1
|
Zhang F, Naeem M, Yu B, Liu F, Ju J. Improving the enzymatic activity and stability of N-carbamoyl hydrolase using deep learning approach. Microb Cell Fact 2024; 23:164. [PMID: 38834993 PMCID: PMC11151596 DOI: 10.1186/s12934-024-02439-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Optically active D-amino acids are widely used as intermediates in the synthesis of antibiotics, insecticides, and peptide hormones. Currently, the two-enzyme cascade reaction is the most efficient way to produce D-amino acids using enzymes DHdt and DCase, but DCase is susceptible to heat inactivation. Here, to enhance the enzymatic activity and thermal stability of DCase, a rational design software "Feitian" was developed based on kcat prediction using the deep learning approach. RESULTS According to empirical design and prediction of "Feitian" software, six single-point mutants with high kcat value were selected and successfully constructed by site-directed mutagenesis. Out of six, three mutants (Q4C, T212S, and A302C) showed higher enzymatic activity than the wild-type. Furthermore, the combined triple-point mutant DCase-M3 (Q4C/T212S/A302C) exhibited a 4.25-fold increase in activity (29.77 ± 4.52 U) and a 2.25-fold increase in thermal stability as compared to the wild-type, respectively. Through the whole-cell reaction, the high titer of D-HPG (2.57 ± 0.43 mM) was produced by the mutant Q4C/T212S/A302C, which was about 2.04-fold of the wild-type. Molecular dynamics simulation results showed that DCase-M3 significantly enhances the rigidity of the catalytic site and thus increases the activity of DCase-M3. CONCLUSIONS In this study, an efficient rational design software "Feitian" was successfully developed with a prediction accuracy of about 50% in enzymatic activity. A triple-point mutant DCase-M3 (Q4C/T212S/A302C) with enhanced enzymatic activity and thermostability was successfully obtained, which could be applied to the development of a fully enzymatic process for the industrial production of D-HPG.
Collapse
Affiliation(s)
- Fa Zhang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bo Yu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feixia Liu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jiansong Ju
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Hebei Collaborative Innovation Center for Eco-Environment, Shijiazhuang, 050024, China.
| |
Collapse
|
2
|
Qin S, Meng F, Jin F, Xu X, Zhao M, Chu H, Gao L, Liu S. Dual-functional porphyrinic zirconium-based metal-organic framework for the fluorescent sensing of histidine enantiomers and Hg 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2386-2399. [PMID: 38572640 DOI: 10.1039/d3ay02241b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
A novel fluorescence sensor based on a porphyrinic zirconium-based metal-organic framework, L-cysteine-modified PCN-222 (L-Cys/PCN-222), was developed to selectively recognize histidine enantiomers and sensitively detect Hg2+. The dual-functional sensor was successfully prepared via the solvent-assisted ligand incorporation method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), 1H nuclear magnetic resonance (1H NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, circular dichroism (CD), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption analyses. L-Cys/PCN-222 not only showed a higher quenching response for L-histidine than that for D-histidine with a fast fluorescent response rate of <40 s but also exhibited low detection limits for L- and D-histidine (2.48 μmol L-1 and 3.85 μmol L-1, respectively). Moreover, L-Cys/PCN-222 was employed as a fluorescent and visual sensor for the highly sensitive detection of Hg2+ in the linear range of 10-500 μmol L-1, and the detection limit was calculated to be 2.79 μmol L-1 in surface water. The specific and selective recognition of chiral compounds and metal ions by our probe make it suitable for real field applications.
Collapse
Affiliation(s)
- Shili Qin
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, P. R. China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, P. R. China
| | - Fanshu Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
| | - Fenglong Jin
- Qiqihar Inspection and Testing Center, Qiqihar Administration for Market Regulation, Qiqihar 161000, P.R. China
| | - Xidi Xu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, P. R. China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, P. R. China
| | - Hongtao Chu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, P. R. China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, P. R. China
| | - Lidi Gao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China.
