1
|
Karam EA, Hassan ME, Elattal NA, Kansoh AL, Esawy MA. Cell immobilization for enhanced milk clotting enzyme production from Bacillus amyloliquefacien and cheese quality. Microb Cell Fact 2024; 23:283. [PMID: 39420351 PMCID: PMC11488252 DOI: 10.1186/s12934-024-02521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/03/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Milk clotting enzymes, essential for milk coagulation in cheese production, are obtained from the stomach of young ruminants, an expensive and limited source. This study was accomplished by finding a suitable alternative. Bacterial isolates recovered from honey were screened for milk clotting enzyme activity. and further, by immobilization of the microorganisms to enhance stability and facilitate their repeated use. RESULT The most effective enzyme was produced by a microbe identified as Bacillus amyloliquefaciens based on 16 S rRNA sequencing. The cells were encapsulated in Ca2+ alginate beads. These beads retained complete enzyme production after being used five times. Glucose and Soybean were selected as the most favorable carbon and nitrogen sources, respectively. The optimum temperature for activity was 35 ℃ for both free and immobilized cells but as the temperature was increased to 55 °C and above, the encapsulated form retained more activity than the free cells. The pH optimum shifted from 6.5 to 7 for the free cells to 7-7.5 for the immobilized cells. The immobilization process decreased the activation energy for enzyme production and activity, prolonged the enzyme half-life, and increased the deactivation energy. Enzyme produced by immobilized cells generated a more compact cheese. CONCLUSIONS The finding of this study was to identify a less expensive source of milk-clotting enzymes and confirm the success of cell immobilization in improving cell rigidity and stability. Also, immobilization of this B. amyloliquefaciens strain offers an enzyme source of value for industrial production of cheese.
Collapse
Affiliation(s)
- Eman A Karam
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Nouran A Elattal
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt
| | - Amany L Kansoh
- Microbial Chemistry Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mona A Esawy
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries and Drug Research Institute, National Research Centre, Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
2
|
Paul S, Hossain TJ, Ali F, Hossain ME, Chowdhury T, Faisal IK, Ferdouse J. Assessment of the in-vitro probiotic efficacy and safety of Pediococcus pentosaceus L1 and Streptococcus thermophilus L3 isolated from Laban, a popular fermented milk product. Arch Microbiol 2024; 206:82. [PMID: 38294545 DOI: 10.1007/s00203-023-03812-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
Probiotics are beneficial microorganisms, mostly lactic acid bacteria (LAB), that offer health benefits to the host when consumed in adequate amounts. This study assessed the probiotic efficacy and safety of LAB strains isolated from Laban, a traditional fermented milk product. Seven primarily selected Gram-positive, catalase-negative, non-spore-forming isolates were examined for their antimicrobial activity against the bacterial pathogens Bacillus cereus, Salmonella typhi, Staphylococcus aureus, and Vibrio cholera, and the fungal pathogen Candida albicans. Two isolates, identified as Pediococcus pentosaceus L1 and Streptococcus thermophilus L3, which showed antimicrobial activity against all pathogens, were further evaluated for their probiotic competence. The selected isolates demonstrated strong resistance to low pH, bile salts, and phenol, indicating their potential for gastric endurance. They also exhibited high cell surface hydrophobicity to various hydrocarbons, autoaggregation, and coaggregation properties, demonstrating strong adhesion abilities. In addition, both isolates showed strong antioxidant activity and were non-hemolytic. Although the isolates had some resistance to certain antibiotics, they were generally susceptible to commonly used antibiotics. The two LAB strains also exhibited promising technological properties, such as milk coagulation and exopolysaccharide production, indicating their potential to enhance the quality of dairy products. The results suggest that the LAB strains isolated from Laban have strong potential as probiotics, and due to their food origin, they are highly likely to exhibit maximal efficacy in food and pharmaceutical products for human consumption.
Collapse
Affiliation(s)
- Shanta Paul
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh.
- Biochemistry and Pathogenesis of Microbes - BPM Research Group, Chattogram, 4331, Bangladesh.
| | - Ferdausi Ali
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md Elias Hossain
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Tasneem Chowdhury
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Ibrahim Khalil Faisal
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, 4331, Bangladesh
- Biochemistry and Pathogenesis of Microbes - BPM Research Group, Chattogram, 4331, Bangladesh
| | - Jannatul Ferdouse
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh.
| |
Collapse
|
3
|
Abstract
Proteases are ubiquitous enzymes, having significant physiological roles in both synthesis and degradation. The use of microbial proteases in food fermentation is an age-old process, which is today being successfully employed in other industries with the advent of ‘omics’ era and innovations in genetic and protein engineering approaches. Proteases have found application in industries besides food, like leather, textiles, detergent, waste management, agriculture, animal husbandry, cosmetics, and pharmaceutics. With the rising demands and applications, researchers are exploring various approaches to discover, redesign, or artificially synthesize enzymes with better applicability in the industrial processes. These enzymes offer a sustainable and environmentally safer option, besides possessing economic and commercial value. Various bacterial and fungal proteases are already holding a commercially pivotal role in the industry. The current review summarizes the characteristics and types of proteases, microbial source, their current and prospective applications in various industries, and future challenges. Promoting these biocatalysts will prove significant in betterment of the modern world.
