1
|
Bjertnæs LJ, Næsheim TO, Reierth E, Suborov EV, Kirov MY, Lebedinskii KM, Tveita T. Physiological Changes in Subjects Exposed to Accidental Hypothermia: An Update. Front Med (Lausanne) 2022; 9:824395. [PMID: 35280892 PMCID: PMC8904885 DOI: 10.3389/fmed.2022.824395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/28/2022] [Indexed: 12/01/2022] Open
Abstract
Background Accidental hypothermia (AH) is an unintended decrease in body core temperature (BCT) to below 35°C. We present an update on physiological/pathophysiological changes associated with AH and rewarming from hypothermic cardiac arrest (HCA). Temperature Regulation and Metabolism Triggered by falling skin temperature, Thyrotropin-Releasing Hormone (TRH) from hypothalamus induces release of Thyroid-Stimulating Hormone (TSH) and Prolactin from pituitary gland anterior lobe that stimulate thyroid generation of triiodothyronine and thyroxine (T4). The latter act together with noradrenaline to induce heat production by binding to adrenergic β3-receptors in fat cells. Exposed to cold, noradrenaline prompts degradation of triglycerides from brown adipose tissue (BAT) into free fatty acids that uncouple metabolism to heat production, rather than generating adenosine triphosphate. If BAT is lacking, AH occurs more readily. Cardiac Output Assuming a 7% drop in metabolism per °C, a BCT decrease of 10°C can reduce metabolism by 70% paralleled by a corresponding decline in CO. Consequently, it is possible to maintain adequate oxygen delivery provided correctly performed cardiopulmonary resuscitation (CPR), which might result in approximately 30% of CO generated at normal BCT. Liver and Coagulation AH promotes coagulation disturbances following trauma and acidosis by reducing coagulation and platelet functions. Mean prothrombin and partial thromboplastin times might increase by 40-60% in moderate hypothermia. Rewarming might release tissue factor from damaged tissues, that triggers disseminated intravascular coagulation. Hypothermia might inhibit platelet aggregation and coagulation. Kidneys Renal blood flow decreases due to vasoconstriction of afferent arterioles, electrolyte and fluid disturbances and increasing blood viscosity. Severely deranged renal function occurs particularly in the presence of rhabdomyolysis induced by severe AH combined with trauma. Conclusion Metabolism drops 7% per °C fall in BCT, reducing CO correspondingly. Therefore, it is possible to maintain adequate oxygen delivery after 10°C drop in BCT provided correctly performed CPR. Hypothermia may facilitate rhabdomyolysis in traumatized patients. Victims suspected of HCA should be rewarmed before being pronounced dead. Rewarming avalanche victims of HCA with serum potassium > 12 mmol/L and a burial time >30 min with no air pocket, most probably be futile.
Collapse
Affiliation(s)
- Lars J. Bjertnæs
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| | - Torvind O. Næsheim
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, Cardiovascular Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Eirik Reierth
- Science and Health Library, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
| | - Evgeny V. Suborov
- The Nikiforov Russian Center of Emergency and Radiation Medicine, St. Petersburg, Russia
| | - Mikhail Y. Kirov
- Department of Anesthesiology and Intensive Care, Northern State Medical University, Arkhangelsk, Russia
| | - Konstantin M. Lebedinskii
- Department of Anesthesiology and Intensive Care, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, Russia
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Torkjel Tveita
- Department of Clinical Medicine, Faculty of Health Sciences, Anesthesia and Critical Care Research Group, University of Tromsø, UiT The Arctic University of Norway, Tromsø, Norway
- Division of Surgical Medicine and Intensive Care, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
2
|
Rodriguez MJ, Martinez-Orgado J, Corredera A, Serrano I, Arruza L. Diastolic Dysfunction in Neonates With Hypoxic-Ischemic Encephalopathy During Therapeutic Hypothermia: A Tissue Doppler Study. Front Pediatr 2022; 10:880786. [PMID: 35692972 PMCID: PMC9174686 DOI: 10.3389/fped.2022.880786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Diastolic dysfunction often complicates myocardial ischemia with increased mortality rates. However, less is known about diastolic function after perinatal asphyxia in neonates with hypoxic-ischemic encephalopathy (HIE) during therapeutic hypothermia (TH) and rewarming. AIM The aim of this study was to assess diastolic function with tissue Doppler imaging (TDI) in neonates with moderate-severe HIE during TH and rewarming. METHOD Newborns at >36 weeks' gestation with moderate-severe HIE treated with TH