1
|
Goldaeva KV, Pleshakova TO, Ivanov YD. Nanowire-based biosensors for solving biomedical problems. BIOMEDITSINSKAIA KHIMIIA 2024; 70:304-314. [PMID: 39324195 DOI: 10.18097/pbmc20247005304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The review considers modern achievements and prospects of using nanowire biosensors, principles of their operation, methods of fabrication, and the influence of the Debye effect, which plays a key role in improving the biosensor characteristics. Special attention is paid to the practical application of such biosensors for the detection of a variety of biomolecules, demonstrating their capabilities and potential in the detection of a wide range of biomarkers of various diseases. Nanowire biosensors also show excellent results in such areas as early disease diagnostics, patient health monitoring, and personalized medicine due to their high sensitivity and specificity. Taking into consideration their high efficiency and diverse applications, nanowire-based biosensors demonstrate significant promise for commercialization and widespread application in medicine and related fields, making them an important area for future research and development.
Collapse
Affiliation(s)
- K V Goldaeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | | | - Yu D Ivanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
2
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
3
|
Albarghouthi FM, Semeniak D, Khanani I, Doherty JL, Smith BN, Salfity M, MacFarlane Q, Karappur A, Noyce SG, Williams NX, Joh DY, Andrews JB, Chilkoti A, Franklin AD. Addressing Signal Drift and Screening for Detection of Biomarkers with Carbon Nanotube Transistors. ACS NANO 2024. [PMID: 38335120 DOI: 10.1021/acsnano.3c11679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Electrical biosensors, including transistor-based devices (i.e., BioFETs), have the potential to offer versatile biomarker detection in a simple, low-cost, scalable, and point-of-care manner. Semiconducting carbon nanotubes (CNTs) are among the most explored nanomaterial candidates for BioFETs due to their high electrical sensitivity and compatibility with diverse fabrication approaches. However, when operating in solutions at biologically relevant ionic strengths, CNT-based BioFETs suffer from debilitating levels of signal drift and charge screening, which are often unaccounted for or sidestepped (but not addressed) by testing in diluted solutions. In this work, we present an ultrasensitive CNT-based BioFET called the D4-TFT, an immunoassay with an electrical readout, which overcomes charge screening and drift-related limitations of BioFETs. In high ionic strength solution (1X PBS), the D4-TFT repeatedly and stably detects subfemtomolar biomarker concentrations in a point-of-care form factor by increasing the sensing distance in solution (Debye length) and mitigating signal drift effects. Debye length screening and biofouling effects are overcome using a poly(ethylene glycol)-like polymer brush interface (POEGMA) above the device into which antibodies are printed. Simultaneous testing of a control device having no antibodies printed over the CNT channel confirms successful detection of the target biomarker via an on-current shift caused by antibody sandwich formation. Drift in the target signal is mitigated by a combination of: (1) maximizing sensitivity by appropriate passivation alongside the polymer brush coating; (2) using a stable electrical testing configuration; and (3) enforcing a rigorous testing methodology that relies on infrequent DC sweeps rather than static or AC measurements. These improvements are realized in a relatively simple device using printed CNTs and antibodies for a low-cost, versatile platform for the ongoing pursuit of point-of-care BioFETs.
