1
|
Hirono H, Yamashita S, Hirono Y. Influence of steaming duration, chlorophyll-a and -b content and ratio, and pH on the color of green tea processed from multiple tea (Camellia sinensis L.) cultivars. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9410-9422. [PMID: 39101245 DOI: 10.1002/jsfa.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND The color of green tea is an important quality indicator. In recent years, shading of tea (Camellia sinensis L.) plants has been widely adopted for green tea production to enhance its green color and umami taste. In this study, we identified factors that influence green tea color by (i) examining variation in the chlorophyll content of fresh new tea shoots among cultivars, cropping seasons, and the degree of shading, (ii) investigating the rate of conversion of chlorophyll to pheophytin during the tea manufacturing process, specifically with steaming duration, and (iii) analyzing the effects of the new tea shoot properties and the steaming process on colorimetric values of the steamed new tea shoots. RESULTS Multiple regression analysis revealed that three factors contributed to the rate of conversion of each chlorophyll type to pheophytin in steamed new tea shoots (ranked by importance): steaming duration > each chlorophyll type (chlorophyll-a and chlorophyll-b) content of fresh new tea shoots > pH. The colorimetric hue angle (h) value of steamed new tea shoots was influenced by four factors (ranked by importance): steaming duration > total chlorophyll (chlorophyll-a + chlorophyll-b) content in fresh new tea shoots > pH > chlorophyll-a/chlorophyll-b ratio in fresh new tea shoots. CONCLUSION Differences in the color of new tea shoots can be explained by the aforementioned four factors. The findings will be useful for cultivar selection, and determining the appropriate degree of shading and steaming duration, to produce high-quality green teas with a good appearance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hisako Hirono
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Japan
| | - Shuya Yamashita
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Makurazaki, Japan
| | - Yuhei Hirono
- Division of Tea Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimada, Japan
| |
Collapse
|
2
|
Samarina L, Malyukova L, Wang S, Bobrovskikh A, Doroshkov A, Shkhalakhova R, Manakhova K, Koninskaya N, Matskiv A, Ryndin A, Khlestkina E, Orlov Y. In Vitro vs. In Vivo Transcriptomic Approach Revealed Core Pathways of Nitrogen Deficiency Response in Tea Plant ( Camellia sinensis (L.) Kuntze). Int J Mol Sci 2024; 25:11726. [PMID: 39519276 PMCID: PMC11547157 DOI: 10.3390/ijms252111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
For the first time, we used an in vitro vs. in vivo experimental design to reveal core pathways under nitrogen deficiency (ND) in an evergreen tree crop. These pathways were related to lignin biosynthesis, cell redox homeostasis, the defense response to fungus, the response to Karrikin, amino acid transmembrane transport, the extracellular region, the cellular protein catabolic process, and aspartic-type endopeptidase activity. In addition, the mitogen-activated protein kinase pathway and ATP synthase (ATP)-binding cassette transporters were significantly upregulated under nitrogen deficiency in vitro and in vivo. Most of the MAPK downstream genes were related to calcium signaling (818 genes) rather than hormone signaling (157 genes). Moreover, the hormone signaling pathway predominantly contained auxin- and abscisic acid-related genes, indicating the crucial role of these hormones in ND response. Overall, 45 transcription factors were upregulated in both experiments, 5 WRKYs, 3 NACs, 2 MYBs, 2 ERFs, HD-Zip, RLP12, bHLH25, RADIALIS-like, and others, suggesting their ND regulation is independent from the presence of a root system. Gene network reconstruction displayed that these transcription factors participate in response to fungus/chitin, suggesting that nitrogen response and pathogen response have common regulation. The upregulation of lignin biosynthesis genes, cytochrome genes, and strigalactone response genes was much more pronounced under in vitro ND as compared to in vivo ND. Several cell wall-related genes were closely associated with cytochromes, indicating their important role in flavanols biosynthesis in tea plant. These results clarify the signaling mechanisms and regulation of the response to nitrogen deficiency in evergreen tree crops.
