X, Wang J, Song Y. Two novel colorimetric probes (5-HMBA-FH and 3-HMBA-FH) based on fluorescein for copper(II) ion detection. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two novel isomeric colorimetric probes are established for simultaneous determination of copper ions using 2-hydroxy-5-methoxybenzaldehyde fluorescein hydrazone (5-HMBA-FH) and 2-hydroxy-3-methoxybenzaldehyde fluorescein hydrazone (3-HMBA-FH). They are synthesized by reacting fluorescein hydrazide with 2-hydroxy-5-methoxybenzaldehyde and 2-hydroxy-3-methoxybenzaldehyde, respectively, and then characterized by 1H-NMR, 13C-NMR, and infrared spectrum. The addition of copper ions to the solutions of two novel colorimetric probes can generate the obviously peaks at 498 nm in UV–vis absorption spectra along with a rapid colour change from colourless to dark yellow. The detection limits of the method for Cu2+ ion were 3.442 × 10−6 mol/L and 3.682 × 10−6 mol/L separately for 5-HMBA-FH and 3-HMBA-FH, respectively. The additions of other metal ions hardly affect the determination of copper ions. The proposed method was successfully applied to the analysis of Cu2+ ions in various samples. This method possesses high sensitivity, high simplicity, and minimized interference and will provide a great advantage in detecting copper ions in the environment, food, and medical applications.
Collapse
Affiliation(s)
- Guanhong Liu
- College of Environment, Liaoning University, Shenyang 110036, P. R. China
| | - Peipei Ren
- College of Environment, Liaoning University, Shenyang 110036, P. R. China
| | - Fan Yang
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Xuekai Dou
- College of Environment, Liaoning University, Shenyang 110036, P. R. China
| | - Jun Wang
- College of Environment, Liaoning University, Shenyang 110036, P. R. China
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China
| | - Youtao Song
- College of Environment, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
14
|
Demidchik V, Tyutereva EV, Voitsekhovskaja OV. The role of ion disequilibrium in induction of root cell death and autophagy by environmental stresses. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:28-46. [PMID: 32291019 DOI: 10.1071/fp16380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/09/2016] [Indexed: 05/26/2023]
Abstract
Environmental stresses such as salinity, drought, oxidants, heavy metals, hypoxia, extreme temperatures and others can induce autophagy and necrosis-type programmed cell death (PCD) in plant roots. These reactions are accompanied by the generation of reactive oxygen species (ROS) and ion disequilibrium, which is induced by electrolyte/K+ leakage through ROS-activated ion channels, such as the outwardly-rectifying K+ channel GORK and non-selective cation channels. Here, we discuss mechanisms of the stress-induced ion disequilibrium and relate it with ROS generation and onset of morphological, biochemical and genetic symptoms of autophagy and PCD in roots. Based on our own data and that in the literature, we propose a hypothesis on the induction of autophagy and PCD in roots by loss of cytosolic K+. To support this, we present data showing that in conditions of salt stress-induced autophagy, gork1-1 plants lacking root K+ efflux channel have fewer autophagosomes compared with the wild type. Overall, literature analyses and presented data strongly suggest that stress-induced root autophagy and PCD are controlled by the level of cytosolic potassium and ROS.
