1
|
Hagemann C, Bailey MCD, Carraro E, Stankevich KS, Lionello VM, Khokhar N, Suklai P, Moreno-Gonzalez C, O’Toole K, Konstantinou G, Dix CL, Joshi S, Giagnorio E, Bergholt MS, Spicer CD, Imbert A, Tedesco FS, Serio A. Low-cost, versatile, and highly reproducible microfabrication pipeline to generate 3D-printed customised cell culture devices with complex designs. PLoS Biol 2024; 22:e3002503. [PMID: 38478490 PMCID: PMC10936828 DOI: 10.1371/journal.pbio.3002503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2023] [Accepted: 01/17/2024] [Indexed: 03/17/2024] Open
Abstract
Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the μm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.
Collapse
Affiliation(s)
- Cathleen Hagemann
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Matthew C. D. Bailey
- The Francis Crick Institute, London, United Kingdom
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, United Kingdom
| | - Eugenia Carraro
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Ksenia S. Stankevich
- Department of Chemistry and York Biomedical Research Institute, University of York, York, United Kingdom
| | - Valentina Maria Lionello
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Noreen Khokhar
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | - Pacharaporn Suklai
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Carmen Moreno-Gonzalez
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | - Kelly O’Toole
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| | | | | | - Sudeep Joshi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Eleonora Giagnorio
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Neurology IV—Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mads S. Bergholt
- Centre for Craniofacial & Regenerative Biology, King’s College London, London, United Kingdom
| | - Christopher D. Spicer
- Department of Chemistry and York Biomedical Research Institute, University of York, York, United Kingdom
| | | | - Francesco Saverio Tedesco
- The Francis Crick Institute, London, United Kingdom
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Dubowitz Neuromuscular Centre, UCL Great Ormond Street Institute of Child Health & Great Ormond Street Hospital for Children, London, United Kingdom
| | - Andrea Serio
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Dementia Research Institute (UK DRI)
| |
Collapse
|
2
|
Ou L, Tan X, Qiao S, Wu J, Su Y, Xie W, Jin N, He J, Luo R, Lai X, Liu W, Zhang Y, Zhao F, Liu J, Kang Y, Shao L. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS NANO 2023; 17:18669-18687. [PMID: 37768738 DOI: 10.1021/acsnano.3c03857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/29/2023]
Abstract
Tissue engineering and regenerative medicine hold promise for improving or even restoring the function of damaged organs. Graphene-based materials (GBMs) have become a key player in biomaterials applied to tissue engineering and regenerative medicine. A series of cellular and molecular events, which affect the outcome of tissue regeneration, occur after GBMs are implanted into the body. The immunomodulatory function of GBMs is considered to be a key factor influencing tissue regeneration. This review introduces the applications of GBMs in bone, neural, skin, and cardiovascular tissue engineering, emphasizing that the immunomodulatory functions of GBMs significantly improve tissue regeneration. This review focuses on summarizing and discussing the mechanisms by which GBMs mediate the sequential regulation of the innate immune cell inflammatory response. During the process of tissue healing, multiple immune responses, such as the inflammatory response, foreign body reaction, tissue fibrosis, and biodegradation of GBMs, are interrelated and influential. We discuss the regulation of these immune responses by GBMs, as well as the immune cells and related immunomodulatory mechanisms involved. Finally, we summarize the limitations in the immunomodulatory strategies of GBMs and ideas for optimizing GBM applications in tissue engineering. This review demonstrates the significance and related mechanism of the immunomodulatory function of GBM application in tissue engineering; more importantly, it contributes insights into the design of GBMs to enhance wound healing and tissue regeneration in tissue engineering.
Collapse
Affiliation(s)
- Lingling Ou
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiner Tan
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shijia Qiao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuan Su
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
- Stomatology Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528399, China
| | - Wenqiang Xie
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Nianqiang Jin
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiankang He
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ruhui Luo
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xuan Lai
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fujian Zhao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yiyuan Kang
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
3
|
Kang MJ, Cho YW, Kim TH. Progress in Nano-Biosensors for Non-Invasive Monitoring of Stem Cell Differentiation. BIOSENSORS 2023; 13:bios13050501. [PMID: 37232862 DOI: 10.3390/bios13050501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/27/2023]
Abstract
Non-invasive, non-destructive, and label-free sensing techniques are required to monitor real-time stem cell differentiation. However, conventional analysis methods, such as immunocytochemistry, polymerase chain reaction, and Western blot, involve invasive processes and are complicated and time-consuming. Unlike traditional cellular sensing methods, electrochemical and optical sensing techniques allow non-invasive qualitative identification of cellular phenotypes and quantitative analysis of stem cell differentiation. In addition, various nano- and micromaterials with cell-friendly properties can greatly improve the performance of existing sensors. This review focuses on nano- and micromaterials that have been reported to improve sensing capabilities, including sensitivity and selectivity, of biosensors towards target analytes associated with specific stem cell differentiation. The information presented aims to motivate further research into nano-and micromaterials with advantageous properties for developing or improving existing nano-biosensors to achieve the practical evaluation of stem cell differentiation and efficient stem cell-based therapies.