Collapse
Affiliation(s)
- Lidiia Samarina
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Lyudmila Malyukova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Songbo Wang
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Aleksandr Bobrovskikh
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Alexey Doroshkov
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.B.); (A.D.)
| | - Ruset Shkhalakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Karina Manakhova
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Natalia Koninskaya
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexandra Matskiv
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Alexey Ryndin
- Federal Research Centre, The Subtropical Scientific Centre of the Russian Academy of Sciences, 354002 Sochi, Russia; (L.M.); (S.W.); (R.S.); (K.M.); (N.K.); (A.M.); (A.R.)
| | - Elena Khlestkina
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Federal Research Center N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 190000 Saint Petersburg, Russia
| | - Yuriy Orlov
- Agrarian and Technological Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
3
|
Chen LH, Xu M, Cheng Z, Yang LT. Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. Int J Mol Sci 2024; 25:10409. [PMID: 39408737 PMCID: PMC11476759 DOI: 10.3390/ijms251910409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 concentration. Polyphasic chlorophyll a fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased Fo, but decreased the maximum quantum yield of primary photochemistry (Fv/Fm) and the maximum of the IPphase, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in O. sativa. N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro-ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and O-acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in O. sativa leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC-GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in O. sativa roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in O. sativa leaves under different N supplies, whereas only 60% of the enzymes have a consistence in O. sativa roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in O. sativa, and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in O. sativa under nutrient deficient especially N-limiting conditions.
Collapse
Affiliation(s)
- Ling-Hua Chen
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Ming Xu
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Zuxin Cheng
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
Guo P, Ren J, Shi X, Xu A, Zhang P, Guo F, Feng Y, Zhao X, Yu H, Jiang C. Optimized nitrogen application ameliorates the photosynthetic performance and yield potential in peanuts as revealed by OJIP chlorophyll fluorescence kinetics. BMC PLANT BIOLOGY 2024; 24:774. [PMID: 39143533 PMCID: PMC11323456 DOI: 10.1186/s12870-024-05482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Nitrogen (N) is a crucial element for increasing photosynthesis and crop yields. The study aims to evaluate the photosynthetic regulation and yield formation mechanisms of different nodulating peanut varieties with N fertilizer application. METHOD The present work explored the effect of N fertilizer application rates (N0, N45, N105, and N165) on the photosynthetic characteristics, chlorophyll fluorescence characteristics, dry matter, N accumulation, and yield of four peanut varieties. RESULTS The results showed that N application increased the photosynthetic capacity, dry matter, N accumulation, and yield of peanuts. The measurement of chlorophyll a fluorescence revealed that the K-phase, J-phase, and I-phase from the OJIP curve decreased under N105 treatment compared with N0, and WOI, ET0/CSM, RE0/CSM, ET0/RC, RE0/RC, φPo, φEo, φRo, and Ψ0 increased, whereas VJ, VI, WK, ABS/RC, TR0/RC, DI0/RC, and φDo decreased. Meanwhile, the photosystem activity and electron transfer efficiency of nodulating peanut varieties decreased with an increase in N (N165). However, the photosynthetic capacity and yield of the non-nodulating peanut variety, which highly depended on N fertilizer, increased with an increase in N. CONCLUSION Optimized N application (N105) increased the activity of the photosystem II (PSII) reaction center, improved the electron and energy transfer performance in the photosynthetic electron transport chain, and reduced the energy dissipation of leaves in nodulating peanut varieties, which is conducive to improving the yield. Nevertheless, high N (N165) had a positive effect on the photosystem and yield of non-nodulating peanut. The results provide highly valuable guidance for optimizing peanut N management and cultivation measures.