Collapse
Affiliation(s)
- Vadim Demidchik
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Elena V Tyutereva
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Plant Ecological Physiology, Komarov Botanical Institute, Russian Academy of Sciences, ul. Professora Popova 2, 197376St Petersburg, Russia
| |
Collapse
|
15
|
Pan CL, Yao SC, Xiong WJ, Luo SZ, Wang YL, Wang AQ, Xiao D, Zhan J, He LF. Nitric Oxide Inhibits Al-Induced Programmed Cell Death in Root Tips of Peanut ( Arachis hypogaea L.) by Affecting Physiological Properties of Antioxidants Systems and Cell Wall. Front Physiol 2017; 8:1037. [PMID: 29311970 PMCID: PMC5742856 DOI: 10.3389/fphys.2017.01037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 12/19/2022] Open
Abstract
It has been reported that nitric oxide (NO) is a negative regulator of aluminum (Al)-induced programmed cell death (PCD) in peanut root tips. However, the inhibiting mechanism of NO on Al-induced PCD is unclear. In order to investigate the mechanism by which NO inhibits Al-induced PCD, the effects of co-treatment Al with the exogenous NO donor or the NO-specific scavenger on peanut root tips, the physiological properties of antioxidants systems and cell wall (CW) in root tip cells of NO inhibiting Al-induced PCD were studied with two peanut cultivars. The results showed that Al exposure induced endogenous NO accumulation, and endogenous NO burst increased antioxidant enzyme activity in response to Al stress. The addition of NO donor sodium nitroprusside (SNP) relieved Al-induced root elongation inhibition, cell death and Al adsorption in CW, as well as oxidative damage and ROS accumulation. Furthermore, co-treatment with the exogenous NO donor decreased MDA content, LOX activity and pectin methylesterase (PME) activity, increased xyloglucan endotransglucosylase (XET) activity and relative expression of the xyloglucan endotransglucosylase/hydrolase (XTH-32) gene. Taken together, exogenous NO alleviated Al-induced PCD by inhibiting Al adsorption in CW, enhancing antioxidant defense and reducing peroxidation of membrane lipids, alleviating the inhibition of Al on root elongation by maintaining the extensibility of CW, decreasing PME activity, and increasing XET activity and relative XTH-32 expression of CW.
Collapse
Affiliation(s)
- Chun-Liu Pan
- College of Agronomy, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Shao-Chang Yao
- College of Agronomy, Guangxi University, Nanning, China
- College of Life Science and Technology, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | | | - Shu-Zhen Luo
- College of Agronomy, Guangxi University, Nanning, China
| | - Ya-Lun Wang
- College of Agronomy, Guangxi University, Nanning, China
| | - Ai-Qin Wang
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Dong Xiao
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| | - Jie Zhan
- College of Agronomy, Guangxi University, Nanning, China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi Colleges and Universities, Nanning, China
| |
Collapse
|
16
|
He H, Huang W, Oo TL, Gu M, He LF. Nitric oxide inhibits aluminum-induced programmed cell death in peanut (Arachis hypoganea L.) root tips. JOURNAL OF HAZARDOUS MATERIALS 2017; 333:285-292. [PMID: 28371714 DOI: 10.1016/j.jhazmat.2017.03.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/03/2017] [Accepted: 03/23/2017] [Indexed: 05/20/2023]
Abstract
It had been reported that Aluminum (Al) stress altered nitric oxide (NO) concentration and induced programmed cell death (PCD) in plants. However, the relationship between NO and PCD occurrence under Al stress is unclear. The results showed that cell death induced by Al was significant negative correlation with the inhibition of Al on root elongation growth in peanut. AlCl3 at 100μmolL-1 induced DNA ladder, chromatin condensation, typical apoptotic chromatin condensation staining with DAPI, apoptosis related gene Hrs203j expression and caspase3-like protease activation in peanut root tip cells, and showed that Al-induced cell death in peanut root tip cells was a typical PCD. Exogenous NO donor sodium nitroprusside (SNP) at 200μmolL-1 inhibited Al-induced PCD occurrence, but NO specific scavenger cPTIO aggravated PCD production. It suggests that NO is a negative regulator of Al-induced PCD in peanut root tips.
Collapse
Affiliation(s)
- Huyi He
- College of Agronomy, Guangxi University, Nanning 530004, PR China; Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, PR China
| | - Wenjing Huang
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Thet Lwin Oo
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Minghua Gu
- College of Agronomy, Guangxi University, Nanning 530004, PR China
| | - Long-Fei He
- College of Agronomy, Guangxi University, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Crop Cultivation and Tillage, Nanning 530004, PR China.
| |
Collapse
|
17
|
Yalcin G, Vardar F. The alleviating effects of salicylic acid application against aluminium toxicity in barley (Hordeum vulgare) roots. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Bagniewska-Zadworna A, Arasimowicz-Jelonek M. The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:171-84. [PMID: 26332667 DOI: 10.1111/plb.12391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence.
Collapse
Affiliation(s)
- A Bagniewska-Zadworna
- Department of General Botany, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - M Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|