Collapse
Affiliation(s)
- Min-Ji Kang
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yeon-Woo Cho
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
4
|
Hong S, Song JM. High-Resolution In Situ High-Content Imaging of 3D-Bioprinted Single Breast Cancer Spheroids for Advanced Quantification of Benzo( a)pyrene Carcinogen-Induced Breast Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11416-11430. [PMID: 36812369 DOI: 10.1021/acsami.2c17877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are critically correlated with carcinogenesis and are strongly affected by the environmental factors. Environmental carcinogens, such as benzo(a)pyrene (BaP), are associated with the overproduction of CSCs in various types of cancers, including breast cancer. In this report, we present a sophisticated 3D breast cancer spheroid model for the direct identification and quantitative determination of CSCs induced by carcinogens within intact 3D spheroids. To this end, hydrogel microconstructs containing MCF-7 breast cancer cells were bioprinted within direct-made diminutive multi-well chambers, which were utilized for the mass cultivation of spheroids and in situ detection of CSCs. We found that the breast CSCs caused by BaP-induced mutations were higher in the biomimetic MCF-7 breast cancer spheroids than that in standard 2D monolayer cultures. Precisely controlled MCF-7 cancer spheroids could be generated by serially cultivating MCF-7 cells within the printed hydrogel microconstructs, which could be further utilized for high-resolution in situ high-content 3D imaging analysis to spatially identify the emergence of CSCs at the single spheroid level. Additionally, potential therapeutic agents specific to breast CSCs were successfully evaluated to verify the effectiveness of this model. This bioengineered 3D cancer spheroid system provides a novel approach to investigating the emergence of CSC induced by a carcinogen for environmental hazard assessment in a reproducible and scalable format.
Collapse
Affiliation(s)
- Sera Hong
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Joon Myong Song
- College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
5
|
Chen C, Chen Y, Lan YJ, Tian MN, Zhang YM, Lei ZY, Fan DL. Effects of substrate topography on the regulation of human fibroblasts and capsule formation via modulating macrophage polarization. Colloids Surf B Biointerfaces 2023; 222:113086. [PMID: 36542953 DOI: 10.1016/j.colsurfb.2022.113086] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
The host-material interface is critical in determining the successful integration of medical devices into human tissue. The surface topography can regulate the fibrous capsule formation around implants through macrophage polarization, but the exact mechanism remains unclear. In this study, four types of microgrooves (10 or 50 µm in groove depths and 50 or 200 µm in groove widths) were fabricated on polydimethylsiloxane (PDMS) using lithography. The microgroove surfaces were characterized using the laser scanning confocal microscopy and fourier transform infrared spectroscopy. The effect of surface topography on macrophage phenotypes and conditioned medium (CM) collected from macrophages on human foreskin fibroblast 1 (HFF-1) were investigated. The result revealed that a deeper and narrower microgroove structure means a rougher surface. Macrophages tended to adhere and aggregate on group 50-50 surface (groove depths and widths of 50 µm). THP-1 cell polarized toward both inflammatory M1 and anti-inflammatory M2 macrophages on the surface of each group. Meanwhile, CM from macrophages culture on PDMS differentially up-regulated the proliferation, migration and fibrosis of HFF-1. Among them, the group 50-50 had the strongest promoting effect. In vivo, the inflammatory response and fibrotic capsule around the implants were observed at 1 week and 4 weeks. As time passed, the inflammatory response decreased, while the capsule thickness continued to increase. The rough material surface was more inclined to develop a severe fibrotic encapsulation. In conclusion, this finding further suggested a potential immunomodulatory effect of macrophages in mediating the fibrotic response to implants and facilitated the design of biomaterial interfaces for improving tissue integration.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Yao Chen
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Yu-Jie Lan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Meng-Nan Tian
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Yi-Ming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Ze-Yuan Lei
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China
| | - Dong-Li Fan
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Xinqiao Road, Sha Ping Ba District, Chongqing 400037, China.