- Technology Innovation Center of Industrial Hemp for State Market Regulation, Qiqihar 161006, P. R. China
- Heilongjiang Industrial Hemp Processing Technology Innovation Center, Qiqihar 161006, P. R. China
| | - Shuren Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310000, P. R. China.
| |
Collapse
|
3
|
Wang J, Dong R, Yin J, Liang J, Gao H. Optimization of multi-enzyme cascade process for the biosynthesis of benzylamine. Biosci Biotechnol Biochem 2023; 87:1373-1380. [PMID: 37567780 DOI: 10.1093/bbb/zbad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Benzylamine is a valuable intermediate in the synthesis of organic compounds such as curing agents and antifungal drugs. To improve the efficiency of benzylamine biosynthesis, we identified the enzymes involved in the multi-enzyme cascade, regulated the expression strength by using RBS engineering in Escherichia coli, and established a regeneration-recycling system for alanine. This is a cosubstrate, coupled to cascade reactions, which resulted in E. coli RARE-TP and can synthesize benzylamine using phenylalanine as a precursor. By optimizing the supply of cosubstrates alanine and ammonia, the yield of benzylamine produced by whole-cell catalysis was increased by 1.5-fold and 2.7-fold, respectively, and the final concentration reached 6.21 mM. In conclusion, we achieved conversion from l-phenylalanine to benzylamine and increased the yield through enzyme screening, expression regulation, and whole-cell catalytic system optimization. This demonstrated a green and sustainable benzylamine synthesis method, which provides a reference and additional information for benzylamine biosynthesis research.
Collapse
Affiliation(s)
- Jinli Wang
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Runan Dong
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jingxin Yin
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Jianhua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Haijun Gao
- School of Life Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
4
|
Tan Y, Gao C, Song W, Wei W, Liu J, Gao C, Guo L, Chen X, Liu L, Wu J. Rational Design of Meso-Diaminopimelate Dehydrogenase with Enhanced Reductive Amination Activity for Efficient Production of d- p-Hydroxyphenylglycine. Appl Environ Microbiol 2023; 89:e0010923. [PMID: 37070978 PMCID: PMC10231207 DOI: 10.1128/aem.00109-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023] Open
Abstract
d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the pharmaceutical industry. In this study, a tri-enzyme cascade for the production of d-HPG from l-HPG was designed. However, the amination activity of Prevotella timonensis meso-diaminopimelate dehydrogenase (PtDAPDH) toward 4-hydroxyphenylglyoxylate (HPGA) was identified as the rate-limiting step. To overcome this issue, the crystal structure of PtDAPDH was solved, and a "binding pocket and conformation remodeling" strategy was developed to improve the catalytic activity toward HPGA. The best variant obtained, PtDAPDHM4, exhibited a catalytic efficiency (kcat/Km) that was 26.75-fold higher than that of the wild type. This improvement was due to the enlarged substrate-binding pocket and enhanced hydrogen bond networks around the active center; meanwhile, the increased number of interdomain residue interactions drove the conformation distribution toward the closed state. Under optimal transformation conditions, PtDAPDHM4 produced 19.8 g/L d-HPG from 40 g/L racemate DL-HPG in a 3 L fermenter within 10 h, with 49.5% conversion and >99% enantiomeric excess. Our study provides an efficient three-enzyme cascade pathway for the industrial production of d-HPG from racemate DL-HPG. IMPORTANCE d-p-hydroxyphenylglycine (d-HPG) is an important intermediate in the synthesis of antimicrobial compounds. d-HPG is mainly produced via chemical and enzymatic approaches, and enzymatic asymmetric amination employing diaminopimelate dehydrogenase (DAPDH) is considered an attractive method. However, the low catalytic activity of DAPDH toward bulky 2-keto acids limits its applications. In this study, we identified a DAPDH from Prevotella timonensis and created a mutant, PtDAPDHM4, which exhibited a catalytic efficiency (kcat/Km) toward 4-hydroxyphenylglyoxylate that was 26.75-fold higher than that of the wild type. The novel strategy developed in this study has practical value for the production of d-HPG from inexpensive racemate DL-HPG.
