1
|
Chen QS, Yuan X, Peng F, Lou WY. Immobilization of engineered E. coli cells for asymmetric reduction of methyl acetoacetate to methyl-(R)-3-hydroxybutyrate. BIORESOUR BIOPROCESS 2022; 9:19. [PMID: 38647599 PMCID: PMC10991218 DOI: 10.1186/s40643-022-00508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022] Open
Abstract
The efficient asymmetric bio-synthesis of chiral β-hydroxy esters is of great importance for industrial production. In this work, a simple and productive engineered E.coli cell-immobilized strategy was applied for the asymmetric reduction of MAA to (R)-HBME with high enantioselectivity. Compared with the corresponding inactivated free cells, the alginate-immobilized cells remained 45% of initial activity at 50 ℃ and 65% after reuse of 10 times. After 60 days of storage at 4 ℃, the immobilized cells maintained more than 80% relative activity. Immobilization contributed significantly to the improvement of thermal stability, pH tolerance, storage stability and operation stability without affecting the yield of product. The immobilized recombinant E. coli cell had absolute enantioselectivity for the asymmetric reduction of MAA to (R)-HBME with e.e. > 99.9%. Therefore, microbial cell immobilization is a perspective approach in asymmetric synthesis of chiral β-hydroxy esters for industrial applications.
Collapse
Affiliation(s)
- Qing-Sheng Chen
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Xin Yuan
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Fei Peng
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology, Guangzhou, 510640, Guangdong, China.
| |
Collapse
|
2
|
Xu C, Ye P, Wu Q, Liang S, Wei W, Yang J, Chen W, Zhan R, Ma D. Identification and functional characterization of three iridoid synthases in Gardenia jasminoides. PLANTA 2022; 255:58. [PMID: 35118554 DOI: 10.1007/s00425-022-03824-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The discovery of three iridoid synthases (GjISY, GjISY2 and GjISY4) from Gardenia jasminoides and their functional characterization increase the understanding of iridoid scaffold/iridoid glycoside biosynthesis in iridoid-producing plants. Iridoids are a class of noncanonical monoterpenes that are found naturally in the plant kingdom mostly as glycosides. Over 40 iridoid glycosides (e.g., geniposide, gardenoside and shanzhiside) have been isolated from Gardenia jasminoides. They have multiple pharmacological properties and health-promoting effects. However, their biosynthetic pathway is poorly understood, and the iridoid synthase (ISY) responsible for the cyclization of the core scaffold remains unclear. In this study, three homologs of ISYs from G. jasminoides (GjISY, GjISY2 and GjISY4) were identified on the basis of transcriptomic data and functionally characterized. The genomic structure and intron-exon arrangement revealed that all three ISYs contained an intron. Biochemical assays indicated that all three recombinant enzymes reduced 8-oxogeranial to nepetalactol and its open forms (iridodials) as the products of the classical CrISY (Catharanthus roseus). In addition, all three enzymes reduced progesterone to 5-β-prognane-3,20-dione. However, only GjISY2 and GjISY4 reduced 2-cyclohexen-1-one to cyclohexanone. Overall, the GjISY2 expression levels in the flowers and fruits were similar to the GjISY and GjISY4 expression levels. By contrast, the GjISY2 expression levels in the upper and lower leaves were substantially higher than the GjISY and GjISY4 expression levels. Among the three, GjISY2 exhibited the highest catalytic efficiency for 8-oxogeranial. GjISY2 might be the major contributor to iridoid biosynthesis in G. jasminoides. Collectively, our results advance the understanding of iridoid scaffold/iridoid glycoside biosynthesis in G. jasminoides and provide a potential target for metabolic engineering and breeding.
Collapse
Affiliation(s)
- Chong Xu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Peng Ye
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Qingwen Wu
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Shuangcheng Liang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Wuke Wei
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Jinfen Yang
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Weiwen Chen
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Ruoting Zhan
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China
| | - Dongming Ma
- Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
- Key Laboratory of Chinese Medicinal Resource From Lingnan, Ministry of Education, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
- Joint Laboratory of National Engineering Research Center for the Pharmaceutics of Traditional Chinese Medicines, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
3
|
Hao YC, Zong MH, Wang ZL, Li N. Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine. BIORESOUR BIOPROCESS 2021; 8:80. [PMID: 38650256 PMCID: PMC10992857 DOI: 10.1186/s40643-021-00435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chiral furfuryl alcohols are important precursors for the synthesis of valuable functionalized pyranones such as the rare sugar L-rednose. However, the synthesis of enantiopure chiral biobased furfuryl alcohols remains scarce. In this work, we present a chemoenzymatic route toward enantiopure nitrogen-containing (R)- and (S)-3-acetamido-5-(1-hydroxylethyl)furan (3A5HEF) from chitin-derived N-acetyl-D-glucosamine (NAG). FINDINGS 3-Acetamido-5-acetylfuran (3A5AF) was obtained from NAG via ionic liquid/boric acid-catalyzed dehydration, in an isolated yield of approximately 31%. Carbonyl reductases from Streptomyces coelicolor (ScCR) and Bacillus sp. ECU0013 (YueD) were found to be good catalysts for asymmetric reduction of 3A5AF. Enantiocomplementary synthesis of (R)- and (S)-3A5HEF was implemented with the yields of up to > 99% and the enantiomeric excess (ee) values of > 99%. Besides, biocatalytic synthesis of (R)-3A5HEF was demonstrated on a preparative scale, with an isolated yield of 65%. CONCLUSIONS A two-step process toward the chiral furfuryl alcohol was successfully developed by integrating chemical catalysis with enzyme catalysis, with excellent enantioselectivities. This work demonstrates the power of the combination of chemo- and biocatalysis for selective valorization of biobased furans.
