1
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
2
|
Ergin B, Kapucu A, Chawla L, Ince C. Synthetic Angiotensin II ameliorates alterations of systemic hemodynamics, microcirculatory deterioration, and renal damage in septic rats. Microvasc Res 2024; 155:104709. [PMID: 38936768 DOI: 10.1016/j.mvr.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Affiliation(s)
- Bulent Ergin
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Aysegul Kapucu
- Department of Zoology, Faculty of Science, University of Istanbul, Istanbul, Turkey
| | - Lakhmir Chawla
- UC San Diego Health, University of California, San Diego, United States of America
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Alkhattabi NA, Khalifa FK, Doghaither HAA, Al-Ghafari AB, Tarbiah NI, Sabban A. Protective effects of N-acetylcysteine and S-adenosyl-Lmethionine against nephrotoxicity and immunotoxicity induced by ochratoxin A in rats. Int J Health Sci (Qassim) 2024; 18:17-24. [PMID: 38455596 PMCID: PMC10915916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Objective The present study was designed to investigate the nephroprotective and immunoprotective effects of S-adenosyl-L-methionine (SAMe) in comparison to N-acetylcysteine (NAC) against ochratoxin A (OTA) - intoxication. Methods Forty-eight adult male Sprague-Dawley rats were categorized into four groups: Control; OTA intoxication (5 mg OTA/kg diet); OTA + NAC, rats received 200 mg NAC/day before feeding balanced diet contaminated with OTA; and (OTA + SAMe). Rats received 200 mg SAMe/day dissolved in distilled water orally just before feeding a balanced diet contaminated with OTA. Results OTA administration altered serum kidney function biomarkers. These effects were pronouncedly alleviated by treatment with NAC. Results revealed a correlation between OTA-induced immunotoxicity and the reduced white blood cell (WBC) count. Treatments with SAMe significantly improved the WBCs count and hemoglobin concentration. Conclusion NAC and SAMe have a protective role against nephrotoxicity and immunotoxicity induced by continuous administration of OTA. NAC was more effective in reducing OTA nephrotoxicity, whereas SAMe was more potent than NAC in reducing OTA immunotoxicity.
Collapse
Affiliation(s)
- Nuha A. Alkhattabi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fares K. Khalifa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry and Nutrition, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo, Egypt
| | - Huda A. Al Doghaither
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat B. Al-Ghafari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nesrin Ibrahim Tarbiah
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aliaa Sabban
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdul Aziz University, Jeddah, Saudi Arabia
- Food, Nutrition and Lifestyle Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21551, Saudi Arabia
| |
Collapse
|
4
|
Abdo M, Kohaf N, Hammad MA, Ping CC. The Role of Oral Ascorbic Acid Administration in Combination With IV N-acetylcysteine in Delaying Inflammatory Cascade in Sepsis: A Case Report. Cureus 2023; 15:e49868. [PMID: 38169912 PMCID: PMC10758580 DOI: 10.7759/cureus.49868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2023] [Indexed: 01/05/2024] Open
Abstract
Sepsis is a life-threatening emergency that arises owing to a dysregulated host response to infection, leading to existence organ dysfunction. Vitamin C administration has led to a lower mortality rate in sepsis. N-acetylcysteine (NAC) treatment during sepsis improves hepatic function and enhances tissue oxygenation. The objective of this case report is to investigate the synergistic effect of the combination of vitamin C, thiamine, and NAC in delaying sepsis cascade and prolongation of survival time. In this case report, an oral dose of vitamin C 500 mg three times daily in combination with IV thiamine 100 mg three times daily, IV NAC, and hydrocortisone stress dose resulted in 12 days of survival of an immunocompromised patient with ventilator-associated pneumonia on single anti-pseudomonas beta-lactam antibiotic. The patient was a 60-year-old Malay female with previous bone marrow transplantation surgery and a medical history of ischemic stroke on phenytoin and valproate therapy. The patient was transferred to a medical ward in Penang General Hospital, Malaysia, due to community-acquired pneumonia. She was on ceftriaxone for five days, then sedated and ventilated in the ICU, with a shift to cefepime for three days, which was then changed to meropenem for nine days until the last day of life. Total anti-pseudomonas coverage was 12 days. The patient had multiple comorbidities from phenytoin-induced hepatic encephalopathy, acute kidney injury, and three sessions of hemodialysis. IV vitamin C was not available, so an oral dose was administered with potential efficacy in delaying the sepsis inflammatory cascade, leading to the use of a single (not double) anti-pseudomonas antibiotic for 12 days. Prolonged survival duration may be expected in the case of normal bone marrow patients with ventilator-associated pneumonia sepsis. In conclusion, Vitamin C, thiamine, and NAC combination resulted in delayed sepsis progression for 12 days and the survival of the immunocompromised patient on a single anti-pseudomonas beta-lactam antibiotic.