Collapse
Affiliation(s)
- Yang Tan
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Yang J, Wei W, Gao C, Song W, Gao C, Chen X, Liu J, Guo L, Liu L, Wu J. Efficient production of salvianic acid A from L-dihydroxyphenylalanine through a tri-enzyme cascade. BIORESOUR BIOPROCESS 2023; 10:31. [PMID: 38647923 PMCID: PMC10992476 DOI: 10.1186/s40643-023-00649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2024] Open
Abstract
Salvianic acid A (SAA), used for treating cardiovascular and cerebrovascular diseases, possesses several pharmacological properties. However, the current methods for the enzymatic synthesis of SAA show low efficiency. Here, we constructed a three-enzyme cascade pathway in Escherichia coli BL21 (DE3) to produce SAA from L-dihydroxyphenylalanine (L-DOPA). The phenylpyruvate reductase (LaPPR) from Lactobacillus sp. CGMCC 9967 is a rate-limiting enzyme in this process. Therefore, we employed a mechanism-guided protein engineering strategy to shorten the transfer distances of protons and hydrides, generating an optimal LaPPR mutant, LaPPRMu2 (H89M/H143D/P256C), with a 2.8-fold increase in specific activity and 9.3-time increase in kcat/Km value compared to that of the wild type. Introduction of the mutant LaPPRMu2 into the cascade pathway and the optimization of enzyme levels and transformation conditions allowed the obtainment of the highest SAA titer (82.6 g L-1) ever reported in vivo, good conversion rate (91.3%), excellent ee value (99%) and the highest productivity (6.9 g L-1 h-1) from 90 g L-1 L-DOPA in 12 h. This successful strategy provides a potential new method for the industrial production of SAA.
Collapse
Affiliation(s)
- Jiahui Yang
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
Jiang X, Wei W, Cui Y, Song W, Li Y, Chen X, Gao C, Liu J, Guo L, Liu L, Wu J. A Multi-Enzyme Cascade for Efficient Production of Pyrrolidone from l-Glutamate. Appl Environ Microbiol 2023; 89:e0001323. [PMID: 36951578 PMCID: PMC10132116 DOI: 10.1128/aem.00013-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/17/2023] [Indexed: 03/24/2023] Open
Abstract
Pyrrolidone is a high value-added monomer and an important active drug intermediate. However, the efficient enzymatic synthesis of pyrrolidone remains a challenge. Here, we developed and reconstructed a three-enzyme cascade pathway using Escherichia coli BL21(DE3) for the production of pyrrolidone from l-glutamate (l-Glu). The carnitine-CoA ligase from Escherichia coli (EcCaiC) at a low expression level and with a low activity is regarded as the rate-limiting enzyme. Here, we obtained the best EcCaiCF380M/N430D double mutant with a kcat/Km value 1.5 times higher than that of the wild type via mechanism-based protein engineering. For this, we (i) eliminated the steric hindrance of the loop ring to improve the precatalytic conformation of the adenylation intermediate and (ii) fixed the hinge region to stabilize the closed conformation of the enzyme. Furthermore, ribosome-binding site (RBS) optimization led to an increase in the expression level of EcCaiCF380M/N430D, which was then cloned into the plasmid pET-EcCaiCF380M/N430D-DegoPPK2. Finally, under optimal induction and transformation conditions, 16.62 g/L of pyrrolidone was generated from 30 g/L l-Glu (batch feeding) within 24 h with a molar conversion rate of 95.2% and the highest productivity ever obtained, to our knowledge (0.69 g/L/h). Our findings demonstrate a strategy that is potentially attractive for the industrial production of pyrrolidone. IMPORTANCE This study developed a three-enzyme cascade pathway for the production of pyrrolidone from l-Glu. The catalytic efficiency of carnitine CoA ligase from Escherichia coli (EcCaiC) was improved by mechanism-based protein engineering, and the titer of pyrrolidone was further increased by ribosome-binding site (RBS), induction conditions, and conversion conditions optimization. Finally, we efficiently produced pyrrolidone by one pot in vivo with 95.2% conversion and 0.69 g/L/h productivity. Our study provides a new possibility for the industrial production of enzymatic synthesis of pyrrolidone.
Collapse
Affiliation(s)
- Xuling Jiang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Yingying Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
7
|
Jung DY, Li X, Li Z. Engineering of Hydroxymandelate Oxidase and Cascade Reactions for High-Yielding Conversion of Racemic Mandelic Acids to Phenylglyoxylic Acids and ( R)- and ( S)-Phenylglycines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Do-Yun Jung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
8
|
Yi J, Li Z. Artificial multi-enzyme cascades for natural product synthesis. Curr Opin Biotechnol 2022; 78:102831. [PMID: 36308987 DOI: 10.1016/j.copbio.2022.102831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/19/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022]
Abstract
Artificial multi-enzyme cascades bear great potential for offering sustainable synthesis of useful and valuable natural molecules. In the past two years, many new cascades were developed to produce natural alcohols, acids, esters, amino compounds, fatty acid derivatives, alkaloids, terpenoids, terpenes and monosaccharides from natural substrates and simple chemicals, respectively. These artificial cascades were constructed by combining individual enzymes designed using the retro-synthesis strategy and based on the available natural substrates and simple chemicals. While performing the cascades in vivo is often simple and straightforward, in vitro cascades usually require cofactor regeneration that was achieved by introducing one or more cofactor-regeneration modules in one pot. Protein engineering is frequently used to improve the performances of some enzymes in the cascades.