Collapse
Affiliation(s)
- Pei Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jingyao Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anning Xu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ping Zhang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Fan Guo
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Feng
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xinhua Zhao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Haiqiu Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
- Liaoning Agriculture Vocational and Technical College, Yingkou, China.
| | - Chunji Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China.
| |
Collapse
|
5
|
Mahato T, Parida BR, Bar S. Assessing tea plantations biophysical and biochemical characteristics in Northeast India using satellite data. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:327. [PMID: 38421498 DOI: 10.1007/s10661-024-12502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024]
Abstract
Despite advancements in using multi-temporal satellite data to assess long-term changes in Northeast India's tea plantations, a research gap exists in understanding the intricate interplay between biophysical and biochemical characteristics. Further exploration is crucial for precise, sustainable monitoring and management. In this study, satellite-derived vegetation indices and near-proximal sensor data were deployed to deduce various physico-chemical characteristics and to evaluate the health conditions of tea plantations in northeast India. The districts, such as Sonitpur, Jorhat, Sibsagar, Dibrugarh, and Tinsukia in Assam were selected, which are the major contributors to the tea industry in India. The Sentinel-2A (2022) data was processed in the Google Earth Engine (GEE) cloud platform and utilized for analyzing tea plantations biochemical and biophysical properties. Leaf chlorophyll (Cab) and nitrogen contents are determined using the Normalized Area Over Reflectance Curve (NAOC) index and flavanol contents, respectively. Biophysical and biochemical parameters of the tea assessed during the spring season (March-April) 2022 revealed that tea plantations located in Tinsukia and Dibrugarh were much healthier than the other districts in Assam which are evident from satellite-derived Enhanced Vegetation Index (EVI), Modified Soil Adjusted Vegetation Index (MSAVI), Leaf Area Index (LAI), and Fraction of Absorbed Photosynthetically Active Radiation (fPAR), including the Cab and nitrogen contents. The Cab of healthy tea plants varied from 25 to 35 µg/cm2. Pearson correlation among satellite-derived Cab and nitrogen with field measurements showed R2 of 0.61-0.62 (p-value < 0.001). This study offered vital information about land alternations and tea health conditions, which can be crucial for conservation, monitoring, and management practices.
Collapse
Affiliation(s)
- Trinath Mahato
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India
- Centre for Environment and Energy Development, Ranchi, 834001, India
| | - Bikash Ranjan Parida
- Department of Geoinformatics, School of Natural Resource Management, Central University of Jharkhand, Ranchi, 835222, India.
| | - Somnath Bar
- Department of Geography and Environmental Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
6
|
Opačić N, Radman S, Dujmović M, Fabek Uher S, Benko B, Toth N, Petek M, Čoga L, Voća S, Šic Žlabur J. Boosting nutritional quality of Urtica dioica L. to resist climate change. FRONTIERS IN PLANT SCIENCE 2024; 15:1331327. [PMID: 38425794 PMCID: PMC10901978 DOI: 10.3389/fpls.2024.1331327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Introduction More than ever, traditional agricultural practices need a shift towards more resilient, sustainable, modern and adaptable practices that benefit the health of the planet and people. Today's consumers are constantly on the lookout for novel, highly nutritious foods that have a positive impact on their overall health and well-being. Nettle (Urtica dioica L.) is gaining recognition not only as a popular medicinal plant, but also as a desirable green leafy vegetable rich in phytonutrients. As it is difficult and even expensive to control the quality standards of wild-collected plants, the implementation of sustainable cultivation methods, especially hydroponics, with effective greenhouse management could be a possible solution to obtain a standardized product with high nutritional value. Therefore, the aim of this study was to investigate the effects of four nutrient solutions differing in the content of macro- and micronutrients (especially nitrogen, potassium, calcium, magnesium and iron) and two consecutive cuts on the number of leaves, yield, nitrate and mineral content and the content of specialized metabolites of stinging nettle from a floating hydroponic system. Methods Nettle plants were cultivated in a hydroponic system using the floating hydroponics technique. The two-factorial experiment was performed with nutrient solution and consecutive cuts as factors. Results The highest yield (2.49 kg/m2) was achieved after the 1st cut with plants cultivated in the nutrient solution with higher nutrient concentration. All tested nutrient solutions resulted in high levels of minerals and bioactive compounds in the plant material (ascorbic acid content of 102.30 mg/100 g fw and total phenolics content of 465.92 mg GAE/100 g fw), confirming floating hydroponics as a sustainable approach for cultivating nettle with enhanced nutritional value and antioxidant potential. Conclusion It is important to highlight that the nutrient solution with the lowest nutrient composition yielded the highest concentrations of calcium (5.54%) and iron (180.67 mg/kg dw). Furthermore, it exhibited elevated levels of specific phenolic compounds, including caffeoylmaleic acid, ellagic acid, ferulic acid, naringin, and rutin trihydrate. Notably, this solution demonstrated the lowest nitrate content (4225.33 mg/kg fw) in the plant material. Therefore, it can be recommended as a preferable formulation for hydroponic nettle cultivation.