Collapse
Affiliation(s)
- Mahmoud Abdo
- Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Georgetown, MYS
| | - Neveen Kohaf
- Clinical Pharmacy, Al-Azhar University, Cairo, EGY
| | | | - Chong C Ping
- Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Georgetown, MYS
| |
Collapse
|
5
|
Bayır H, Dixon SJ, Tyurina YY, Kellum JA, Kagan VE. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol 2023; 19:315-336. [PMID: 36922653 DOI: 10.1038/s41581-023-00689-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/17/2023]
Abstract
Ferroptosis is a mechanism of regulated necrotic cell death characterized by iron-dependent, lipid peroxidation-driven membrane destruction that can be inhibited by glutathione peroxidase 4. Morphologically, it is characterized by cellular, organelle and cytoplasmic swelling and the loss of plasma membrane integrity, with the release of intracellular components. Ferroptosis is triggered in cells with dysregulated iron and thiol redox metabolism, whereby the initial robust but selective accumulation of hydroperoxy polyunsaturated fatty acid-containing phospholipids is further propagated through enzymatic and non-enzymatic secondary mechanisms, leading to formation of oxidatively truncated electrophilic species and their adducts with proteins. Thus, ferroptosis is dependent on the convergence of iron, thiol and lipid metabolic pathways. The kidney is particularly susceptible to redox imbalance. A growing body of evidence has linked ferroptosis to acute kidney injury in the context of diverse stimuli, such as ischaemia-reperfusion, sepsis or toxins, and to chronic kidney disease, suggesting that ferroptosis may represent a novel therapeutic target for kidney disease. However, further work is needed to address gaps in our understanding of the triggers, execution and spreading mechanisms of ferroptosis.
Collapse
Affiliation(s)
- Hülya Bayır
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Pediatrics, Division of Critical Care and Hospital Medicine, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John A Kellum
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, Departments of Environmental Health, Pharmacology and Chemical Biology, Chemistry, Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Kwiatkowska E, Kwiatkowski S, Dziedziejko V, Tomasiewicz I, Domański L. Renal Microcirculation Injury as the Main Cause of Ischemic Acute Kidney Injury Development. BIOLOGY 2023; 12:biology12020327. [PMID: 36829602 PMCID: PMC9953191 DOI: 10.3390/biology12020327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023]
Abstract
Acute kidney injury (AKI) can result from multiple factors. The main cause is reduced renal perfusion. Kidneys are susceptible to ischemia due to the anatomy of microcirculation that wraps around the renal tubules-peritubular capillary (PTC) network. Cortical and medullary superficial tubules have a large share in transport and require the supply of oxygen for ATP production, while it is the cortex that receives almost 100% of the blood flowing through the kidneys and the medulla only accounts for 5-10% of it. This difference makes the tubules present in the superficial layer of the medulla very susceptible to ischemia. Impaired blood flow causes damage to the endothelium, with an increase in its prothrombotic and pro-adhesive properties. This causes congestion in the microcirculation of the renal medulla. The next stage is the migration of pericytes with the disintegration of these vessels. The phenomenon of destruction of small vessels is called peritubular rarefaction, attributed as the main cause of further irreversible changes in the damaged kidney leading to the development of chronic kidney disease. In this article, we will present the characteristic structure of renal microcirculation, its regulation, and the mechanism of damage in acute ischemia, and we will try to find methods of prevention with particular emphasis on the inhibition of the renin-angiotensin-aldosterone system.
