1
|
Karami N, Barani S, Fani M, Meri S, Shafiei R, Kalantar K. The effects of killer cell immunoglobulin-like receptor (KIR) genes on susceptibility to severe COVID-19 in the Iranian population. BMC Immunol 2024; 25:38. [PMID: 38943065 PMCID: PMC11212229 DOI: 10.1186/s12865-024-00631-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Variations in the innate and adaptive immune response systems are linked to variations in the severity of COVID-19. Natural killer cell (NK) function is regulated by sophisticated receptor system including Killer-cell immunoglobulin-like receptor (KIR) family. We aimed to investigate the impact of possessing certain KIR genes and genotypes on COVID19 severity in Iranians. KIR genotyping was performed on 394 age/sex matched Iranians with no underlying conditions who developed mild and severe COVID- 19. The presence and/or absence of 11 KIR genes were determined using the PCR with sequence specific primers (PCR-SSP). RESULTS Patients with mild symptoms had higher frequency ofKIR2DS1 (p = 0.004) and KIR2DS2 (p = 0.017) genes compared to those with severe disease. While KIR3DL3 and deleted variant of KIR2DS4 occurred more frequently in patients who developed a severe form of the disease. In this study, a significant increase of and B haplotype was observed in the Mild group compared to the Severe group (respectively, p = 0.002 and p = 0.02). Also, the prevalence of haplotype A was significantly higher in the Severe group than in the Mild group (p = 0.02). CONCLUSIONS These results suggest that the KIR2DS1, KIR2DS, and B haplotype maybe have a protective effect against COVID-19 severity. The results also suggest the inhibitory gene KIR2DL3 and haplotype A are risk factors for the severity of COVID-19.
Collapse
Affiliation(s)
- Narges Karami
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran
| | - Shaghik Barani
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mona Fani
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seppo Meri
- Department of Bacteriology & Immunology and Translational immunology Research Program, University of Helsinki Diagnostic Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Reza Shafiei
- Vector-borne Diseases Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-45794, Iran.
- Department of Bacteriology & Immunology and Translational immunology Research Program, University of Helsinki Diagnostic Center, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Teshnizi SH, Mirzazadeh S, Mashhadi N, Meri S, Kabelitz D, Kalantar K. Association study between killer immunoglobulin-like receptor polymorphisms and susceptibility to COVID-19 disease: a systematic review and meta-analysis. Immunol Res 2024; 72:175-184. [PMID: 37874432 DOI: 10.1007/s12026-023-09428-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a known virus that leads to a respiratory disease called coronavirus disease 19 (COVID-19). Natural killer (NK) cells, as members of innate immunity, possess crucial roles in restricting viral infections, including COVID-19. Their functions and development depend on receiving signals through various receptors, of which killer cell immunoglobulin-like receptors (KIRs) belong to the most effective ones. Different studies investigated the association between KIR gene content and susceptibility to COVID-19. Since previous studies have yielded contradictory results, we designed this meta-analysis study to draw comprehensive conclusions about COVID-19 risk and KIR gene association. According to PRISMA guidelines, a systematic search was performed in the electronic databases to find all studies investigating KIR gene contents in COVID-19 patients before March 2023. Any association between KIR genes and COVID-19 risk was determined by calculating pooled odds ratio (OR) and 95% confidence interval (CI). After applying the inclusion and exclusion criteria, 1673 COVID-19 patients and 1526 healthy controls from eight studies were included in this meta-analysis. As the main results, we observed a positive association between the 2DL3 (OR = 1.48, 95% CI = 1.17-1.88, P < 0.001) and susceptibility to COVID-19 and a negative association between the 2DP1 and the risk for COVID-19 (OR = 0.48, 95% CI = 0.23-0.99, P = 0.049). This meta-analysis demonstrated that KIR2DL3, as a member of iKIRs, might be associated with an increased risk of COVID-19 disease.
Collapse
Affiliation(s)
| | - Sara Mirzazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Niloofar Mashhadi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran
| | - Seppo Meri
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University of Kiel and University Hospital Schleswig, Holstein Campus Kiel, 24105, Kiel, Germany
| | - Kurosh Kalantar
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1798, Shiraz, Iran.
- Department of Bacteriology and Immunology and the Translational Immunology Research Program (TRIMM), The University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland.
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Letafati A, Ardekani OS, Naderisemiromi M, Norouzi M, Shafiei M, Nik S, Mozhgani SH. Unraveling the dynamic mechanisms of natural killer cells in viral infections: insights and implications. Virol J 2024; 21:18. [PMID: 38216935 PMCID: PMC10785350 DOI: 10.1186/s12985-024-02287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Viruses pose a constant threat to human well-being, necessitating the immune system to develop robust defenses. Natural killer (NK) cells, which play a crucial role in the immune system, have become recognized as vital participants in protecting the body against viral infections. These remarkable innate immune cells possess the unique ability to directly recognize and eliminate infected cells, thereby contributing to the early control and containment of viral pathogens. However, recent research has uncovered an intriguing phenomenon: the alteration of NK cells during viral infections. In addition to their well-established role in antiviral defense, NK cells undergo dynamic changes in their phenotype, function, and regulatory mechanisms upon encountering viral pathogens. These alterations can significantly impact the effectiveness of NK cell responses during viral infections. This review explores the multifaceted role of NK cells in antiviral immunity, highlighting their conventional effector functions as well as the emerging concept of NK cell alteration in the context of viral infections. Understanding the intricate interplay between NK cells and viral infections is crucial for advancing our knowledge of antiviral immune responses and could offer valuable information for the creation of innovative therapeutic approaches to combat viral diseases.