Collapse
Affiliation(s)
- Nevena Opačić
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Sanja Radman
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Mia Dujmović
- Department of Sustainable Technologies and Renewable Energy Sources, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Sanja Fabek Uher
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Božidar Benko
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Nina Toth
- Department of Vegetable Crops, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Marko Petek
- Department of Plant Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Lepomir Čoga
- Department of Plant Nutrition, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Sandra Voća
- Department of Sustainable Technologies and Renewable Energy Sources, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| | - Jana Šic Žlabur
- Department of Sustainable Technologies and Renewable Energy Sources, University of Zagreb Faculty of Agriculture, Zagreb, Croatia
| |
Collapse
|
7
|
Zhang W, Ni K, Long L, Ruan J. Nitrogen transport and assimilation in tea plant ( Camellia sinensis): a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1249202. [PMID: 37810380 PMCID: PMC10556680 DOI: 10.3389/fpls.2023.1249202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
Nitrogen is one of the most important nutrients for tea plants, as it contributes significantly to tea yield and serves as the component of amino acids, which in turn affects the quality of tea produced. To achieve higher yields, excessive amounts of N fertilizers mainly in the form of urea have been applied in tea plantations where N fertilizer is prone to convert to nitrate and be lost by leaching in the acid soils. This usually results in elevated costs and environmental pollution. A comprehensive understanding of N metabolism in tea plants and the underlying mechanisms is necessary to identify the key regulators, characterize the functional phenotypes, and finally improve nitrogen use efficiency (NUE). Tea plants absorb and utilize ammonium as the preferred N source, thus a large amount of nitrate remains activated in soils. The improvement of nitrate utilization by tea plants is going to be an alternative aspect for NUE with great potentiality. In the process of N assimilation, nitrate is reduced to ammonium and subsequently derived to the GS-GOGAT pathway, involving the participation of nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH). Additionally, theanine, a unique amino acid responsible for umami taste, is biosynthesized by the catalysis of theanine synthetase (TS). In this review, we summarize what is known about the regulation and functioning of the enzymes and transporters implicated in N acquisition and metabolism in tea plants and the current methods for assessing NUE in this species. The challenges and prospects to expand our knowledge on N metabolism and related molecular mechanisms in tea plants which could be a model for woody perennial plant used for vegetative harvest are also discussed to provide the theoretical basis for future research to assess NUE traits more precisely among the vast germplasm resources, thus achieving NUE improvement.
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kang Ni
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| | - Lizhi Long
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jianyun Ruan
- Key Laboratory of Tea Plant Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Xihu National Agricultural Experimental Station for Soil Quality, Hangzhou, China
| |
Collapse
|
8
|
Lin ZH, Chen CS, Zhao SQ, Liu Y, Zhong QS, Ruan QC, Chen ZH, You XM, Shan RY, Li XL, Zhang YZ. Molecular and physiological mechanisms of tea (Camellia sinensis (L.) O. Kuntze) leaf and root in response to nitrogen deficiency. BMC Genomics 2023; 24:27. [PMID: 36650452 PMCID: PMC9847173 DOI: 10.1186/s12864-023-09112-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND As an economically important crop, tea is strongly nitrogen (N)-dependent. However, the physiological and molecular mechanisms underlying the response of N deficiency in tea are not fully understood. Tea cultivar "Chunlv2" [Camellia sinensis (L.) O. Kuntze] were cultured with a nutrient