| |
Collapse
|
6
|
Kang SG, Choi YY, Mo SJ, Kim TH, Ha JH, Hong DK, Lee H, Park SD, Shim JJ, Lee JL, Chung BG. Effect of gut microbiome-derived metabolites and extracellular vesicles on hepatocyte functions in a gut-liver axis chip. NANO CONVERGENCE 2023; 10:5. [PMID: 36645561 PMCID: PMC9842828 DOI: 10.1186/s40580-022-00350-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/18/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Metabolism, is a complex process involving the gut and the liver tissue, is difficult to be reproduced in vitro with conventional single cell culture systems. To tackle this challenge, we developed a gut-liver-axis chip consisting of the gut epithelial cell chamber and three-dimensional (3D) uniform-sized liver spheroid chamber. Two cell culture chamber compartments were separated with a porous membrane to prevent microorganisms from passing through the chamber. When the hepG2 spheroids cultured with microbiota-derived metabolites, we observed the changes in the physiological function of hepG2 spheroids, showing that the albumin and urea secretion activity of liver spheroids was significantly enhanced. Additionally, the functional validation of hepG2 spheroids treated with microbiota-derived exosome was evaluated that the treatment of the microbiota-derived exosome significantly enhanced albumin and urea in hepG2 spheroids in a gut-liver axis chip. Therefore, this gut-liver axis chip could be a potentially powerful co-culture platform to study the interaction of microbiota and host cells.
Collapse
Affiliation(s)
- Seong Goo Kang
- Department of Biomedical Engineering, Sogang University, Seoul, 04107, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Korea
| | | | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Korea
| | | | - Hayera Lee
- R&BD Center, hy Co., Ltd., Yongin-Si, Korea
| | | | | | | | - Bong Geun Chung
- Institute of Integrated Biotechnology, Sogang University, Seoul, 04107, Korea.
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Korea.
| |
Collapse
|
7
|
Kim G, Ko DH, Kim T, Lee S, Jung M, Lee YK, Lim S, Jo M, Eom T, Shin H, Jeong Y, Jung S, Jeon S. Power-Delay Area-Efficient Processing-In-Memory Based on Nanocrystalline Hafnia Ferroelectric Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1463-1474. [PMID: 36576964 DOI: 10.1021/acsami.2c14867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/17/2023]
Abstract
Ferroelectric field-effect transistors (FeFETs) have attracted enormous attention for low-power and high-density nonvolatile memory devices in processing-in-memory (PIM). However, their small memory window (MW) and limited endurance severely degrade the area efficiency and reliability of PIM devices. Herein, we overcome such challenges using key approaches covering from the material to the device and array architecture. High ferroelectricity was successfully demonstrated considering the thermodynamics and kinetics, even in a relatively thick (≥30 nm) ferroelectric material that was unexplored so far. Moreover, we employed a metal-ferroelectric-metal-insulator-semiconductor architecture that enabled desirable voltage division between the ferroelectric and the metal-oxide-semiconductor FET, leading to a large MW (∼11 V), fast operation speed (<20 ns), and high endurance (∼1011 cycles) characteristics. Subsequently, reliable and energy-efficient multiply-and-accumulation (MAC) operations were verified using a fabricated FeFET-PIM array. Furthermore, a system-level simulation demonstrated the high energy efficiency of the FeFET-PIM array, which was attributed to charge-domain computing. Finally, the proposed signed weight MAC computation achieved high accuracy on the CIFAR-10 dataset using the VGG-8 network.
Collapse
Affiliation(s)
- Giuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Dong Han Ko
- School of Electrical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Taeho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Sangho Lee
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Minhyun Jung
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Young Kyu Lee
- School of Electrical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Sehee Lim
- School of Electrical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Minyoung Jo
- School of Electrical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Taehyong Eom
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Hunbeom Shin
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Yeongseok Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Seongook Jung
- School of Electrical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science & Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| |
Collapse
|
8
|
Lee S, Lee Y, Kim T, Kim G, Eom T, Shin H, Jeong Y, Jeon S. Steep-Slope Transistor with an Imprinted Antiferroelectric Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53019-53026. [PMID: 36394287 DOI: 10.1021/acsami.2c10610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
The effect of negative capacitance (NC), which can internally boost the voltage applied to a transistor, has been considered to overcome the fundamental Boltzmann limit of a transistor. To stabilize the NC effect, the dielectric (DE) must be integrated into a heterostructure with a ferroelectric (FE) film. However, in a multidomain hafnia, the charge boosting effect is reduced owing to a lowering of the depolarization field originating from the stray field at each domain, and simultaneously, the operating voltage increases owing to the voltage division at the DE. Here, we demonstrate core approaches to the gate stack of energy-efficient device technology using a transient NC. Electrical measurements of the transistor with imprinted antiferroelectric and high CDE/CFE structures exhibit low subthreshold slopes below 20 mV/dec, a low voltage operation of 0.5 V, a fast operation of 20 ns, hysteresis-free Id-Vg, and high endurance characteristics of 1012 cycles. We expect that this will lead to the rapid implementation of the NC effect in high-speed switching device applications with significantly improved energy efficiency.