Collapse
Affiliation(s)
- Ewa Kwiatkowska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
- Correspondence:
| | - Sebastian Kwiatkowski
- Department of Obstetrician and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Izabela Tomasiewicz
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| | - Leszek Domański
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstańców Wlkp, 72, 70-204 Szczecin, Poland
| |
Collapse
|
7
|
da Costa RID, Fischer JMDS, Rasslan R, Koike MK, Utiyama EM, Montero EFDS. Effects of N-acetylcysteine on the inflammatory response and bacterial translocation in a model of intestinal obstruction and ischemia in rats. Acta Cir Bras 2023; 37:e371204. [PMID: 36651429 PMCID: PMC9839184 DOI: 10.1590/acb371204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/25/2022] [Indexed: 01/15/2023] Open
Abstract
PURPOSE To evaluate effect of N-acetylcysteine (NAC) associated with Ringer lactate or hypertonic saline in inflammation and bacterial translocation on experimental intestinal obstruction (IO). METHODS Wistar rats was subjected to IO. Six or 24 hours after, rats were subjected to enterectomy and fluid resuscitation: IO, RL (subjected to the same procedures but with fluid resuscitation using Ringer's lactate solution); RLNAC (added NAC to Ringer's solution); and HSNAC (surgical procedure + fluid reposition with 7.5% hypertonic saline and NAC). After 24 h, tissues were collected to cytokines, bacterial translocation, and histological assessments. RESULTS In kidney, interleukin-1beta (IL-1beta) was lower in the groups with fluid resuscitation compared to IO group. The RLNAC showed lower levels compared to the RL. Interleukin-6 (IL-6), interleukin-10 (IL-10), tumor necrosis factor-alpha (TNF-alpha), and (IFN-gamma) were lower in the treatment groups than in IO. In lung, IL-1beta and IL-6 were lower in RLNAC compared to IO. IL-10 was lower in RL, RLNAC and HSNAC compared to IO. TNF-alpha was higher in HSNAC compared to both RL and RLNAC. Bacterial translocation was observed in all animals of IO group. In kidneys, inflammation and congestion degrees were lower in HSNAC compared to RL. In lungs, inflammation levels were higher in RLNAC compared with the sham group. CONCLUSIONS The data indicates that NAC associated with RL can promote a decrease in the inflammatory process in the kidneys and lungs in rats, following intestinal obstruction and ischemia in rats.
Collapse
Affiliation(s)
- Rafael Izar Domingues da Costa
- PhD. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), and Universidade Federal de São Carlos – São Carlos (SP), Brazil.,Corresponding author:
- (55 16) 3415-3787
| | | | - Roberto Rasslan
- PhD. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| | - Marcia Kiyomi Koike
- PhD. Universidade de São Paulo – Department of Clinical Medicine – Laboratory of Emergency Medicine – School of Medicine – São Paulo (SP), Brazil. And Instituto de Assistência Médica do Servidor Publico Estadual (IAMSPE) - Pós-Graduação em Ciencias da Saúde, São Paulo (SP), Brazil
| | - Edvaldo Massazo Utiyama
- PhD, full professor. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| | - Edna Frasson de Souza Montero
- PhD, associate professor. Universidade de São Paulo – Division of General Surgery and Trauma – Department of Surgery – School of Medicine – São Paulo (SP), Brazil
| |
Collapse
|
8
|
Su Y, Yin X, Huang X, Guo Q, Ma M, Guo L. Astragaloside IV ameliorates sepsis-induced myocardial dysfunction by regulating NOX4/JNK/BAX pathway. Life Sci 2022; 310:121123. [DOI: 10.1016/j.lfs.2022.121123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022]
|
9
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
10
|
Campeau MA, Leask RL. Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Sci Rep 2022; 12:12681. [PMID: 35879337 PMCID: PMC9314417 DOI: 10.1038/s41598-022-16763-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