Collapse
Affiliation(s)
- Faris M Albarghouthi
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Daria Semeniak
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Iman Khanani
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - James L Doherty
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Brittany N Smith
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Matthew Salfity
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Quentin MacFarlane
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Aneesh Karappur
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Steven G Noyce
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Nicholas X Williams
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Daniel Y Joh
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Joseph B Andrews
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Aaron D Franklin
- Department of Electrical & Computer Engineering, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
4
|
Kalita N, Gogoi S, Minteer SD, Goswami P. Advances in Bioelectrode Design for Developing Electrochemical Biosensors. ACS MEASUREMENT SCIENCE AU 2023; 3:404-433. [PMID: 38145027 PMCID: PMC10740130 DOI: 10.1021/acsmeasuresciau.3c00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023]
Abstract
The critical performance factors such as selectivity, sensitivity, operational and storage stability, and response time of electrochemical biosensors are governed mainly by the function of their key component, the bioelectrode. Suitable design and fabrication strategies of the bioelectrode interface are essential for realizing the requisite performance of the biosensors for their practical utility. A multifaceted attempt to achieve this goal is visible from the vast literature exploring effective strategies for preparing, immobilizing, and stabilizing biorecognition elements on the electrode surface and efficient transduction of biochemical signals into electrical ones (i.e., current, voltage, and impedance) through the bioelectrode interface with the aid of advanced materials and techniques. The commercial success of biosensors in modern society is also increasingly influenced by their size (and hence portability), multiplexing capability, and coupling in the interface of the wireless communication technology, which facilitates quick data transfer and linked decision-making processes in real-time in different areas such as healthcare, agriculture, food, and environmental applications. Therefore, fabrication of the bioelectrode involves careful selection and control of several parameters, including biorecognition elements, electrode materials, shape and size of the electrode, detection principles, and various fabrication strategies, including microscale and printing technologies. This review discusses recent trends in bioelectrode designs and fabrications for developing electrochemical biosensors. The discussions have been delineated into the types of biorecognition elements and their immobilization strategies, signal transduction approaches, commonly used advanced materials for electrode fabrication and techniques for fabricating the bioelectrodes, and device integration with modern electronic communication technology for developing electrochemical biosensors of commercial interest.
Collapse
Affiliation(s)
- Nabajyoti Kalita
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sudarshan Gogoi
- Department
of Chemistry, Sadiya College, Chapakhowa, Assam 786157, India
| | - Shelley D. Minteer
- Department
of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, United States
- Kummer
Institute Center for Resource Sustainability, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pranab Goswami
- Department
of Biosciences and Bioengineering, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
He J, Spanolios E, Froehlich CE, Wouters CL, Haynes CL. Recent Advances in the Development and Characterization of Electrochemical and Electrical Biosensors for Small Molecule Neurotransmitters. ACS Sens 2023; 8:1391-1403. [PMID: 36940263 DOI: 10.1021/acssensors.3c00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Neurotransmitters act as chemical messengers, determining human physiological and psychological function, and abnormal levels of neurotransmitters are related to conditions such as Parkinson's and Alzheimer's disease. Biologically and clinically relevant concentrations of neurotransmitters are usually very low (nM), so electrochemical and electronic sensors for neurotransmitter detection play an important role in achieving sensitive and selective detection. Additionally, these sensors have the distinct advantage to potentially be wireless, miniaturized, and multichannel, providing remarkable opportunities for implantable, long-term sensing capabilities unachievable by spectroscopic or chromatographic detection methods. In this article, we will focus on advances in the development and characterization of electrochemical and electronic sensors for neurotransmitters during the last five years, identifying how the field is progressing as well as critical knowledge gaps for sensor researchers.
Collapse
|
6
|
Fan J, Kang L, Cheng X, Liu D, Zhang S. Biomass-Derived Carbon Dots and Their Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4473. [PMID: 36558326 PMCID: PMC9783293 DOI: 10.3390/nano12244473] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Carbon dots (CDs) can be widely used in the field of sensing because of its good water solubility, low toxicity, high fluorescence stability and excellent biocompatibility. It has become a popular trend to prepare high-value, inexpensive, renewable and environmentally friendly CDs sensors from biomass resources. This article reviewed the research progress of biomass-derived CDs as chemical, physical and biological sensors in recent years and studied their preparation processes and sensing abilities. Furthermore, the prospects and challenges of biomass-CDs sensors were discussed. This article is expected to provide inspirations for the design, preparation and application of biomass-CDs sensors in the future.
Collapse
Affiliation(s)
- Jiang Fan
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Lei Kang
- School of Surveying & Testing, Shaanxi Railway Institute, Weinan 714000, China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xu Cheng
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Di Liu
- Department of Chemical Engineering, Textile and Clothing, Shaanxi Polytechnic Institute, Xianyang 712000, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
7
|
Zhang X, Zhang Z, Diao W, Zhou C, Song Y, Wang R, Luo X, Liu G. Early-diagnosis of major depressive disorder: From biomarkers to point-of-care testing. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
8
|
Lee YJ, Lim HJ, Kim DM. Quantitative Analysis of γ-Aminobutyric Acid by Combined Cell-Free Protein Synthesis and Transamination Reactions. ACS Synth Biol 2022; 11:1208-1212. [PMID: 35191303 DOI: 10.1021/acssynbio.1c00501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthetic power of cells can be harnessed for assaying important analytes, as well as for producing biomolecules. In particular, cell-free protein synthesis (CFPS) can be implemented as a signal amplification module for bioassays, while avoiding many problems associated with whole cell-based microbial biosensors. Here, we developed a method for analyzing γ-aminobutyric acid (GABA) by combining the enzymatic conversion of GABA and amino-acid-dependent CFPS. In this method, GABA molecules in the assay sample are used to generate alanine, which is incorporated into signal-generating proteins in the subsequent cell-free synthesis reaction. The activity of cell-free synthesized proteins was successfully used to estimate the GABA concentration in the assay sample. In principle, the developed method could be extended for the analyses of other important bioactive compounds.