solution with 0 mM [N-deficiency] or 3 mM (Control) NH4NO3 in 6 L pottery pots containing clean river sands. RESULTS N deficiency significantly decreased N content, dry weight, chlorophyll (Chl) content, L-theanine and the activities of N metabolism-related enzymes, but increased the content of total flavonoids and polyphenols in tea leaves. N deficiency delayed the sprouting time of tea buds. By using the RNA-seq technique and subsequent bioinformatics analysis, 3050 up-regulated and 2688 down-regulated differentially expressed genes (DEGs) were isolated in tea leaves in response to N deficiency. However, only 1025 genes were up-regulated and 744 down-regulated in roots. Gene ontology (GO) term enrichment analysis showed that 205 DEGs in tea leaves were enriched in seven GO terms and 152 DEGs in tea roots were enriched in 11 GO items based on P < 0.05. In tea leaves, most GO-enriched DEGs were involved in chlorophyll a/b binding activities, photosynthetic performance, and transport activities. But most of the DEGs in tea roots were involved in the metabolism of carbohydrates and plant hormones with regard to the GO terms of biological processes. N deficiency significantly increased the expression level of phosphate transporter genes, which indicated that N deficiency might impair phosphorus metabolism in tea leaves. Furthermore, some DEGs, such as probable anion transporter 3 and high-affinity nitrate transporter 2.7, might be of great potential in improving the tolerance of N deficiency in tea plants and further study could work on this area in the future. CONCLUSIONS Our results indicated N deficiency inhibited the growth of tea plant, which might be due to altered N metabolism and expression levels of DEGs involved in the photosynthetic performance, transport activity and oxidation-reduction processes.
Collapse
Affiliation(s)
- Zheng-He Lin
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Chang-Song Chen
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Shui-Qing Zhao
- Laixi Bureau of Agriculture and Rural Affairs of Shandong Province, Laixi, 266699 China
| | - Yuan Liu
- Laixi Bureau of Agriculture and Rural Affairs of Shandong Province, Laixi, 266699 China
| | - Qiu-Sheng Zhong
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Qi-Chun Ruan
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Zhi-Hui Chen
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Xiao-Mei You
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Rui-Yang Shan
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Xin-Lei Li
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| | - Ya-Zhen Zhang
- grid.418033.d0000 0001 2229 4212Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu’an, 355000 China
| |
Collapse
|
9
|
Zhang X, Li H, Zhuo G, He Z, Zhang C, Shi Z, Li C, Wang Y. Improvement in the photoprotective capability benefits the productivity of a yellow-green wheat mutant in N-deficient conditions. PHOTOSYNTHETICA 2022; 60:476-488. [PMID: 39649395 PMCID: PMC11558583 DOI: 10.32615/ps.2022.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/18/2022] [Indexed: 12/10/2024]
Abstract
Wheat yellow-green mutant Jimai5265yg has a more efficient photosynthetic system and higher productivity than its wild type under N-deficient conditions. To understand the relationship between photosynthetic properties and the grain yield, we conducted a field experiment under different N application levels. Compared to wild type, the Jimai5265yg flag leaves had higher mesophyll conductance, photosynthetic N-use efficiency, and photorespiration in the field without N application. Chlorophyll a fluorescence analysis showed that PSII was more sensitive to photoinhibition due to lower nonphotochemical quenching (NPQ) and higher nonregulated heat dissipation. In N-deficient condition, the PSI acceptor side of Jimai5265yg was less reduced. We proposed that the photoinhibited PSII protected PSI from over-reduction through downregulation of electron transport. PCA analysis also indicated that PSI photoprotection and electron transport regulation were closely associated with grain yield. Our results suggested that the photoprotection mechanism of PSI independent of NPQ was critical for crop productivity.