Collapse
Affiliation(s)
- Ya-Cheng Hao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 20 Jinying Road, Guangzhou, 510640, China.
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Wei P, Chao P, Wang YY, Li DL, Zou QJ, Zong MH, Lou WY. Marked improvement in the asymmetric reduction of 2-hydroxyacetophenone with mut-AcCR in a biphasic system. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Jiang HW, Chen Q, Pan J, Zheng GW, Xu JH. Rational Engineering of Formate Dehydrogenase Substrate/Cofactor Affinity for Better Performance in NADPH Regeneration. Appl Biochem Biotechnol 2020; 192:530-543. [PMID: 32405732 DOI: 10.1007/s12010-020-03317-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/23/2020] [Indexed: 12/25/2022]
Abstract
Formate dehydrogenases are critical tools for nicotinamide cofactor regeneration, but their limited catalytic efficiency (kcat/Km) is a major drawback. A formate dehydrogenase from Burkholderia stabilis 15516 (BstFDH) was the first native NADP+-dependent formate dehydrogenase reported and has the highest kcat/Km toward NADP+ (kcat/KmNADP+) compared with other FDHs that can utilize NADP+ as a hydrogen acceptor. However, the substrate and cofactor affinities of BstFDH are inferior to those of other FDHs, making its practical application difficult. Herein, we engineered recombinant BstFDH to enhance its HCOO- and NADP+ affinities. Based on sequence information analysis and homologous modeling results, I124, G146, S262, and A287 were found to affect the binding affinity for HCOO- and NADP+. By combining these mutations, we identified a BstFDH variant (G146M/A287G) that reduced KmNADP+ to 0.09 mM, with a concomitant decrease in KmHCOO-, and gave 1.6-fold higher kcat/KmNADP+ than the wild type (WT). Furthermore, BstFDH I124V/G146H/A287G, with the lowest KmHCOO- of 8.51 mM, showed a catalytic efficiency that was 2.3-fold higher than that of the wild type and a decreased KmNADP+ of 0.11 mM. These results are beneficial for improving the performance of NADP+-dependent formate dehydrogenase in the NADPH regeneration of various bioreductive reactions and provide a useful guide for engineering of the substrate and cofactor affinity of other enzymes.
Collapse
Affiliation(s)
- He-Wen Jiang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
6
|
Xu Y, Chen Q, Zhang ZJ, Xu JH, Zheng GW. Coevolution of the Activity and Thermostability of an ϵ-Keto Ester Reductase for Better Synthesis of an (R)-α-Lipoic Acid Precursor. Chembiochem 2020; 21:1341-1346. [PMID: 31828918 DOI: 10.1002/cbic.201900693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/27/2022]
Abstract
In this work, we have identified a significantly improved variant (S131Y/Q252I) of the natural ϵ-keto ester reductase CpAR2 from Candida parapsilosis for efficiently manufacturing (R)-8-chloro-6-hydroxyoctanoic acid [(R)-ECHO] through co-evolution of activity and thermostability. The activity of the variant CpAR2S131Y/Q252I towards the ϵ-keto ester ethyl 8-chloro-6-oxooctanoate was improved to 214 U mg-1 -from 120 U mg-1 in the case of the wild-type enzyme (CpAR2WT )-and the half-deactivating temperature (T50 , for 15 min incubation) was simultaneously increased by 2.3 °C in relation to that of CpAR2WT . Consequently, only 2 g L-1 of lyophilized E. coli cells harboring CpAR2S131Y/Q252I and a glucose dehydrogenase (GDH) were required in order to achieve productivity similar to that obtained in our previous work, under optimized reaction conditions (530 g L-1 d-1 ). This result demonstrated a more economical and efficient process for the production of the key (R)-α-lipoic acid intermediate ethyl 8-chloro-6-oxooctanoate.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for BiomanufacturingTechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for BiomanufacturingTechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for BiomanufacturingTechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for BiomanufacturingTechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for BiomanufacturingTechnology, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
7
|
Yajuan Z, Yajuan D, Lingli Z, Zhoukun L, Zhongli C, Yan H. Characterization of a novel aldo-keto reductase with anti-Prelog stereospecificity from Corallococcus sp. EGB. Int J Biol Macromol 2020; 146:36-44. [DOI: 10.1016/j.ijbiomac.2019.12.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 11/26/2022]
|
8
|
Significantly enhancing the biocatalytic synthesis of chiral alcohols by semi-rationally engineering an anti-Prelog carbonyl reductase from Acetobacter sp. CCTCC M209061. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.110613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Shah S, Agera R, Sharma P, Sunder AV, Singh H, James HM, Gaikaiwari RP, Wangikar PP. Development of biotransformation process for asymmetric reduction with novel anti-Prelog NADH-dependent alcohol dehydrogenases. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Draft Genome Sequence of Komagataeibacter maltaceti LMG 1529 T, a Vinegar-Producing Acetic Acid Bacterium Isolated from Malt Vinegar Brewery Acetifiers. GENOME ANNOUNCEMENTS 2018; 6:6/16/e00330-18. [PMID: 29674558 PMCID: PMC5908927 DOI: 10.1128/genomea.00330-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We present the genome sequence of Komagataeibacter maltaceti LMG 1529T, which is a vinegar-producing acetic acid bacterium. The draft genome sequence consists of 3.6 Mb and contains 3,225 predicted protein-encoding genes. In addition, 53 genes encoding potential oxidoreductases were identified.