Collapse
Affiliation(s)
- You Jin Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
9
|
El-Said WA, Qaisi RM, Placide V, Choi JW. A stable naked-eye colorimetric sensor for monitoring release of extracellular gamma-aminobutyric acid (GABA) neurotransmitter from SH-SY5Y cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120517. [PMID: 34739892 DOI: 10.1016/j.saa.2021.120517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
A novel optical γ-aminobutyric acid (GABA)-based sensor was developed on interacting thiol compounds and o-phthalaldehyde (OPA) to form thiacetal compounds. Then, the thiacetal interacts with the GABA molecule to form an isoindole compound. The effects of four thiol compounds on the stability of the resulting isoindole compound were assessed. The 2-mercaptoethanol, "one of the most used derivatizing agents," is unexpectedly the least stable; while, 16-mercaptohexadecanoic acid resulted in the most durable isoindole compound. The developed sensor showed the capability for detecting GABA within a wide concentration range spanning from 500 nmol L-1 to 100 µmol L-1. The detection limit was about 330 nmol L-1, which indicated the high sensitivity of the developed sensor compared with those previously reported. The findings illustrated the ability to detect GABA at the physiological pH (pH = 7.4) without adjusting the pH value, opening the door for real applications. Furthermore, the sensor could detect various GABA concentrations in human serum with good recovery percentages (98% to 101.4%). In addition, this assay was applied to monitor GABA release from the SH-SY5Y cell line to convert glutamate into GABA. This result indicates the capability of the proposed assay for visually monitoring the release of GABA neurotransmitters.
Collapse
Affiliation(s)
- Waleed A El-Said
- Department of Chemistry, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia; Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea; Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Ramy M Qaisi
- University of Jeddah, College of Engineering, Department of Electrical and Electronic Engineering, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Virginie Placide
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 121-742, Republic of Korea.
| |
Collapse
|
10
|
Chaves T, Török B, Fazekas CL, Correia P, Sipos E, Várkonyi D, Hellinger Á, Erk D, Zelena D. Median raphe region GABAergic neurons contribute to social interest in mouse. Life Sci 2022; 289:120223. [PMID: 34896160 DOI: 10.1016/j.lfs.2021.120223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 10/19/2022]
Abstract
Gamma-aminobutyric acid (GABA) is a well-known inhibitory neurotransmitter implicated in numerous physiological and pathological behaviors including social interest. Dysregulation of the median raphe region (MRR), a main serotoninergic nucleus, is also characterized by increased social problems. As the majority of MRR cells are GABAergic, we aimed to reveal the social role of these cells. Chemogenetic techniques were used in vesicular GABA transporter Cre mice and with the help of adeno-associated virus vectors artificial receptors (DREADDs, stimulatory, inhibitory or control, containing only a fluorophore) were expressed in MRR GABAergic cells confirmed by immunohistochemistry. Four weeks after viral injection a behavioral test battery (sociability; social interaction; resident-intruder) was conducted. The artificial ligand (clozapine-N-oxide, 1 mg/10 ml/kg) was administrated 30 min before the tests. As possible confounding factors, locomotion (open field/OF), anxiety-like behavior (elevated plus maze/EPM), and short-term memory (Y-maze) were also evaluated. Stimulation of the GABAergic cells in MRR had no effect on locomotion or working and social memory; however, it increased social interest during sociability and social interaction but not in resident-intruder tests. Accordingly, c-Fos elevation in MRR-GABAergic cells was detected after sociability, but not resident-intruder tests. In the EPM test, the inhibitory group entered into the open arms later, suggesting an anxiogenic-like tendency. We confirmed the role of MRR-GABAergic cells in promoting social interest. However, different subpopulations (e.g. long vs short projecting, various neuropeptide containing) might have divergent roles, which might remain hidden and requires further studies.