were evaluated with targeted neonatal echocardiography (TNE), including TDI, within 24 h of TH initiation (T1), at 48-72 h of treatment (T2), and after rewarming (T3). These retrospective data were collected and compared with a control group of healthy babies at >36 weeks' gestation that was prospectively evaluated following the same protocol. RESULTS A total of 21 patients with HIE + TH and 15 controls were included in the study. Myocardial relaxation before the onset of biventricular filling was prolonged in the HIE + TH group during TH with significantly longer isovolumic relaxation time (IVRT') in the left ventricle (LV), the septum, and the right ventricle (RV). This was associated with slower RV early diastolic velocity (e') and prolonged filling on T1. Total isovolumic time (t-IVT; isovolumic contraction time [IVCT'] + IVRT') and myocardial performance index (MPI') were globally increased in asphyxiated neonates. All these differences persisted after correction for heart rate (HR) and normalized after rewarming. TDI parameters assessing late diastole (a' velocity or e'/a' and E/e' ratios) did not differ between groups. CONCLUSION TDI evaluation in our study demonstrated a pattern of early diastolic dysfunction during TH that normalized after rewarming, whereas late diastole seemed to be preserved. Our data also suggest a possible involvement of impaired twist/untwist motion and dyssynchrony. More studies are needed to investigate the impact and therapeutic implication of diastolic dysfunction in these babies, as well as to clarify the role of TH in these findings.
Collapse
Affiliation(s)
- Maria Jose Rodriguez
- Division of Neonatology, Instituto del Niño y del Adolescente, Hospital Clinico San Carlos-IdISSC, Madrid, Spain
| | - Jose Martinez-Orgado
- Division of Neonatology, Instituto del Niño y del Adolescente, Hospital Clinico San Carlos-IdISSC, Madrid, Spain
| | - Araceli Corredera
- Division of Neonatology, Instituto del Niño y del Adolescente, Hospital Clinico San Carlos-IdISSC, Madrid, Spain
| | - Irene Serrano
- Research Methodology Unit, Hospital Clínico San Carlos-IdISSC, Madrid, Spain
| | - Luis Arruza
- Division of Neonatology, Instituto del Niño y del Adolescente, Hospital Clinico San Carlos-IdISSC, Madrid, Spain
| |
Collapse
|
3
|
Left Ventricular Function Changes Induced by Moderate Hypothermia Are Rapidly Reversed After Rewarming-A Clinical Study. Crit Care Med 2021; 50:e52-e60. [PMID: 34259452 DOI: 10.1097/ccm.0000000000005170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Targeted temperature management (32-36°C) is used for neuroprotection in cardiac arrest survivors. The isolated effects of hypothermia on myocardial function, as used in clinical practice, remain unclear. Based on experimental results, we hypothesized that hypothermia would reversibly impair diastolic function with less tolerance to increased heart rate in patients with uninsulted hearts. DESIGN Prospective clinical study, from June 2015 to May 2018. SETTING Cardiothoracic surgery operation room, Oslo University Hospital. PATIENTS Twenty patients with left ventricular ejection fraction greater than 55%, undergoing ascending aorta graft-replacement connected to cardiopulmonary bypass were included. INTERVENTIONS Left ventricular function was assessed during reduced cardiopulmonary bypass support at 36°C, 32°C prior to graft-replacement, and at 36°C postsurgery. Electrocardiogram, hemodynamic, and echocardiographic recordings were made at spontaneous heart rate and 90 beats per minute at comparable loading conditions. MEASUREMENTS AND MAIN RESULTS Hypothermia decreased spontaneous heart rate, and R-R interval was prolonged (862 ± 170 to 1,156 ± 254 ms, p < 0.001). Although systolic and diastolic fractions of R-R interval were preserved (0.43 ± 0.07 and 0.57 ± 0.07), isovolumic relaxation time increased and diastolic filling time was shortened. Filling pattern changed from early to late filling. Systolic function was preserved with unchanged myocardial strain and stroke volume index, but cardiac index was reduced with maintained mixed venous oxygen saturation. At increased heart rate, systolic fraction exceeded diastolic fraction (0.53 ± 0.05 and 0.47 ± 0.05) with diastolic impairment. Strain and stroke volume index were reduced, the latter to 65% of stroke volume index at spontaneous heart rate. Cardiac index decreased, but mixed venous oxygen saturation was maintained. After rewarming, myocardial function was restored. CONCLUSIONS In patients with normal left ventricular function, hypothermia impaired diastolic function. At increased heart rate, systolic function was subsequently reduced due to impeded filling. Changes in left ventricular function were rapidly reversed after rewarming.