Collapse
|
11
|
Cui YH, Wei P, Peng F, Zong MH, Lou WY. Efficient biocatalytic stereoselective reduction of methyl acetoacetate catalyzed by whole cells of engineered E. coli. RSC Adv 2018; 8:9970-9978. [PMID: 35540821 PMCID: PMC9078740 DOI: 10.1039/c8ra00883c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/27/2018] [Indexed: 12/03/2022] Open
Abstract
Asymmetric synthesis of chiral β-hydroxy esters, the key building blocks for many functional materials, is currently of great interest. In this study, the biocatalytic anti-Prelog reduction of methyl acetoacetate (MAA) to methyl-(R)-3-hydroxybutyrate ((R)-HBME) was successfully carried out with high enantioselectivity using the whole cell of engineered E. coli, which harbored an AcCR (carbonyl reductase) gene from Acetobacter sp. CCTCC M209061 and a GDH (glucose dehydrogenase) gene from Bacillus subtilis 168 for the in situ regeneration of the coenzyme. Compared with the corresponding wild strain, the engineered E. coli cells were proved to be more effective for the bio-reduction of MAA, and afforded much higher productivity. Under the optimized conditions, the product e.e. was >99.9% and the maximum yield was 85.3% after a reaction time of 10 h, which were much higher than those reported previously. In addition, the production of (R)-HBME increased significantly by using a fed-batch strategy of tuning pH, with a space-time yield of approximately 265 g L-1 d-1, thus the issue in previous research of relatively low substrate concentrations appears to be solved. Besides, the established bio-catalytic system was proved to be feasible up to a 150 mL scale with a large-scale relatively high substrate concentration and selectivity. For further industrial application, these results open a way to use of whole cells of engineered E. coli for challenging higher substrate concentrations of β-ketone esters enantioselective reduction reactions.
Collapse
Affiliation(s)
- Y H Cui
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology Guangzhou 510640 Guangdong China +86-20-22236669
| | - P Wei
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology Guangzhou 510640 Guangdong China +86-20-22236669
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 Guangdong China
| | - F Peng
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology Guangzhou 510640 Guangdong China +86-20-22236669
| | - M H Zong
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology Guangzhou 510640 Guangdong China +86-20-22236669
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 Guangdong China
| | - W Y Lou
- Lab of Applied Biocatalysis, School of Food Science and Technology, South China University of Technology Guangzhou 510640 Guangdong China +86-20-22236669
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology Guangzhou 510640 Guangdong China
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 Guangdong China
| |
Collapse
|
12
|
Li RJ, Li A, Zhao J, Chen Q, Li N, Yu HL, Xu JH. Engineering P450LaMO stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catal Sci Technol 2018. [DOI: 10.1039/c8cy01448e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Via Phe scanning based protein engineering, P450LaMO increased enantioselectivity to er 98 : 2 and product selectivity, alcohol : ketone, to ak 99 : 1.
Collapse
Affiliation(s)
- Ren-Jie Li
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Aitao Li
- Hubei Collaborative Innovation Center for Green Transformation of Bio-resources
- Hubei Key Laboratory of Industrial Biotechnology
- College of Life Sciences
- Hubei University
- Wuhan 430062
| | - Jing Zhao
- Tianjin Institute of Industrial Biotechnology
- Chinese Academy of Sciences
- Tianjin 300308
- P. R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Ning Li
- State Key Laboratory of Pulp and Paper Engineering
- College of Light Industry and Food Sciences
- South China University of Technology
- Guangzhou
- China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering
- Shanghai Collaborative Innovation Center for Biomanufacturing
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
| |
Collapse
|