Collapse
Affiliation(s)
- Tiago Chaves
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Bibiána Török
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Csilla Lea Fazekas
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Pedro Correia
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Eszter Sipos
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dorottya Várkonyi
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Ákos Hellinger
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dogu Erk
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary
| | - Dóra Zelena
- Laboratory of Behavioral and Stress Studies, Institute of Experimental Medicine, Budapest, Hungary; Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
11
|
Liu Y, Xu X, Yan B. An anthracene-based Hydrogen-bonded Organic Framework as Bifunctional Fluorescent Sensor for the Detection of γ-Aminobutyric Acid and Nitrofurazone. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00542e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intelligent fluorescence detection for disease diagnosis has become a research hotspot. In the era of big data, machine learning (ML) for analyzing data and mining will be widely used in...
Collapse
|
12
|
Protein biosensor based on Schottky barrier nanowire field effect transistor. Talanta 2021; 239:123092. [PMID: 34856478 DOI: 10.1016/j.talanta.2021.123092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
A top-down nanofabrication approach involving molecular beam epitaxy and electron beam lithography was used to obtain silicon nanowire-based back gate field-effect transistors with Schottky contacts on silicon-on-insulator (SOI) wafers. The resulting device is applied in biomolecular detection based on the changes in the drain-source current (IDS). In this context, we have explained the physical mechanisms of charge carrier transport in the nanowire using energy band diagrams and numerical 2D simulations in TCAD. The results of the experiment and numerical modeling matched well and may be used to develop novel types of nanowire-based biosensors.
Collapse
|
13
|
Halima HB, Errachid A, Jaffrezic‐Renault N. Electrochemical Affinity Sensors Using Field Effect Transducer Devices for Chemical Analysis. ELECTROANAL 2021. [DOI: 10.1002/elan.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hamdi Ben Halima
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | - Abdelhamid Errachid
- University of Lyon Institute of Analytical Sciences 69100 Villeurbanne France
| | | |
Collapse
|
14
|
Ghosh AK, Chowdhury M, Kumar Das P. Nipecotic-Acid-Tethered, Naphthalene-Diimide-Based, Orange-Emitting Organic Nanoparticles as Targeted Delivery Vehicle and Diagnostic Probe toward GABA A-Receptor-Enriched Cancer Cells. ACS APPLIED BIO MATERIALS 2021; 4:7563-7577. [PMID: 35006693 DOI: 10.1021/acsabm.1c00830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This article demonstrates target-specific cellular imaging of GABA (γ-aminobutyric acid) receptor (GABAAR)-enriched cells (SH-SY5Y and A549) with therapeutic efficacy by naphthalene diimide (NDI)-derived fluorescent organic nanoparticles (FONPs). Self-assembly-driven formation of spherical organic particles by nipecotic-acid-tethered l-aspartic acid appended NDI derivative (NDI-nip) took place in DMSO-water through J-type aggregation. NDI-nip having a naphthyl residue and a nipecotic acid unit at both terminals exhibited aggregation-induced emission (AIE) at and above 60% water content in DMSO because of excimer formation at λem = 579 nm. The orange-emitting NDI-nip FONPs (1:99 v/v DMSO-water) having excellent cell viability and high photostability were used for selective bioimaging and killing of GABAAR-overexpressed cancer cells through target-specific delivery of the anticancer drug curcumin. The fluorescence intensity of NDI-nip FONPs were quenched in GABAAR-enriched neuroblastoma cells (SH-SY5Y) and cancerous cells (A549). Notably, in the presence of GABA, the NDI-nip FONPs exhibited their native fluorescence within the same cell lines. Importantly, no such quenching and regaining of NDI-nip FONP emission in the presence of GABA was noted in the case of the noncancerous cell NIH3T3. The killing efficiency of curcumin-loaded NDI-nip FONPs ([curcumin] = 100 μM and [NDI-nip FONPs] = 50 μM) was significantly higher in the cases of SH-SY5Y (88 ± 3%) and A549 (72 ± 2%) than in NIH3T3 (37 ± 2). The presence of a nipecotic acid moiety facilitated the selective cellular internalization of NDI-nip FONPs into GABAAR-overexpressing cells. Hence, these orange-emitting NDI-nip FONPs may be exploited as a targeted diagnostic probe as well as a drug delivery vehicle for GABAAR-enriched cancer cells.