Collapse
|
4
|
Yamada KP, Kariya T, Aikawa T, Ishikawa K. Effects of Therapeutic Hypothermia on Normal and Ischemic Heart. Front Cardiovasc Med 2021; 8:642843. [PMID: 33659283 PMCID: PMC7919696 DOI: 10.3389/fcvm.2021.642843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has been used for treating brain injury after out-of-hospital cardiac arrest. Its potential benefit on minimizing myocardial ischemic injury has been explored, but clinical evidence has yet to confirm positive results in preclinical studies. Importantly, therapeutic hypothermia for myocardial infarction is unique in that it can be initiated prior to reperfusion, in contrast to its application for brain injury in resuscitated cardiac arrest patients. Recent advance in cooling technology allows more rapid cooling of the heart than ever and new clinical trials are designed to examine the efficacy of rapid therapeutic hypothermia for myocardial infarction. In this review, we summarize current knowledge regarding the effect of hypothermia on normal and ischemic hearts and discuss issues to be solved in order to realize its clinical application for treating acute myocardial infarction.
Collapse
Affiliation(s)
- Kelly P Yamada
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Taro Kariya
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tadao Aikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kiyotake Ishikawa
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Wisløff-Aase K, Kerans V, Haugaa K, Halvorsen PS, Skulstad H, Espinoza A. Changes in left ventricular electromechanical relations during targeted hypothermia. Intensive Care Med Exp 2020; 8:76. [PMID: 33315166 PMCID: PMC7736464 DOI: 10.1186/s40635-020-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/02/2020] [Indexed: 12/04/2022] Open
Abstract
Background Targeted hypothermia, as used after cardiac arrest, increases electrical and mechanical systolic duration. Differences in duration of electrical and mechanical systole are correlated to ventricular arrhythmias. The electromechanical window (EMW) becomes negative when the electrical systole outlasts the mechanical systole. Prolonged electrical systole corresponds to prolonged QT interval, and is associated with increased dispersion of repolarization and mechanical dispersion. These three factors predispose for arrhythmias. The electromechanical relations during targeted hypothermia are unknown. We wanted to explore the electromechanical relations during hypothermia at 33 °C. We hypothesized that targeted hypothermia would increase electrical and mechanical systolic duration without more profound EMW negativity, nor an increase in dispersion of repolarization and mechanical dispersion. Methods In a porcine model (n = 14), we registered electrocardiogram (ECG) and echocardiographic recordings during 38 °C and 33 °C, at spontaneous and atrial paced heart rate 100 beats/min. EMW was calculated by subtracting electrical systole; QT interval, from the corresponding mechanical systole; QRS onset to aortic valve closure. Dispersion of repolarization was measured as time from peak to end of the ECG T wave. Mechanical dispersion was calculated by strain echocardiography as standard deviation of time to peak strain. Results Electrical systole increased during hypothermia at spontaneous heart rate (p < 0.001) and heart rate 100 beats/min (p = 0.005). Mechanical systolic duration was prolonged and outlasted electrical systole independently of heart rate (p < 0.001). EMW changed from negative to positive value (− 20 ± 19 to 27 ± 34 ms, p = 0.001). The positivity was even more pronounced at heart rate 100 beats/min (− 25 ± 26 to 41 ± 18 ms, p < 0.001). Dispersion of repolarization decreased (p = 0.027 and p = 0.003), while mechanical dispersion did not differ (p = 0.078 and p = 0.297). Conclusion Targeted hypothermia increased electrical and mechanical systolic duration, the electromechanical window became positive, dispersion of repolarization was slightly reduced and mechanical dispersion was unchanged. These alterations may have clinical importance. Further clinical studies are required to clarify whether corresponding electromechanical alterations are accommodating in humans.