The disruption of the endothelial cell (EC) glycocalyx (GCX) leads to cellular dysfunction promoting inflammation and cardiovascular disease progression. Recent studies have shown that empagliflozin (EMPA; Jardiance), a sodium-glucose cotransporter 2 inhibitor used in the treatment of type 2 diabetes, can improve EC functions impacted by GCX disruption although the exact cellular mechanisms remain to be elucidated. In this study, the effect of EMPA on EC inflammatory response induced by sustained GCX disruption was investigated. Human aortic ECs were cultured under shear (10 dyne/cm2) for 24 h with or without sustained degradation of heparan sulfate (HS). HS degradation increased inflammatory cell adhesion to ECs. EMPA (50 μM) normalized adhesion levels under sustained HS degradation. Protein expressions of eNOS, phospho-eNOS Ser1177 and ICAM-1 remained unchanged between conditions. Transcriptome analysis revealed the induction of the unfolded protein response (UPR) through the increased expression of ATF3, ATF4, DDIT3 (CHOP), EIF2AK3 (PERK), HSPA5 (Grp78), PPP1R15A (GADD34) and TRIB3 which was in part downregulated by EMPA. mRNA and protein expression of thioredoxin interacting protein (TXNIP) was also downregulated by EMPA. Mitigation of oxidative stress with N-Acetyl-L-cysteine resulted in similar reduction in inflammatory cell adhesion compared to EMPA which could indicate a potential mechanism by which EMPA normalized the inflammatory response. In conclusion, this study demonstrated the potential of EMPA to resolve the inflammatory response of ECs caused by sustained GCX disruption while altering UPR signaling under endoplasmic reticulum stress.
Collapse
Affiliation(s)
| | - Richard L Leask
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada. .,McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
11
|
Yu P, Luo J, Song H, Qian T, He X, Fang J, Dong W, Bian X. N-acetylcysteine Ameliorates Vancomycin-induced Nephrotoxicity by Inhibiting Oxidative Stress and Apoptosis in the in vivo and in vitro Models. Int J Med Sci 2022; 19:740-752. [PMID: 35582415 PMCID: PMC9108398 DOI: 10.7150/ijms.69807] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/18/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Oxidative stress-related apoptosis is considered as the key mechanism implicated in the pathophysiology of nephrotoxicity with vancomycin (VCM) therapy. We evaluated the possible effects of N-acetylcysteine (NAC) on VCM-induced nephrotoxicity and the underlying mechanism. Methods: VCM-induced nephrotoxicity was established using HK-2 cells and SD rats and observed by measuring cell survival, kidney histological changes, renal function and kidney injury related markers (KIM-1 and NGAL). Oxidative stress, renal cell apoptosis and the involved signaling pathways were also evaluated. Results: In model rats, NAC could protect against VCM-induced acute kidney injury with histological damage, renal dysfunction, and increased Cre and BUN levels. In HK-2 cells, VCM-induced decreased cell viability was restored by NAC. In addition, increased expression of caspase-3, KIM-1 and NGAL suffering from VCM was also reversed by NAC in vivo and in vitro. NAC inhibited ROS production, decreased cell apoptosis by decreasing the Bax/Bcl-2 ratio and caspase-3 expression in HK-2 cells and regulated oxidative stress indicators in the kidney by decreasing GSH, SOD and CAT activity and increasing MDA levels. Furthermore, NAC could effectively reverse VCM-associated increased P38 MAPK/JNK phosphorylation. Conclusions: The results demonstrated that NAC had a protective effect against nephrotoxicity from VCM by inhibiting oxidative stress and apoptosis via P38 MAPK/JNK.