Collapse
Affiliation(s)
- Anup Kumar Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Monalisa Chowdhury
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| | - Prasanta Kumar Das
- School of Biological Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata 700032, India
| |
Collapse
|
15
|
Sinha K, Chakraborty B, Chaudhury SS, Chaudhuri CR, Chattopadhyay SK, Das Mukhopadhyay C. Selective, Ultra-sensitive and Rapid Detection of Serotonin by Optimized ZnO Nanorod FET Biosensor. IEEE Trans Nanobioscience 2021; 21:65-74. [PMID: 34516379 DOI: 10.1109/tnb.2021.3112534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Fluctuation in serotonin (5-HT) level is an essential manifestation of several neurological disorders. In view of such importance, it is necessary to monitor the levels of 5-HT with good sensitivity, selectivity, affordability and low response time. Zinc oxide (ZnO) based field effect transistors (FET) with attributes like minimized noise levels and large on-off ratio are regarded as emerging high performance biosensor platforms. However, their response is significantly non-linear and there has been no appreciable endeavor for improving the non-linearity. METHOD In this paper, we have introduced embedded gate electrode encompassing the channel of the FET which improves the uniformity in electric field line distribution through the electrolyte and proportionately enhances the capture of target biomolecule at ultra low concentrations, thereby increasing the linearity. Further, we have incorporated the optimized parameters of ZnO nanorods reported previously, for rapid and selective detection of 5-HT. RESULTS It has been observed that the fabricated ZnO FET biosensor lowers the detection limit down to 0.1fM which is at least one order of magnitude lower than the existing reports. The sensor also has wide linear range from 0.1fM to 1nM with a detection time of about 20 minutes. CONCLUSION The proposed zinc oxide nanorod-based sensor can be used as an excellent tool for future diagnosis of neurological disorders.
Collapse
|
16
|
Lee NK, Wang CPJ, Lim J, Park W, Kwon HK, Kim SN, Kim TH, Park CG. Impact of the conjugation of antibodies to the surfaces of polymer nanoparticles on the immune cell targeting abilities. NANO CONVERGENCE 2021; 8:24. [PMID: 34398322 PMCID: PMC8368787 DOI: 10.1186/s40580-021-00274-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/31/2021] [Indexed: 06/01/2023]
Abstract
Antibodies have been widely used to provide targeting ability and to enhance bioactivity owing to their high specificity, availability, and diversity. Recent advances in biotechnology and nanotechnology permit site-specific engineering of antibodies and their conjugation to the surfaces of nanoparticles (NPs) in various orientations through chemical conjugations and physical adhesions. This study proposes the conjugation of poly(lactic-co-glycolic acid) (PLGA) NPs with antibodies by using two distinct methods, followed by a comparison between the cell-targeting efficiencies of both techniques. Full-length antibodies were conjugated to the PLGA-poly(ethylene glycol)-carboxylic acid (PLGA-PEG-COOH) NPs through the conventional carbodiimide coupling reaction, and f(ab')2 antibody fragments were conjugated to the PLGA-poly(ethylene glycol)-maleimide(PLGA-PEG-Mal) NPs through interactions between the f(ab')2 fragment thiol groups and the maleimide located on the nanoparticle surface. The results demonstrate that the PLGA nanoparticles conjugated with the f(ab')2 antibody fragments had a higher targeting efficiency in vitro and in vivo than that of the PLGA nanoparticles conjugated with the full-length antibodies. The results of this study can be built upon to design a delivery technique for drugs through biocompatible nanoparticles.