Collapse
Affiliation(s)
- X.H. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - H.X. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - G. Zhuo
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
| | - Z.Z. He
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.Y. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Z. Shi
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.C. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Y. Wang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| |
Collapse
|
10
|
Cun Z, Wu HM, Zhang JY, Shuang SP, Hong J, Chen JW. Responses of Linear and Cyclic Electron Flow to Nitrogen Stress in an N-Sensitive Species Panax notoginseng. FRONTIERS IN PLANT SCIENCE 2022; 13:796931. [PMID: 35242152 PMCID: PMC8885595 DOI: 10.3389/fpls.2022.796931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII) is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role of electron transport in PSII and PSI photoinhibition needs to be further understood. We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the increased application of N fertilizer significantly enhance leaf N contents and specific leaf N (SLN). Net photosynthetic rate (P n) was lower in HN and LN plants than in MN ones. Maximum photochemistry efficiency of PSII (F v/F m), maximum photo-oxidation P700+ (P m), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII), and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase and CEF were higher in the LN plants. Additionally, there was not a significant difference in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The results obtained suggest that the lower LEF leads to the hindrance of the formation of ΔpH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not only protected PSI from photodamage but also slowed down the damage rate of PSII in P. notoginseng grown under LN.
Collapse
Affiliation(s)
- Zhu Cun
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Hong-Min Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jin-Yan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Sheng-Pu Shuang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jie Hong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| | - Jun-Wen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
- Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming, China
- National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwestern China, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
11
|
Lin ZH, Chen CS, Zhong QS, Ruan QC, Chen ZH, You XM, Shan RY, Li XL. The GC-TOF/MS-based Metabolomic analysis reveals altered metabolic profiles in nitrogen-deficient leaves and roots of tea plants (Camellia sinensis). BMC PLANT BIOLOGY 2021; 21:506. [PMID: 34727870 PMCID: PMC8561955 DOI: 10.1186/s12870-021-03285-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Nitrogen (N) fertilizer is commonly considered as one of the most important limiting factors in the agricultural production. As a result, a large amount of N fertilizer is used to improve the yield in modern tea production. Unfortunately, the large amount of N fertilizer input has led to increased plant nitrogen-tolerance and decreased amplitude of yield improvement, which results in significant N loss, energy waste and environment pollution. However, the effects of N-deficiency on the metabolic profiles of tea leaves and roots are not well understood. RESULTS In this study, seedlings of Camellia sinensis (L.) O. Kuntze Chunlv 2 were treated with 3 mM NH4NO3 (Control) or without NH4NO3 (N-deficiency) for 4 months by sandy culture. The results suggested that N-deficiency induced tea leaf chlorosis, impaired biomass accumulation, decreased the leaf chlorophyll content and N absorption when they were compared to the Control samples. The untargeted metabolomics based on GC-TOF/MS approach revealed a discrimination of the metabolic profiles between N-deficient tea leaves and roots. The identification and classification of the altered metabolites indicated that N deficiency upregulated the relative abundances of most phenylpropanoids and organic acids, while downregulated the relative abundances of most amino acids in tea leaves. Differentially, N-deficiency induced the accumulation of most carbohydrates, organic acids and amino acids in tea roots. The potential biomarkers screened in N-deficient leaves compared to Control implied that N deficiency might reduce the tea quality. Unlike the N-deficient leaves, the potential biomarkers in N-deficient roots indicated an improved stress response might occur in tea roots. CONCLUSIONS The results demonstrated N deficiency had different effects on the primary and secondary metabolism in tea leaves and roots. The findings of this study will facilitate a comprehensive understanding of the N-deficient tea plants and provide a valuable reference for the optimized N nutrient management and the sustainable development in the tea plantations.
Collapse
Affiliation(s)
- Zheng-He Lin
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China.