Collapse
Affiliation(s)
- Ping Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Jing Luo
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huahua Song
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwei Qian
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan He
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Fang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenpei Dong
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiaolan Bian
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Vincent JL, Ince C, Pickkers P. Endothelial dysfunction: a therapeutic target in bacterial sepsis? Expert Opin Ther Targets 2021; 25:733-748. [PMID: 34602020 DOI: 10.1080/14728222.2021.1988928] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Endothelial cells maintain vascular integrity, tone, and patency and have important roles in hemostasis and inflammatory responses. Although some degree of endothelial dysfunction with increased vascular permeability may be necessary to control local infection, excessive dysfunction plays a central role in the pathogenesis of sepsis-related organ dysfunction and failure as it results in dysregulated inflammation, vascular leakage, and abnormal coagulation. The vascular endothelium has thus been proposed as a potential target for therapeutic intervention in patients with sepsis. AREAS COVERED Different mechanisms underlying sepsis-related dysfunction of the vascular endothelium are discussed, including glycocalyx shedding, nitrosative stress, and coagulation factors. Potential therapeutic implications of each mechanism are mentioned. EXPERT OPINION Multiple targets to protect or restore endothelial function have been suggested, but endothelium-driven treatments remain a future potential at present. As some endothelial dysfunction and permeability may be necessary to remove infection and repair damaged tissue, targeting the endothelium may be a particular challenge. Ideally, therapies should be guided by biomarkers related to that specific pathway to ensure they are given only to patients most likely to respond. This enrichment based on biological plausibility and theragnostics will increase the likelihood of a beneficial response in individual patients and enable more personalized treatment.
Collapse
Affiliation(s)
- Jean-Louis Vincent
- Dept of Intensive Care, Erasme Hospital, Université Libre De Bruxelles, Brussels, Belgium
| | - Can Ince
- Department of Intensive Care, Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Peter Pickkers
- Dept of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Kidney Microcirculation as a Target for Innovative Therapies in AKI. J Clin Med 2021; 10:jcm10184041. [PMID: 34575154 PMCID: PMC8471583 DOI: 10.3390/jcm10184041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 12/19/2022] Open
Abstract
Acute kidney injury (AKI) is a serious multifactorial conditions accompanied by the loss of function and damage. The renal microcirculation plays a crucial role in maintaining the kidney’s functional and structural integrity for oxygen and nutrient supply and waste product removal. However, alterations in microcirculation and oxygenation due to renal perfusion defects, hypoxia, renal tubular, and endothelial damage can result in AKI and the loss of renal function regardless of systemic hemodynamic changes. The unique structural organization of the renal microvasculature and the presence of autoregulation make it difficult to understand the mechanisms and the occurrence of AKI following disorders such as septic, hemorrhagic, or cardiogenic shock; ischemia/reperfusion; chronic heart failure; cardiorenal syndrome; and hemodilution. In this review, we describe the organization of microcirculation, autoregulation, and pathophysiological alterations leading to AKI. We then suggest innovative therapies focused on the protection of the renal microcirculation and oxygenation to prevent AKI.
Collapse
|
14
|
Effect of N-Acetylcysteine Administration on 30-Day Mortality in Critically Ill Patients with Septic Shock Caused by Carbapenem-Resistant Klebsiella pneumoniae and Acinetobacter baumannii: A Retrospective Case-Control Study. Antibiotics (Basel) 2021; 10:antibiotics10030271. [PMID: 33800296 PMCID: PMC8001571 DOI: 10.3390/antibiotics10030271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae (CR-Kp) and Acinetobacter baumannii (CR-Ab) represent important cause of severe infections in intensive care unit (ICU) patients. N-Acetylcysteine (NAC) is a mucolytic agent with antioxidant and anti-inflammatory properties, showing also in-vitro antibacterial activity. Aim was to evaluate the effect on 30-day mortality of the addition of intravenous NAC to antibiotics in ICU patients with CR-Kp or CR-Ab septic shock. A retrospective, observational case:control study (1:2) in patients with septic shock caused by CR-Kp or CR-Ab hospitalized in two different ICUs was conducted. Cases included patients receiving NAC plus antimicrobials, controls included patients not receiving NAC. Cases and controls were matched for age, SAPS II, causative agent and source of infection. No differences in age, sex, SAPS II score or time to initiate definitive therapy were observed between cases and controls. Pneumonia and bacteremia were the leading infections. Overall, mortality was 48.9% (33.3% vs. 56.7% in cases and controls, p = 0.05). Independent risk factors for mortality were not receiving NAC (p = 0.002) and CR-Ab (p = 0.034) whereas therapy with two in-vitro active antibiotics (p = 0.014) and time to initial definite therapy (p = 0.026) were protective. NAC plus antibiotics might reduce the 30-day mortality rate in ICU patients with CR-Kp and CR-Ab septic shock.