Collapse
Affiliation(s)
- Na Kyeong Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Chi-Pin James Wang
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jaesung Lim
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Wooram Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon, Gyeonggi, 14662, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Se-Na Kim
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| | - Chun Gwon Park
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon, Gyeonggi, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Gyeonggi, 16419, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Gyeonggi, 16419, Republic of Korea.
| |
Collapse
|
17
|
Recent Advancements in Aptamer-Based Surface Plasmon Resonance Biosensing Strategies. BIOSENSORS-BASEL 2021; 11:bios11070233. [PMID: 34356703 PMCID: PMC8301862 DOI: 10.3390/bios11070233] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022]
Abstract
Surface plasmon resonance (SPR) can track molecular interactions in real time, and is a powerful as well as widely used biological and chemical sensing technique. Among the different SPR-based sensing applications, aptamer-based SPR biosensors have attracted significant attention because of their simplicity, feasibility, and low cost for target detection. Continuous developments in SPR aptasensing research have led to the emergence of abundant technical and design concepts. To understand the recent advances in SPR for biosensing, this paper reviews SPR-based research from the last seven years based on different sensing-type strategies and sub-directions. The characteristics of various SPR-based applications are introduced. We hope that this review will guide the development of SPR aptamer sensors for healthcare.
Collapse
|
18
|
Abstract
Bioelectronics explores the use of electronic devices for applications in signal transduction at their interfaces with biological systems. The miniaturization of the bioelectronic systems has enabled seamless integration at these interfaces and is providing new scientific and technological opportunities. In particular, nanowire-based devices can yield smaller sized and unique geometry detectors that are difficult to access with standard techniques, and thereby can provide advantages in sensitivity with reduced invasiveness. In this review, we focus on nanowire-enabled bioelectronics. First, we provide an overview of synthetic studies for designed growth of semiconductor nanowires of which structure and composition are controlled to enable key elements for bioelectronic devices. Second, we review nanowire field-effect transistor sensors for highly sensitive detection of biomolecules, their applications in diagnosis and drug discovery, and methods for sensitivity enhancement. We then turn to recent progress in nanowire-enabled studies of electrogenic cells, including cardiomyocytes and neurons. Representative advances in electrical recording using nanowire electronic devices for single cell measurements, cell network mapping, and three-dimensional recordings of synthetic and natural tissues, and in vivo brain mapping are highlighted. Finally, we overview the key challenges and opportunities of nanowires for fundamental research and translational applications.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Jae-Hyun Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Advanced Science Institute, Yonsei University, Seoul, 03722, Korea
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
19
|
Arndt N, Tran HDN, Zhang R, Xu ZP, Ta HT. Different Approaches to Develop Nanosensors for Diagnosis of Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001476. [PMID: 33344116 PMCID: PMC7740096 DOI: 10.1002/advs.202001476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/18/2020] [Indexed: 05/09/2023]
Abstract
The success of clinical treatments is highly dependent on early detection and much research has been conducted to develop fast, efficient, and precise methods for this reason. Conventional methods relying on nonspecific and targeting probes are being outpaced by so-called nanosensors. Over the last two decades a variety of activatable sensors have been engineered, with a great diversity concerning the operating principle. Therefore, this review delineates the achievements made in the development of nanosensors designed for diagnosis of diseases.
Collapse
Affiliation(s)
- Nina Arndt
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- Department of BiotechnologyTechnische Universität BerlinBerlin10623Germany
| | - Huong D. N. Tran
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
| | - Hang T. Ta
- Queensland Micro‐ and Nanotechnology CentreGriffith UniversityBrisbaneQueensland4111Australia
- Australian Institute for Bioengineering and Nanotechnologythe University of QueenslandBrisbaneQueensland4072Australia
- School of Environment and ScienceGriffith UniversityBrisbaneQueensland4111Australia
| |
Collapse
|
20
|
Non-enzymatic electrochemical sensor to detect γ-aminobutyric acid with ligand-based on graphene oxide modified gold electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
22
|
El-Said WA, Alshitari W, Choi JW. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117890. [PMID: 31839573 DOI: 10.1016/j.saa.2019.117890] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 05/22/2023]
Abstract
Shell-isolated nanoparticle-enhanced Raman Spectroscopy (SHINERS) has been a non-destructive, highly sensitive, specific and powerful sensing method. Detection of γ-aminobutyric acid (GABA) and glutamate, main neurotransmitters in the human brain, is important to diagnosis the neurological disorder. The purpose of this study is preparing a simple, rapid and inexpensive fabrication of Au nanobipyramids/polymer core/shell as a SHINERS-based biosensor to detect different neurotransmitters such as GABA and glutamate with high sensitivity and specificity. Au nanobipyramids/polymer core/shell was fabricated by using two steps process. In the first Au nanobipyramids with longitude and latitude axial of about 100 nm and 10 nm, respectively, was prepared based on the chemical reduction of Au ions by using sodium borohydride as a reducing agent. Then a thin layer of polypyrrole was used for decorating the Au nanobipyramids by using direct polymerization in the presence of Au nanobipyramids. The sensor composed Au nanobipyramids with a thin layer of polypyrrole that could measure GABA within a wide range of concentrations in the presence of human serum. And this sensor was used for direct monitoring of GABA and glutamate. The proposed biosensor can be applied to monitor the level of neurotransmitters accurately for the diagnosis of various neurological disorders with optical signal enhancement.