Collapse
Affiliation(s)
- Jieran Yi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
9
|
Cheng J, Luo Z, Wang B, Yan L, Zhang S, Zhang J, Lu Y, Wang W. An artificial pathway for trans-4-hydroxy-L-pipecolic acid production from L-lysine in Escherichia coli. Biosci Biotechnol Biochem 2022; 86:1476-1481. [PMID: 35998310 DOI: 10.1093/bbb/zbac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022]
Abstract
Trans-4-hydroxy-L-pipecolic acid (Trans-4-HyPip) is a hydroxylated product of L-pipecolic acid, and which is widely used in pharmaceutical and chemical industry. Here, a trans-4-HyPip biosynthesis module was designed and constructed in Escherichia coli by overexpressing lysine α-oxidase, Δ1-piperideine-2-carboxylase reductase, glucose dehydrogenase, lysine permease, catalase and L-pipecolic acid trans-4-hydroxylase for expanding the lysine catabolism pathway. 4.89 g/L of trans-4-HyPip was generated in shake flasks from 8 g/L of L-pipecolic acid. By this approach, 14.86 g/L of trans-4-HyPip was produced from lysine after 48 h in a 5-L bioreactor. As far as we know, this is the first multi-enzyme cascade catalytic system for the production of trans-4-HyPip using Escherichia coli from L-lysine. Therefore, it can be considered as a potential candidate for industrial production of trans-4-HyPip in microorganisms.
Collapse
Affiliation(s)
- Jie Cheng
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Zhou Luo
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Bangxu Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China.,College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P.R. China
| | - Lixiu Yan
- Chongqing Academy of Metrology and Quality Inspection, Chongqing, P.R. China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd., Luzhou, Sichuan, P.R. China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| | - Yao Lu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, P.R. China
| | - Wei Wang
- Meat Processing Key Laboratory of Sichuan Province, College of Food and Biological Engineering, Chengdu University, Chengdu, P.R. China
| |
Collapse
|
10
|
Liang X, Deng H, Bai Y, Fan TP, Zheng X, Cai Y. Highly efficient biosynthesis of spermidine from L-homoserine and putrescine using an engineered Escherichia coli with NADPH self-sufficient system. Appl Microbiol Biotechnol 2022; 106:5479-5493. [PMID: 35931895 DOI: 10.1007/s00253-022-12110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/30/2022]
Abstract
Spermidine is an important polyamine that can be used for the synthesis of various bioactive compounds in the food and pharmaceutical fields. In this study, a novel efficient whole-cell biocatalytic method with an NADPH self-sufficient cycle for spermidine biosynthesis was designed and constructed by co-expressing homoserine dehydrogenase (HSD), carboxyspermidine dehydrogenase (CASDH), and carboxyspermidine decarboxylase (CASDC). First, the enzyme-substrate coupled cofactor regeneration system from co-expression of NADP+-dependent ScHSD and NADPH-dependent AfCASDH exactly provides an efficient method for cofactor cycling. Second, we identified and characterized a putative CASDC with high decarboxylase activity from Butyrivibrio crossotus DSM 2876; it showed an optimum temperature of 35 °C and an optimum pH of 7.0, which make it better suited for the designed synthetic route. Subsequently, the protein expression level of each enzyme was optimized through the variation of the gene copy number, and a whole-cell catalyst with high catalytic efficiency was constructed successfully. Finally, a yield of 28.6 mM of spermidine was produced in a 1-L scale of E. coli whole-cell catalytic system with a 95.3% molar conversion rate after optimization of temperature, the ratio of catalyst-to-substrate, and the amount of NADP+, and a productivity of 0.17 g·L-1·h-1 was achieved. In summary, this novel pathway of constructing a whole-cell catalytic system from L-homoserine and putrescine could provide a green alternative method for the efficient synthesis of spermidine. KEY POINTS: • A novel pathway for spermidine biosynthesis was developed in Escherichia coli. • The enzyme-substrate coupled system provides an NADPH self-sufficient cycle. • Spermidine with 28.6 mM was obtained using an optimized whole-cell system.