Collapse
Affiliation(s)
- Kristin Wisløff-Aase
- Department of Anaesthesiology, Oslo University Hospital - Rikshospitalet, Nydalen, PO Box 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Viesturs Kerans
- Department of Anaesthesiology, Oslo University Hospital - Rikshospitalet, Nydalen, PO Box 4950, 0424, Oslo, Norway
| | - Kristina Haugaa
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Per Steinar Halvorsen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Helge Skulstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital, Oslo, Norway.,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
6
|
Espinoza A, Kerans V, Bugge JF, Skulstad H, Halvorsen PS. Left Ventricular Function During Epinephrine Stimulation and Hypothermia: Effects at Spontaneous and Paced Heart Rates in a Porcine Model. Ther Hypothermia Temp Manag 2020; 11:35-44. [PMID: 31916922 DOI: 10.1089/ther.2019.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Postcardiac arrest patients treated with hypothermia, frequently require vasopressors and inotropic medication. The aim of this experimental study was to investigate the effect of epinephrine on left ventricular (LV) function during hypothermia. In an open-chest porcine model, seven animals were equipped with LV micromanometer and epicardial ultrasound transducers to provide LV pressure, Tau, and wall thickness and thickening velocities in systole (S') and early diastole (e'). Arterial, central venous, and pulmonal artery pressures were recorded. Cardiac output (CO) was measured by transit-time flow probe on the ascending aorta. Hypothermia was induced using a cooling catheter through the femoral vein. Pacemaker leads were attached to the right atrium for pacing. LV volumes were obtained by two-dimensional echocardiography. Measurements were made at normothermia (38°C) and hypothermia (33°C), without and with epinephrine infusion (0.03 μg/kg/min), at spontaneous and paced heart rates (HRs) 120 and 140 beats/min. Hypothermia reduced LV stroke volume (SV). Epinephrine during hypothermia increased the SV with reduced end-systolic volumes. LV dP/dtmax and wall-thickening velocity increased. During normothermia, epinephrine increased CO mainly due to accelerated HR, but during hypothermia, the increased CO resulted from augmented SV and, to a lesser degree, elevated HR. The incomplete relaxation and shortened diastolic filling time and the following reduction in SV seen in hypothermic animals, was repealed by epinephrine. The CO remained elevated also due to a shortened systolic duration, which gave time for complete relaxation during higher HRs. Epinephrine infusion improved systolic and diastolic function during hypothermia, and thereby reversed the effects induced by hypothermia considerably. Epinephrine augmented CO at hypothermia through increases in both SV and HR, in contrast to a mainly HR-dependent effect during normothermia. Systolic duration was shortened, which gave sufficient diastolic duration for complete relaxation. This allowed diastolic filling and maintained CO at elevated HRs.