| | - Chang-Song Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Qiu-Sheng Zhong
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Qi-Chun Ruan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Zhi-Hui Chen
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Xiao-Mei You
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Rui-Yang Shan
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| | - Xin-Lei Li
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fu'an, 355000, China
| |
Collapse
|
12
|
Li H, Li J, Zhang X, Shi T, Chai X, Hou P, Wang Y. Mesophyll conductance, photoprotective process and optimal N partitioning are essential to the maintenance of photosynthesis at N deficient condition in a wheat yellow-green mutant (Triticum aestivum L.). JOURNAL OF PLANT PHYSIOLOGY 2021; 263:153469. [PMID: 34252704 DOI: 10.1016/j.jplph.2021.153469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The major effect of nitrogen (N) deficiency is the inhibition on CO2 assimilation regulated by light energy absorption, transport and conversion, as well as N allocation. In this study, a yellow-green wheat mutant (Jimai5265yg) and its wild type (Jimai5265, WT) were compared between 0 mM N (N0) and 14 mM N (N14) treatments using hydroponic experiments. The mutant exhibited higher photosynthetic efficiency (An) than WT despite low chlorophyll (Chl) content in non-stressed conditions. The photosynthetic advantages of the mutant were maintained under N deficient condition. The quantitative analysis of limitations to photosynthesis revealed that CO2 diffusion associated with mesophyll conductance (gm) was the dominant limitation. Relative easiness to gain CO2 in the chloroplast contributed to the higher An of Jimai5265yg. N deficiency induced the photoinhibition of PSII, but the cyclic electron transport and photochemical activity of PSI was higher in Jimai5265yg compared to Jimai5265, which was a protective mechanism to avoid photodamage. Because of the sharp drop of An, N deficient seedlings had much lower photosynthetic N use efficiency (PNUE). However, N deficiency increased the relative content of photosynthetic N (Npsn) and decreased the relative content of storage N (Nstore). The range of change in N partitioning induced by N deficiency was smaller for Jimai5265yg compared to WT. The less insensitive to N deficiency for the mutant in terms of photosynthetic property and N partitioning suggested that gm, cyclic electron transport around PSI and more optimal N partitioning pattern is necessary to sustain photosynthesis under N deficient condition.
Collapse
Affiliation(s)
- Hongxia Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Junjie Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xuhui Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tingrui Shi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Xinyu Chai
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Peijia Hou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
13
|
Chen Z, Li H, Yang T, Chen T, Dong C, Gu Q, Cheng X. Transcriptome analysis provides insights into the molecular bases in response to different nitrogen forms-induced oxidative stress in tea plant roots (Camellia sinensis). FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1073-1082. [PMID: 32605706 DOI: 10.1071/fp20093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have suggested that the maintenance of redox homeostasis is essential for plant growth. Here we investigated how redox homeostasis and signalling is modulated in response to different nitrogen (N) forms in tea plant roots. Our results showed that both N deficiency and nitrate (NO3-) can trigger the production of hydrogen peroxide and lipid peroxidation in roots. In contrast, these responses were not altered by NH4+. Further, N deficiency and NO3--triggered redox imbalance was re-established by increased of proanthocyanidins (PAs) and glutathione (GSH), as well as upregulation of representative antioxidant enzyme activities and genes. To further explore the molecular bases of these responses, comparative transcriptome analysis was performed, and redox homeostasis-associated differentially expressed genes (DEGs) were selected for bioinformatics analysis. Most of these genes were involved in the flavonoid biosynthesis, GSH metabolism and the antioxidant system, which was specifically altered by N deficiency or NO3-. Moreover, the interplay between H2O2 (generated by RBOH and Ndufab1) and hormones (including abscisic acid, auxin, cytokinin and ethylene) in response to different N forms was suggested. Collectively, the above findings contribute to an understanding of the underlying molecular mechanisms of redox homeostasis and signalling in alleviating oxidative stress in tea plant roots.
Collapse
Affiliation(s)
- Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China; and Corresponding author.
| | - Huiping Li
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Chunxia Dong
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilisation, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
14
|
Li Y, Xin G, Liu C, Shi Q, Yang F, Wei M. Effects of red and blue light on leaf anatomy, CO 2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC PLANT BIOLOGY 2020; 20:318. [PMID: 32631228 PMCID: PMC7336438 DOI: 10.1186/s12870-020-02523-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 06/25/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND The red (R) and blue (B) light wavelengths are known to influence many plant physiological processes during growth and development, particularly photosynthesis. To understand how R and B light influences plant photomorphogenesis and photosynthesis, we investigated changes in leaf anatomy, chlorophyll fluorescence and photosynthetic parameters, and ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) and Calvin cycle-related enzymes expression and their activities in sweet pepper (Capsicum annuum L.) seedlings exposed to four light qualities: monochromatic white (W, control), R, B and mixed R and B (RB) light with the same photosynthetic photon flux density (PPFD) of 300 μmol/m2·s. RESULTS The results revealed that seedlings grown under R light had lower biomass accumulation, CO2 assimilation and photosystem II (PSII) electron transportation compared to plants grown under other treatments. These changes are probably due to inactivation of the photosystem (PS). Biomass accumulation and CO2 assimilation were significantly enriched in B- and RB-grown plants, especially the latter treatment. Their leaves were also thicker, and photosynthetic electron transport capacity, as well as the photosynthetic rate were enhanced. The up-regulation of the expression and activities of Rubisco, fructose-1, 6-bisphosphatase (FBPase) and glyceraldehyde-phosphate dehydrogenase (GAPDH), which involved in the Calvin cycle and are probably the main enzymatic factors contributing to RuBP (ribulose-1, 5-bisphosphate) synthesis, were also increased. CONCLUSIONS Mixed R and B light altered plant photomorphogenesis and photosynthesis, mainly through its effects on leaf anatomy, photosynthetic electron transportation and the expression and activities of key Calvin cycle enzymes.