Collapse
|
15
|
Zalewska A, Szarmach I, Żendzian-Piotrowska M, Maciejczyk M. The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats. Nutrients 2020; 12:nu12020458. [PMID: 32059375 PMCID: PMC7071150 DOI: 10.3390/nu12020458] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
This is the first study to assess the effect of N-acetylcysteine (NAC) on the mitochondrial respiratory system, as well as free radical production, glutathione metabolism, nitrosative stress, and apoptosis in the salivary gland mitochondria of rats with high-fat diet (HFD)-induced insulin resistance (IR). The study was conducted on male Wistar rats divided into four groups of 10 animals each: C (control, rats fed a standard diet containing 10.3% fat), C + NAC (rats fed a standard diet, receiving NAC intragastrically), HFD (rats fed a high-fat diet containing 59.8% fat), and HFD + NAC (rats fed HFD diet, receiving NAC intragastrically). We confirmed that 8 weeks of HFD induces systemic IR as well as disturbances in mitochondrial complexes of the parotid and submandibular glands of rats. NAC supplementation leads to a significant increase in the activity of complex I, II + III and cytochrome c oxidase (COX), and also reduces the ADP/ATP ratio compared to HFD rats. Furthermore, NAC reduces the hydrogen peroxide production/activity of pro-oxidant enzymes, increases the pool of mitochondrial glutathione, and prevents cytokine formation, apoptosis, and nitrosative damage to the mitochondria in both aforementioned salivary glands of HFD rats. To sum up, NAC supplementation enhances energy metabolism in the salivary glands of IR rats, and prevents inflammation, apoptosis, and nitrosative stress.
Collapse
Affiliation(s)
- Anna Zalewska
- Experimental Dentistry Laboratory, Medical University, 15-222 Bialystok, Poland
- Correspondence: (A.Z.); (M.M.)
| | - Izabela Szarmach
- Department of Orthodontics, Medical University, 15-222 Bialystok, Poland;
| | | | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University, 15-222 Bialystok, Poland;
- Correspondence: (A.Z.); (M.M.)
| |
Collapse
|
16
|
Li F, Chen AB, Duan YC, Liao R, Xu YW, Tao LL. Multiple organ dysfunction and rhabdomyolysis associated with moonwort poisoning: Report of four cases. World J Clin Cases 2020; 8:479-486. [PMID: 32047801 PMCID: PMC7000952 DOI: 10.12998/wjcc.v8.i2.479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Moonwort is a widely used Chinese herbal medicine. It has various pharmacological effects, such as relieving cough and preventing asthma. To date, multiple organ dysfunction and rhabdomyolysis caused by moonwort poisoning have not been reported.
CASE SUMMARY Here we report four cases of moonwort poisoning that presented with multiple organ dysfunction and rhabdomyolysis accompanied by vomiting, fatigue, and muscle aches. One patient was an adult male, two were adult females, and one was a boy, with an age range of 7–64 years. The adults were treated with hemoperfusion and symptomatic therapies, while the child was treated with plasma exchange and symptomatic therapies. All four patients recovered.
CONCLUSION Blood purification combined with symptomatic treatment may be an effective method for managing multiple organ dysfunction and rhabdomyolysis caused by acute moonwort poisoning.
Collapse
Affiliation(s)
- Fang Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - An-Bao Chen
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Yong-Chun Duan
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Rui Liao
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Yu-Wei Xu
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| | - Li-Li Tao
- Department of Emergency Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan Province, China
| |
Collapse
|
17
|
Abstract
Colloid solutions have been advocated for use in treating hypovolemia due to their expected effect on improving intravascular retention compared with crystalloid solutions. Because the ultimate desired effect of fluid resuscitation is the improvement of microcirculatory perfusion and tissue oxygenation, it is of interest to study the effects of colloids and crystalloids at the level of microcirculation under conditions of shock and fluid resuscitation, and to explore the potential benefits of using colloids in terms of recruiting the microcirculation under conditions of hypovolemia. This article reviews the physiochemical properties of the various types of colloid solutions (eg, gelatin, dextrans, hydroxyethyl starches, and albumin) and the effects that they have under various conditions of hypovolemia in experimental and clinical scenarios.