Collapse
Affiliation(s)
- Andreas Espinoza
- Department of Anesthesiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,The Intervention Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Viesturs Kerans
- Department of Anesthesiology, Oslo University Hospital Rikshospitalet, Oslo, Norway.,The Intervention Center, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan F Bugge
- Department of Anesthesiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Helge Skulstad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Per Steinar Halvorsen
- The Intervention Center, Oslo University Hospital Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Hiis HG, Cosson MV, Dahl CP, Fiane AE, Levy FO, Andersen GØ, Krobert KA. Hypothermia elongates the contraction-relaxation cycle in explanted human failing heart decreasing the time for ventricular filling during diastole. Am J Physiol Heart Circ Physiol 2018; 315:H1137-H1147. [DOI: 10.1152/ajpheart.00208.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Targeted temperature management is part of the standardized treatment for patients in cardiac arrest. Hypothermia decreases cerebral oxygen consumption and induces bradycardia; thus, increasing the heart rate may be considered to maintain cardiac output. We hypothesized that increasing heart rate during hypothermia would impair diastolic function. Human left ventricular trabeculae obtained from explanted hearts of patients with terminal heart failure were stimulated at 0.5 Hz, and contraction-relaxation cycles were recorded. Maximal developed force (Fmax), maximal rate of development of force [(dF/d t)max], time to peak force (TPF), time to 80% relaxation (TR80), and relaxation time (RT = TR80 − TPF) were measured at 37, 33, 31, and 29°C. At these temperatures, stimulation frequency was increased from 0.5 to 1.0 and to 1.5 Hz. At 1.5 Hz, concentration-response curves for the β-adrenergic receptor (β-AR) agonist isoproterenol were performed. Fmax, TPF, and RT increased when temperature was lowered, whereas (dF/d t)max decreased. At all temperatures, increasing stimulation frequency increased Fmax and (dF/d t)max, whereas TPF and RT decreased. At 31 and 29°C, resting tension increased at 1.5 Hz, which was ameliorated by β-AR stimulation. At all temperatures, maximal β-AR stimulation increased Fmax, (dF/d t)max, and maximal systolic force, whereas resting tension decreased progressively with lowering temperature. β-AR stimulation reduced TPF and RT to the same extent at all temperatures, despite the more elongated contraction-relaxation cycle at lower temperatures. Diastolic dysfunction during hypothermia results from an elongation of the contraction-relaxation cycle, which decreases the time for ventricular filling. Hypothermic bradycardia protects the heart from diastolic dysfunction and increasing the heart rate during hypothermia should be avoided. NEW & NOTEWORTHY Decreasing temperature increases the duration of the contraction-relaxation cycle in the human ventricular myocardium, significantly reducing the time for ventricular filling during diastole. During hypothermia, increasing heart rate further reduces the time for ventricular filling and in some situations increases resting tension further impairing diastolic function. Modest β-adrenergic receptor stimulation can ameliorate these potentially detrimental changes during diastole while improving contractile force generation during targeted temperature management.
Collapse
Affiliation(s)
- Halvard G. Hiis
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Marie V. Cosson
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Christen P. Dahl
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Cardiology-Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Arnt E. Fiane
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Geir Ø. Andersen
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kurt A. Krobert
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
8
|
|
9
|
Bergan HA, Halvorsen PS, Espinoza A, Kerans V, Skulstad H, Fosse E, Bugge JF. Left Ventricle Function During Therapeutic Hypothermia with Beta 1-Adrenergic Receptor Blockade. Ther Hypothermia Temp Manag 2018; 8:156-164. [PMID: 29394143 DOI: 10.1089/ther.2017.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Therapeutic hypothermia is an established treatment in patients resuscitated from cardiac arrest. It is usually well-tolerated circulatory, but hypothermia negatively effects myocardial contraction and relaxation velocities and increases diastolic filling restrictions. A significant proportion of resuscitated patients are treated with long-acting beta-receptor blocking agents' prearrest, but the combined effects of hypothermia and beta-blockade on left ventricle (LV) function are not previously investigated. We hypothesized that beta1-adrenergic receptor blockade (esmolol infusion) exacerbates the negative effects of hypothermia on active myocardial motions, affecting both systolic and diastolic LV function. A pig (n = 10) study was performed to evaluate the myocardial effects of esmolol during hypothermia (33°C) and during normothermia, at spontaneous and pacing-increased heart rates (HRs). LV function was assessed by a LV pressure transducer, an epicardial ultrasonic transducer (wall thickness, wall thickening/thinning velocity) and an aortic ultrasonic flow-probe (stroke volume, cardiac output). The data were compared using a paired two-tailed Students t-test, and also analyzed using a linear mixed model to handle dependencies introduced by repeated measurements within each subject. The significance level was p ≤ 0.05. The effects of hypothermia and beta blockade were distinct and additive. Hypothermia reduced myocardial motion velocities and increased diastolic filling restrictions, but end-systolic wall thickness increased, and stroke volume and dP/dtmax (pumping function) were maintained. In contrast, esmolol predominantly affected systolic pumping function, by a negative inotropic effect. In combination, hypothermia and esmolol reduced myocardial velocities in systole and diastole by ∼40%, compared with normothermia without esmolol, inducing in combination both systolic and diastolic LV function impairment. The cardiac dysfunction deteriorated at increased HRs during hypothermia. Beta1-adrenergic receptor blockade (esmolol) exacerbates the negative effects of hypothermia on active myocardial contraction and relaxation. The combination of hypothermia with beta-blockade induces both systolic and diastolic LV function impairment.