Collapse
Affiliation(s)
- Yan Li
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Guofeng Xin
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chang Liu
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Dr, Gainesville, FL, USA
| | - Qinghua Shi
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Fengjuan Yang
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Min Wei
- College of Horticultural Science and Engineering, Shandong Agricultural University, Tai'an, China.
- Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, Tai'an, China.
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Tai'an, China.
- State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
15
|
Sun J, Qiu C, Qian W, Wang Y, Sun L, Li Y, Ding Z. Ammonium triggered the response mechanism of lysine crotonylome in tea plants. BMC Genomics 2019; 20:340. [PMID: 31060518 PMCID: PMC6501322 DOI: 10.1186/s12864-019-5716-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 04/18/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lysine crotonylation, as a novel evolutionarily conserved type of post-translational modifications, is ubiquitous and essential in cell biology. However, its functions in tea plants are largely unknown, and the full functions of lysine crotonylated proteins of tea plants in nitrogen absorption and assimilation remains unclear. Our study attempts to describe the global profiling of nonhistone lysine crotonylation in tea leaves and to explore how ammonium (NH4+) triggers the response mechanism of lysine crotonylome in tea plants. RESULTS Here, we performed the global analysis of crotonylome in tea leaves under NH4+ deficiency/resupply using high-resolution LC-MS/MS coupled with highly sensitive immune-antibody. A total of 2288 lysine crotonylation sites on 971 proteins were identified, of which contained in 15 types of crotonylated motifs. Most of crotonylated proteins were located in chloroplast (37%) and cytoplasm (33%). Compared with NH4+ deficiency, 120 and 151 crotonylated proteins were significantly changed at 3 h and 3 days of NH4+ resupply, respectively. Bioinformatics analysis showed that differentially expressed crotonylated proteins participated in diverse biological processes such as photosynthesis (PsbO, PsbP, PsbQ, Pbs27, PsaN, PsaF, FNR and ATPase), carbon fixation (rbcs, rbcl, TK, ALDO, PGK and PRK) and amino acid metabolism (SGAT, GGAT2, SHMT4 and GDC), suggesting that lysine crotonylation played important roles in these processes. Moreover, the protein-protein interaction analysis revealed that the interactions of identified crotonylated proteins diversely involved in photosynthesis, carbon fixation and amino acid metabolism. Interestingly, a large number of enzymes were crotonylated, such as Rubisco, TK, SGAT and GGAT, and their activities and crotonylation levels changed significantly by sensing ammonium, indicating a potential function of crotonylation in the regulation of enzyme activities. CONCLUSIONS The results indicated that the crotonylated proteins had a profound influence on metabolic process of tea leaves in response to NH4+ deficiency/resupply, which mainly involved in diverse aspects of primary metabolic processes by sensing NH4+, especially in photosynthesis, carbon fixation and amino acid metabolism. The data might serve as important resources for exploring the roles of lysine crotonylation in N metabolism of tea plants. Data were available via ProteomeXchange with identifier PXD011610.
Collapse
Affiliation(s)
- Jianhao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chen Qiu
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yusheng Li
- Fruit and Tea Technology Extension Station, Jinan, 250000, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|