Collapse
Affiliation(s)
- Xinxin Liang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Huaxiang Deng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1T, UK
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, 710069, Shanxi, China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
11
|
Mao HF, Xing HM, Jin MM, Liu JB, Yao YL, Zhao Y. An in-depth mechanistic study of the p-hydroxyphenylglycine synthetic process using in situ ATR-IR spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2833-2840. [PMID: 35786717 DOI: 10.1039/d2ay00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, an in situ ATR-IR technique was used as a powerful tool to gain insight into the synthetic process of p-hydroxyphenylglycine (p-HPG) by the sulfamic acid-glyoxylic acid-phenol method. Combined with other chemical and instrumental analysis technologies, the reaction sequence and key intermediates of this one-pot reaction were determined, and two concomitant reaction paths have been put forward for the first time. The possible reaction mechanism has been suggested, and the reaction efficiency of each path is discussed in detail. Through the optimization of the experimental parameters, an approximately 40% increase in the final product yield was achieved compared with previous reports. We believe that this study will without a doubt trigger research interest in understanding the industrial production process of important chemicals and pharmaceuticals and as a result will promote the sustainable development and application of novel, efficient chemical reaction routes.
Collapse
Affiliation(s)
- Hai-Fang Mao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Hui-Min Xing
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Miao-Miao Jin
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Ji-Bo Liu
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Yue-Liang Yao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| | - Yun Zhao
- Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai, 201418, China.
| |
Collapse
|
12
|
Sun BY, Sui HL, Liu ZW, Tao XY, Gao B, Zhao M, Ma YS, Zhao J, Liu M, Wang FQ, Wei DZ. Structure-guided engineering of a flavin-containing monooxygenase for the efficient production of indirubin. BIORESOUR BIOPROCESS 2022; 9:70. [PMID: 38647553 PMCID: PMC10991670 DOI: 10.1186/s40643-022-00559-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Indirubin is a bisindole compound for the treatment of chronic myelocytic leukemia. Here, we presented a structure-guided method to improve the activity of a flavin-containing monooxygenase (bFMO) for the efficient production of indirubin in Escherichia coli. A flexible loop interlocked with the active pocket through a helix and the substrate tunnel rather than the active pocket in bFMO were identified to be two reconfigurable structures to improve its activity, resulting in K223R and N291T mutants with enhanced catalytic activity by 2.5- and 2.0-fold, respectively. A combined modification at the two regions (K223R/D317S) achieved a 6.6-fold improvement in catalytic efficiency (kcat/Km) due to enhancing π-π stacking interactions stabilization. Finally, an engineered E. coli strain was constructed by metabolic engineering, which could produce 860.7 mg/L (18 mg/L/h) indirubin, the highest yield ever reported. This work provides new insight into the redesign of FMOs to boost their activities and an efficient approach to produce indirubin.
Collapse
Affiliation(s)
- Bing-Yao Sun
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua-Lu Sui
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Zi-Wei Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin-Yi Tao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ming Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yu-Shu Ma
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jian Zhao
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Min Liu
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng-Qing Wang
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Dong-Zhi Wei
- State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Wang J, Cheng H, Zhao Z, Zhang Y. Efficient production of inositol from glucose via a tri-enzymatic cascade pathway. BIORESOURCE TECHNOLOGY 2022; 353:127125. [PMID: 35398211 DOI: 10.1016/j.biortech.2022.127125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Inositol is an essential intermediate in cosmetics, food, medicine and other industries. However, developing an efficient biotransformation system for large-scale production of inositol remains challenging. Herein, a tri-enzymatic cascade route with three novel enzymes including polyphosphate glucokinase (PPGK) from Thermobifida fusca, inositol 3-phosphate synthase (IPS) from Archaeoglobus profundus DSM 5631 and inositol monophosphatase (IMP) from Thermotoga petrophila RKU-1 was designed and reconstructed for the production of inositol from glucose. The problem of poor cooperativity of the cascade reactions was addressed by ribosome binding site (RBS) optimization of PPGK and replication of IPS. Under the optimum biotransformation conditions, the engineered whole-cell immobilized with colloidal chitin transformed 120 g/L glucose to 110.8 g/L inositol with 92.3% conversion in four cycles of reuse, representing the highest titer of inositol to date. Furthermore, this is the first study for inositol production using a three-enzyme coordinated immobilized single-cell.