Collapse
Affiliation(s)
- Harald A Bergan
- 1 Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital , Oslo, Norway .,2 Faculty of Medicine, Institute of Clinical Medicine, University of Oslo , Oslo, Norway
| | - Per S Halvorsen
- 3 The Intervention Centre, Rikshospitalet, Oslo University Hospital , Oslo, Norway
| | - Andreas Espinoza
- 1 Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital , Oslo, Norway
| | - Viesturs Kerans
- 1 Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital , Oslo, Norway .,3 The Intervention Centre, Rikshospitalet, Oslo University Hospital , Oslo, Norway
| | - Helge Skulstad
- 2 Faculty of Medicine, Institute of Clinical Medicine, University of Oslo , Oslo, Norway .,4 Department of Cardiology, Rikshospitalet, Oslo University Hospital , Oslo, Norway
| | - Erik Fosse
- 2 Faculty of Medicine, Institute of Clinical Medicine, University of Oslo , Oslo, Norway .,3 The Intervention Centre, Rikshospitalet, Oslo University Hospital , Oslo, Norway
| | - Jan F Bugge
- 1 Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital , Oslo, Norway .,2 Faculty of Medicine, Institute of Clinical Medicine, University of Oslo , Oslo, Norway
| |
Collapse
|
10
|
Bergan HA, Halvorsen PS, Skulstad H, Fosse E, Bugge JF. Does therapeutic hypothermia during extracorporeal cardiopulmonary resuscitation preserve cardiac function? J Transl Med 2016; 14:345. [PMID: 27998282 PMCID: PMC5175383 DOI: 10.1186/s12967-016-1099-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/29/2016] [Indexed: 01/16/2023] Open
Abstract
Background Extracorporeal cardiopulmonary resuscitation (E-CPR) is increasingly used as a rescue method in the management of cardiac arrest and provides the opportunity to rapidly induce therapeutic hypothermia. The survival after a cardiac arrest is related to post-arrest cardiac function, and the application of therapeutic hypothermia post-arrest is hypothesized to improve cardiac outcome. The present animal study compares normothermic and hypothermic E-CPR considering resuscitation success, post-arrest left ventricular function and magnitude of myocardial injury. Methods After a 15-min untreated ventricular fibrillation, the pigs (n = 20) were randomized to either normothermic (38 °C) or hypothermic (32–33 °C) E-CPR. Defibrillation terminated ventricular fibrillation after 5 min of E-CPR, and extracorporeal support continued for 2 h, followed by warming, weaning and a stabilization period. Magnetic resonance imaging and left ventricle pressure measurements were used to assess left ventricular function pre-arrest and 5 h post-arrest. Myocardial injury was estimated by serum concentrations of cardiac TroponinT and Aspartate transaminase (ASAT). Results E-CPR resuscitated all animals and the hypothermic strategy induced therapeutic hypothermia within minutes without impairment of the resuscitation success rate. All animals suffered a severe global systolic left ventricular dysfunction post-arrest with 50–70% reductions in stroke volume, ejection fraction, wall thickening, strain and mitral annular plane systolic excursion. Serum concentrations of cardiac TroponinT and ASAT increased considerably post-arrest. No significant differences were found between the two groups. Conclusions Two-hour therapeutic hypothermia during E-CPR offers an equal resuscitation success rate, but does not preserve the post-arrest cardiac function nor reduce the magnitude of myocardial injury, compared to normothermic E-CPR. Trial registration FOTS 4611/13 registered 25 October 2012 Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1099-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harald A Bergan
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway. .,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Per S Halvorsen
- The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Helge Skulstad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Cardiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Erik Fosse
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,The Intervention Centre, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Jan F Bugge