Collapse
Affiliation(s)
- Waleed Ahmed El-Said
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea; Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt; University of Jeddah, College of Science, Department of Chemistry, P.O. 80327, Jeddah 21589, Saudi Arabia
| | - Wael Alshitari
- University of Jeddah, College of Science, Department of Chemistry, P.O. 80327, Jeddah 21589, Saudi Arabia
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, 35, Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
23
|
Yoon J, Shin M, Lee T, Choi JW. Highly Sensitive Biosensors Based on Biomolecules and Functional Nanomaterials Depending on the Types of Nanomaterials: A Perspective Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E299. [PMID: 31936530 PMCID: PMC7013709 DOI: 10.3390/ma13020299] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Biosensors are very important for detecting target molecules with high accuracy, selectivity, and signal-to-noise ratio. Biosensors developed using biomolecules such as enzymes or nucleic acids which were used as the probes for detecting the target molecules were studied widely due to their advantages. For example, enzymes can react with certain molecules rapidly and selectively, and nucleic acids can bind to their complementary sequences delicately in nanoscale. In addition, biomolecules can be immobilized and conjugated with other materials by surface modification through the recombination or introduction of chemical linkers. However, these biosensors have some essential limitations because of instability and low signal strength derived from the detector biomolecules. Functional nanomaterials offer a solution to overcome these limitations of biomolecules by hybridization with or replacing the biomolecules. Functional nanomaterials can give advantages for developing biosensors including the increment of electrochemical signals, retention of activity of biomolecules for a long-term period, and extension of investigating tools by using its unique plasmonic and optical properties. Up to now, various nanomaterials were synthesized and reported, from widely used gold nanoparticles to novel nanomaterials that are either carbon-based or transition-metal dichalcogenide (TMD)-based. These nanomaterials were utilized either by themselves or by hybridization with other nanomaterials to develop highly sensitive biosensors. In this review, highly sensitive biosensors developed from excellent novel nanomaterials are discussed through a selective overview of recently reported researches. We also suggest creative breakthroughs for the development of next-generation biosensors using the novel nanomaterials for detecting harmful target molecules with high sensitivity.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Wolgye-dong, Nowon-gu, Seoul 01899, Korea;
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea; (J.Y.); (M.S.)
| |
Collapse
|
24
|
Magnetic-Assisted Cell Alignment within a Magnetic Nanoparticle-Decorated Reduced Graphene Oxide/Collagen 3D Nanocomposite Hydrogel. NANOMATERIALS 2019; 9:nano9091293. [PMID: 31510029 PMCID: PMC6781054 DOI: 10.3390/nano9091293] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/01/2019] [Accepted: 09/08/2019] [Indexed: 01/05/2023]
Abstract
Hydrogel scaffolds are particularly interesting for applications in tissue engineering because of their ability to create a favorable environment which mimics in vivo conditions. However, the hierarchically ordered anisotropic structure which is found in many native tissues and cellular components is hard to achieve in 3D scaffolds. In this work, we report the incorporation of magnetic nanoparticle-decorated reduced graphene oxide (m-rGO) within a collagen hydrogel. This magneto-responsive m-rGO aligned within the collagen hydrogel during gelation with the application of a low external magnetic field. This nanocomposite hydrogel with magnetically aligned m-rGO flakes is capable of encapsulating neuroblastoma cells (SH-SY5Y), promoting cell differentiation and inducing oriented cell growth owing to its excellent biocompatibility and electrical conductivity. The directionally oriented and differentiated SH-SY5Y cells within the m-rGO collagen hydrogel showed propagation of calcium signal along the direction of orientation. This method can be applied to creating magnetically responsive materials with potential for various biomedical applications.
Collapse
|