Collapse
Affiliation(s)
- Huaiwu He
- From the Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Dawei Liu
- From the Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, China
| | - Can Ince
- Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Department of Intensive Care, Erasmus MC, University Hospital Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
18
|
N-Acetylcysteine Attenuates Cisplatin-Induced Acute Kidney Injury by Inhibiting the C5a Receptor. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4805853. [PMID: 31111056 PMCID: PMC6487137 DOI: 10.1155/2019/4805853] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/17/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
N-acetylcysteine has been widely used as a nutritional supplement and drug in humans for its antioxidant properties. The complement activation fragment C5a is a strong proinflammatory molecule that mediates cell adhesion, chemotaxis, and the complex biological functions. However, the effect of NAC on the C5a, and the relationship of those two with cisplatin-induced acute kidney injury are unknown. In cisplatin induced AKI mouse model, mice with NAC administration had a marked improvement in renal function (BUN and Cr), decreased pathological damage, reduced inflammation, and alleviated renal oxidative stress. Furthermore, C5a and C5aR expression in the cisplatin-treated group was notably increased compared with the control group, and this increase could be significantly inhibited by NAC. In addition, neutrophils coexpressed distinctly with C5aR, and the number of infiltrating neutrophils (MPO+ly6G+) and inflammatory factors decreased with NAC treatment in the cisplatin-treated group. Overall, these data demonstrate that NAC could ameliorate cisplatin-induced nephrotoxicity in mice and the protective effects may be conducted by inhibiting the activation of kidney inflammation and the complement system.
Collapse
|
19
|
Abstract
Sepsis is defined as organ dysfunction resulting from the host's deleterious response to infection. One of the most common organs affected is the kidneys, resulting in sepsis associated acute kidney injury (SA-AKI) that contributes to the morbidity and mortality of sepsis. A growing body of knowledge has illuminated the clinical risk factors, pathobiology, response to treatment, and elements of renal recovery that have advanced our ability to prevent, detect, and treat SA-AKI. Despite these advances, SA-AKI remains an important concern and clinical burden, and further study is needed to reduce the acute and chronic consequences. This review summarizes the relevant evidence, with a focus on the risk factors, early recognition and diagnosis, treatment, and long term consequences of SA-AKI. In addition to literature pertaining to SA-AKI specifically, pertinent sepsis and acute kidney injury literature relevant to SA-AKI was included.
Collapse
Affiliation(s)
- Jason T Poston
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, University of Chicago
| |
Collapse
|
20
|
Effect of N-Acetylcysteine on Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in a Rat Model of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6581970. [PMID: 29636851 PMCID: PMC5831706 DOI: 10.1155/2018/6581970] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress plays a crucial role in the salivary gland dysfunction in insulin resistance (IR). It is not surprising that new substances are constantly being sought that will protect against the harmful effects of IR in the oral cavity environment. The purpose of this study was to evaluate the effect of N-acetylcysteine (NAC) on oxidative stress and secretory function of salivary glands in a rat model of insulin resistance. Rats were divided into 4 groups: C-normal diet, C + NAC-normal diet + NAC, HFD-high-fat diet, and HFD + NAC. We have demonstrated that NAC elevated enzymatic (superoxide dismutase, catalase, and peroxidase) and nonenzymatic antioxidants (reduced glutathione (GSH) and total antioxidant capacity (TAS)) in the parotid glands of HFD + NAC rats, while in the submandibular glands increased only GSH and TAS levels. NAC protects against oxidative damage only in the parotid glands and increased stimulated salivary secretion; however, it does not increase the protein secretion in the both salivary glands. Summarizing, NAC supplementation prevents the decrease of stimulated saliva secretion, seen in the HFD rats affected. NAC improves the antioxidative capacity of the both glands and protects against oxidative damage to the parotid glands of IR rats.
Collapse
|