Collapse
|
4
|
Bhardwaj N, Kumar B, Verma P. A detailed overview of xylanases: an emerging biomolecule for current and future prospective. BIORESOUR BIOPROCESS 2019. [DOI: 10.1186/s40643-019-0276-2] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Xylan is the second most abundant naturally occurring renewable polysaccharide available on earth. It is a complex heteropolysaccharide consisting of different monosaccharides such as l-arabinose, d-galactose, d-mannoses and organic acids such as acetic acid, ferulic acid, glucuronic acid interwoven together with help of glycosidic and ester bonds. The breakdown of xylan is restricted due to its heterogeneous nature and it can be overcome by xylanases which are capable of cleaving the heterogeneous β-1,4-glycoside linkage. Xylanases are abundantly present in nature (e.g., molluscs, insects and microorganisms) and several microorganisms such as bacteria, fungi, yeast, and algae are used extensively for its production. Microbial xylanases show varying substrate specificities and biochemical properties which makes it suitable for various applications in industrial and biotechnological sectors. The suitability of xylanases for its application in food and feed, paper and pulp, textile, pharmaceuticals, and lignocellulosic biorefinery has led to an increase in demand of xylanases globally. The present review gives an insight of using microbial xylanases as an “Emerging Green Tool” along with its current status and future prospective.
Collapse
|
5
|
Li Z, Scott K, Otter D, Zhou P, Hemar Y. Effect of temperature and pH on the properties of skim milk gels made from a tamarillo (Cyphomandra betacea) coagulant and rennet. J Dairy Sci 2018; 101:4869-4878. [DOI: 10.3168/jds.2017-14050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022]
|
6
|
Walia A, Guleria S, Mehta P, Chauhan A, Parkash J. Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 2017; 7:11. [PMID: 28391477 PMCID: PMC5385172 DOI: 10.1007/s13205-016-0584-6] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/02/2016] [Indexed: 10/25/2022] Open
Abstract
Xylanases are hydrolytic enzymes which cleave the β-1, 4 backbone of the complex plant cell wall polysaccharide xylan. Xylan is the major hemicellulosic constituent found in soft and hard food. It is the next most abundant renewable polysaccharide after cellulose. Xylanases and associated debranching enzymes produced by a variety of microorganisms including bacteria, actinomycetes, yeast and fungi bring hydrolysis of hemicelluloses. Despite thorough knowledge of microbial xylanolytic systems, further studies are required to achieve a complete understanding of the mechanism of xylan degradation by xylanases produced by microorganisms and their promising use in pulp biobleaching. Cellulase-free xylanases are important in pulp biobleaching as alternatives to the use of toxic chlorinated compounds because of the environmental hazards and diseases caused by the release of the adsorbable organic halogens. In this review, we have focused on the studies of structural composition of xylan in plants, their classification, sources of xylanases, extremophilic xylanases, modes of fermentation for the production of xylanases, factors affecting xylanase production, statistical approaches such as Plackett Burman, Response Surface Methodology to enhance xylanase production, purification, characterization, molecular cloning and expression. Besides this, review has focused on the microbial enzyme complex involved in the complete breakdown of xylan and the studies on xylanase regulation and their potential industrial applications with special reference to pulp biobleaching, which is directly related to increasing pulp brightness and reduction in environmental pollution.
Collapse
Affiliation(s)
- Abhishek Walia
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Shiwani Guleria
- Department of Microbiology, DAV University, Jalandhar, Punjab 144012 India
| | - Preeti Mehta
- Centre for Advance Bioenergy Research, Research and Development Centre, Indian Oil Corporation Limited, Sector-13, Faridabad, 121007 India
| | - Anjali Chauhan
- Department of Microbiology, Dr. YSPUHF, Nauni, Solan, 173230 India
| | - Jyoti Parkash
- School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab 151001 India
| |
Collapse
|
7
|
Wei XC, Tang L, Lu YH. Dissolved oxygen control strategy for improvement of TL1-1 production in submerged fermentation by Daldinia eschscholzii. BIORESOUR BIOPROCESS 2017; 4:1. [PMID: 28133592 PMCID: PMC5236084 DOI: 10.1186/s40643-016-0134-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/26/2016] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND 2,3-Dihydro-5-hydroxy-2-methylchromen-4-one (TL1-1) is a phenolic compound with significant anti-fungal and anti-cancer activities produced by Daldinia eschscholzii (D. eschscholzii). However, studies have rarely been reported on the fermentation process of D. eschscholzii due to the urgent demand for its pharmaceutical researches and applications. RESULTS In this work, the optimal fermentation medium for improved TL1-1 yield was first obtained in a shake flask. As the fermentation process was scaling up, the marked effects of dissolved oxygen (DO) on cell growth and TL1-1 biosynthesis were observed and confirmed. Controlling a suitable DO level by the adjustment of agitation speed and aeration rate remarkably enhanced TL1-1 production in a lab-scale bioreactor. Moreover, the fermentation of D. eschscholzii was successfully applied in 500-L bioreactor, and TL1-1 production has achieved 873.63 mg/L, approximately 15.4-fold than its initial production (53.27 mg/L). CONCLUSIONS Dissolved oxygen control strategy for enhancing TL1-1 production was first proposed. Furthermore, control of the appropriate DO level has successfully performed for improving TL1-1 yield and scale-up of D. eschscholzii fermentation process.
Collapse
Affiliation(s)
- Xing-chen Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Liu Tang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| | - Yan-hua Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Box 283#, Shanghai, 200237 People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237 People’s Republic of China
| |
Collapse
|