- Division of Emergencies and Critical Care, Department of Research and Development, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Marton-Popovici M, Glogar D. New Developments in the Treatment of Acute Myocardial Infarction Associated with Out-of-Hospital Cardiac Arrest. A Review. JOURNAL OF CARDIOVASCULAR EMERGENCIES 2016. [DOI: 10.1515/jce-2016-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Out-of-hospital cardiac arrest (OHCA) occurring as the first manifestation of an acute myocardial infarction is associated with very high mortality rates. As in comatose patients the etiology of cardiac arrest may be unclear, especially in cases without ST-segment elevation on the surface electrocardiogram, the decision to perform or not to perform urgent coronary angiography can have a significant impact on the prognosis of these patients. This review summarises the current knowledge and recommendations for treating patients with acute myocardial infarction presenting with OHCA. New therapeutic measures for the post-resuscitation phase are presented, such as hypothermia or extracardiac life support, together with strategies aiming to restore the coronary flow in the resuscitation phase using intra-arrest percutaneous revascularization performed during resuscitation. The role of regional networks in providing rapid access to the hospital facilities and to a catheterization laboratory for these critical cardiovascular emergencies is described.
Collapse
Affiliation(s)
- Monica Marton-Popovici
- Swedish Medical Center, Department of Internal Medicine and Critical Care, Edmonds, Washington, United States of America
| | | |
Collapse
|
12
|
Chavez LO, Leon M, Einav S, Varon J. Editor's Choice- Inside the cold heart: A review of therapeutic hypothermia cardioprotection. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2016; 6:130-141. [PMID: 26714973 DOI: 10.1177/2048872615624242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Targeted temperature management has been originally used to reduce neurological injury and improve outcome in patients after out-of-hospital cardiac arrest. Myocardial infarction remains a major cause of death in the world and several investigators are studying the effect of mild therapeutic hypothermia during an acute cardiac ischemic injury. A search on MEDLINE, Scopus and EMBASE databases was conducted to obtain data regarding the cardioprotective properties of therapeutic hypothermia. Preclinical studies have shown that therapeutic hypothermia provides a cardioprotective effect in animals. The proposed pathways for the cardioprotective effects of therapeutic hypothermia include stabilization of mitochondrial permeability, production of nitric oxide, equilibration of reactive oxygen species, and calcium channels homeostasis. Clinical trials in humans have yielded controversial results. Current trials are therefore seeking to combine therapeutic hypothermia with other treatment modalities in order to improve the outcomes of patients with acute ischemic injury. This article provides a review of the hypothermia effects on the cardiovascular system, from the basic science of physiological changes in the human body and molecular mechanisms of cardioprotection to the bench of clinical trials with therapeutic hypothermia in patients with acute ischemic injury.
Collapse
Affiliation(s)
- Luis O Chavez
- 1 University General Hospital, Houston, USA.,2 Universidad Autonoma de Baja California, Facultad de Medicina y Psicología, Tijuana, Mexico
| | - Monica Leon
- 1 University General Hospital, Houston, USA.,3 Universidad Popular Autonoma del Estado de Puebla, Facultad de Medicina Puebla, Mexico
| | - Sharon Einav
- 4 Shaare Zedek Medical Center and Hadassah-Hebrew University Faculty of Medicine, Jerusalem, Israel
| | | |
Collapse
|
13
|
Sage M, Nadeau M, Kohlhauer M, Praud JP, Tissier R, Robert R, Walti H, Micheau P. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics. Cryobiology 2016; 73:99-101. [DOI: 10.1016/j.cryobiol.2016.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/21/2016] [Accepted: 05/26/2016] [Indexed: 11/17/2022]
|