Collapse
Affiliation(s)
- Sangho Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Yongsun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Taeho Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Giuk Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Taehyong Eom
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Hunbeom Shin
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Yeongseok Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| | - Sanghun Jeon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)291 Daehak-ro, Yuseong-gu, Daejeon34141, Korea
| |
Collapse
|
9
|
Damiati LA, El-Yaagoubi M, Damiati SA, Kodzius R, Sefat F, Damiati S. Role of Polymers in Microfluidic Devices. Polymers (Basel) 2022; 14:5132. [PMID: 36501526 PMCID: PMC9738615 DOI: 10.3390/polym14235132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Marwa El-Yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Safa A. Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rimantas Kodzius
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
10
|
Lee SI, Choi YY, Kang SG, Kim TH, Choi JW, Kim YJ, Kim TH, Kang T, Chung BG. 3D Multicellular Tumor Spheroids in a Microfluidic Droplet System for Investigation of Drug Resistance. Polymers (Basel) 2022; 14:polym14183752. [PMID: 36145898 PMCID: PMC9500872 DOI: 10.3390/polym14183752] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/27/2022] Open
Abstract
A three-dimensional (3D) tumor spheroid model plays a critical role in mimicking tumor microenvironments in vivo. However, the conventional culture methods lack the ability to manipulate the 3D tumor spheroids in a homogeneous manner. To address this limitation, we developed a microfluidic-based droplet system for drug screening applications. We used a tree-shaped gradient generator to control the cell density and encapsulate the cells within uniform-sized droplets to generate a 3D gradient-sized tumor spheroid. Using this microfluidic-based droplet system, we demonstrated the high-throughput generation of uniform 3D tumor spheroids containing various cellular ratios for the analysis of the anti-cancer drug cytotoxicity. Consequently, this microfluidic-based gradient droplet generator could be a potentially powerful tool for anti-cancer drug screening applications.
Collapse
Affiliation(s)
- Sang Ik Lee
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Seong Goo Kang
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Young Jae Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Correspondence:
| |
Collapse
|
11
|
Shin M, Choi JH, Lim J, Cho S, Ha T, Jeong JH, Choi JW. Electroactive nano-Biohybrid actuator composed of gold nanoparticle-embedded muscle bundle on molybdenum disulfide nanosheet-modified electrode for motion enhancement of biohybrid robot. NANO CONVERGENCE 2022; 9:24. [PMID: 35612632 PMCID: PMC9133293 DOI: 10.1186/s40580-022-00316-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 05/28/2023]
Abstract
There have been several trials to develop the bioactuator using skeletal muscle cells for controllable biobybird robot. However, due to the weak contraction force of muscle cells, the muscle cells could not be used for practical applications such as biorobotic hand for carrying objects, and actuator of biohybrid robot for toxicity test and drug screening. Based on reported hyaluronic acid-modified gold nanoparticles (HA@GNPs)-embedded muscle bundle on PDMS substrate, in this study for augmented actuation, we developed the electroactive nano-biohybrid actuator composed of the HA@GNP-embedded muscle bundle and molybdenum disulfide nanosheet (MoS2 NS)-modified electrode to enhance the motion performance. The MoS2 NS-modified Au-coated polyimide (PI) electrode to be worked in mild pH condition for viable muscle cell was utilized as supporting- and motion enhancing- substrate since it was electrochemically active, which caused the movement of flexible PI electrode. The motion performance of this electroactive nano-biohybrid actuator by electrical stimulation was increased about 3.18 times compared with that of only HA@GNPs embedded-muscle bundle on bare PI substrate. The proposed electroactive nano-biohybrid actuator can be applied to the biorobotic hand and biohybrid robot.
Collapse
Affiliation(s)
- Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk- do, 54896, Republic of Korea
| | - Joungpyo Lim
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Sungwoo Cho
- Department of Chemical Engineering, Soongsil University, 369, Seoul, 06978, Republic of Korea
| | - Taehyeong Ha
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea
| | - Jae Hyun Jeong
- Department of Chemical Engineering, Soongsil University, 369, Seoul, 06978, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, Seoul, 04170, Republic of Korea.
| |
Collapse
|