Collapse
Affiliation(s)
- Arash Letafati
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Omid Salahi Ardekani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | - Mina Naderisemiromi
- Department of Immunology, Faculty of Medicine and Health, The University of Manchester, Manchester, UK
| | - Mehdi Norouzi
- Department of Virology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran
| | | | - Soheil Nik
- School of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Sayed-Hamidreza Mozhgani
- Research Center for Clinical Virology, Tehran University of Medical Science, Tehran, Iran.
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Di Vito C, Calcaterra F, Coianiz N, Terzoli S, Voza A, Mikulak J, Della Bella S, Mavilio D. Natural Killer Cells in SARS-CoV-2 Infection: Pathophysiology and Therapeutic Implications. Front Immunol 2022; 13:888248. [PMID: 35844604 PMCID: PMC9279859 DOI: 10.3389/fimmu.2022.888248] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 12/23/2022] Open
Abstract
Natural Killer (NK) cells are lymphocytes of the innate immunity that play a crucial role in the control of viral infections in the absence of a prior antigen sensitization. Indeed, they display rapid effector functions against target cells with the capability of direct cell killing and antibody-dependent cell-mediated cytotoxicity. Furthermore, NK cells are endowed with immune-modulatory functions innate and adaptive immune responses via the secretion of chemokines/cytokines and by undertaking synergic crosstalks with other innate immune cells, including monocyte/macrophages, dendritic cells and neutrophils. Recently, the Coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread globally. Although the specific role of NK cells in COVID-19 pathophysiology still need to be explored, mounting evidence indicates that NK cell tissue distribution and effector functions could be affected by SARS-CoV-2 infection and that a prompt NK cell response could determine a good clinical outcome in COVID-19 patients. In this review, we give a comprehensive overview of how SARS-CoV-2 infection interferes with NK cell antiviral effectiveness and their crosstalk with other innate immune cells. We also provide a detailed characterization of the specific NK cell subsets in relation to COVID-19 patient severity generated from publicly available single cell RNA sequencing datasets. Finally, we summarize the possible NK cell-based therapeutic approaches against SARS-CoV-2 infection and the ongoing clinical trials updated at the time of submission of this review. We will also discuss how a deep understanding of NK cell responses could open new possibilities for the treatment and prevention of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Clara Di Vito
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Nicolò Coianiz
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sara Terzoli
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Voza
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Emergency Medicine Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra) , University of Milan, Milan, Italy
- *Correspondence: Domenico Mavilio, ; Clara Di Vito,
| |
Collapse
|
5
|
Maruthamuthu S, Rajalingam K, Kaur N, Morvan MG, Soto J, Lee N, Kong D, Hu Z, Reyes K, Ng D, Butte AJ, Chiu C, Rajalingam R. Individualized Constellation of Killer Cell Immunoglobulin-Like Receptors and Cognate HLA Class I Ligands that Controls Natural Killer Cell Antiviral Immunity Predisposes COVID-19. Front Genet 2022; 13:845474. [PMID: 35273641 PMCID: PMC8902362 DOI: 10.3389/fgene.2022.845474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection causes coronavirus disease-2019 (COVID-19) in some individuals, while the majority remain asymptomatic. Natural killer (NK) cells play an essential role in antiviral defense. NK cell maturation and function are regulated mainly by highly polymorphic killer cell immunoglobulin-like receptors (KIR) and cognate HLA class I ligands. Herein, we tested our hypothesis that the individualized KIR and HLA class I ligand combinations that control NK cell function determine the outcome of SARS-CoV-2 infection. Methods: We characterized KIR and HLA genes in 200 patients hospitalized for COVID-19 and 195 healthy general population controls. Results: The KIR3DL1+HLA-Bw4+ [Odds ratio (OR) = 0.65, p = 0.03] and KIR3DL2+HLA-A3/11+ (OR = 0.6, p = 0.02) combinations were encountered at significantly lower frequency in COVID-19 patients than in the controls. Notably, 40% of the patients lacked both of these KIR+HLA+ combinations compared to 24.6% of the controls (OR = 2.04, p = 0.001). Additionally, activating receptors KIR2DS1+KIR2DS5+ are more frequent in patients with severe COVID-19 than patients with mild disease (OR = 1.8, p = 0.05). Individuals carrying KIR2DS1+KIR2DS5+ genes but missing either KIR3DL1+HLA-Bw4+ combination (OR = 1.73, p = 0.04) or KIR3DL2+HLA-A3/11+ combination (OR = 1.75, p = 0.02) or both KIR3DL1+HLA-Bw4+ and KIR2DL2+HLA-A3/11+ combinations (OR = 1.63, p = 0.03) were more frequent in the COVID-19 cohort compared to controls. Conclusions: The absence of KIR3DL1+HLA-Bw4+ and KIR3DL2+HLA-A3/11+ combinations presumably yields inadequate NK cell maturation and reduces anti-SARS-CoV-2 defense, causing COVID-19. An increased frequency of KIR2DS1+KIR2DS5+ in severe COVID-19 patients suggests vigorous NK cell response triggered via these activating receptors and subsequent production of exuberant inflammatory cytokines responsible for severe COVID-19. Our results demonstrate that specific KIR-HLA combinations that control NK cell maturation and function are underlying immunogenetic variables that determine the dual role of NK cells in mediating beneficial antiviral and detrimental pathologic action. These findings offer a framework for developing potential host genetic biomarkers to distinguish individuals prone to COVID-19.
Collapse
Affiliation(s)
- Stalinraja Maruthamuthu
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Karan Rajalingam
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Navchetan Kaur
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Maelig G Morvan
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Jair Soto
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Nancy Lee
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Denice Kong
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin Reyes
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Dianna Ng
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Atul J Butte
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Charles Chiu
- UCSF-Abbott Viral Diagnostics and Discovery Center, Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States.,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States.,Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|