Collapse
Affiliation(s)
- Jiaping Wang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Hui Cheng
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Zhihong Zhao
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China
| | - Yimin Zhang
- Hangzhou Wahaha Group Co. Ltd., Hangzhou 310018, China; Key Laboratory of Food and Biological Engineering of Zhejiang Province, Hangzhou 310018, China.
| |
Collapse
|
14
|
Liu Y, Xie N, Yu B. De Novo Biosynthesis of D- p-Hydroxyphenylglycine by a Designed Cofactor Self-Sufficient Route and Co-culture Strategy. ACS Synth Biol 2022; 11:1361-1372. [PMID: 35244401 DOI: 10.1021/acssynbio.2c00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
d-p-Hydroxyphenylglycine (D-HPG) is an important intermediate for the synthesis of β-lactam antibiotics with an annual market demand of thousands of tons. Currently, the main production processes are via chemical approaches. Although enzymatic conversion has been investigated for D-HPG production, synthesis of the substrate DL-hydroxyphenylhydantoin is still chemically based, which suffers from high pollution and harsh reaction conditions. In this study, one cofactor self-sufficient route for D-HPG production from l-phenylalanine was newly designed and the artificial pathway was functionalized by selecting suitable enzymes and adjusting their expressions in strain Pseudomonas putida KT2440. Notably, a new R-mandelate dehydrogenase from Lactococcus lactis with relatively high activity under pH neutral conditions was successfully mined to demonstrate the biosynthetic pathway in vivo. The performance of the engineered P. putida strain was further increased by enhancing cellular NAD availability and blocking l-phenylalanine consumption. Coupled with the l-phenylalanine producer, Escherichia coli strain ATCC 31884, a stable and interactive co-culture process was also developed by engineering a "cross-link auxotrophic" system to produce D-HPG directly from glucose. Thus, this study is the first approach for the de novo biosynthesis of D-HPG by engineering a non-natural pathway and lays the foundation for further improving the efficiency of D-HPG production via a green and sustainable route.
Collapse
Affiliation(s)
- Yang Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nengzhong Xie
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Biomass Engineering Technology Research Center, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences, Nanning 530007, China
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
16
|
Zhang J, Qi N, Gao L, Li J, Zhang C, Chang H. One-pot synthesis of (R)- and (S)-phenylglycinol from bio-based L-phenylalanine by an artificial biocatalytic cascade. BIORESOUR BIOPROCESS 2021; 8:97. [PMID: 38650191 PMCID: PMC10991228 DOI: 10.1186/s40643-021-00448-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
Chiral phenylglycinol is a very important chemical in the pharmaceutical manufacturing. Current methods for synthesis of chiral phenylglycinol often suffered from unsatisfied selectivity, low product yield and using the non-renewable resourced substrates, then the synthesis of chiral phenylglycinol remain a grand challenge. Design and construction of synthetic microbial consortia is a promising strategy to convert bio-based materials into high value-added chiral compounds. In this study, we reported a six-step artificial cascade biocatalysis system for conversion of bio-based L-phenylalanine into chiral phenylglycinol. This system was designed using a microbial consortium including two engineered recombinant Escherichia coli cell modules, one recombinant E. coli cell module co-expressed six different enzymes (phenylalanine ammonia lyase/ferulic acid decarboxylase/phenylacrylic acid decarboxylase/styrene monooxygenase/epoxide hydrolase/alcohol dehydrogenase) for efficient conversion of L-phenylalanine into 2-hydroxyacetophenone. The second recombinant E. coli cell module expressed an (R)-ω-transaminase or co-expressed the (S)-ω-transaminase, alanine dehydrogenase and glucose dehydrogenase for conversion of 2-hydroxyacetophenone into (S)- or (R)-phenylglycinol, respectively. Combining the two engineered E. coli cell modules, after the optimization of bioconversion conditions (including pH, temperature, glucose concentration, amine donor concentration and cell ratio), L-phenylalanine could be easily converted into (R)-phenylglycinol and (S)-phenylglycinol with up to 99% conversion and > 99% ee. Preparative scale biotransformation was also conducted on 100-mL scale, (S)-phenylglycinol and (R)-phenylglycinol could be obtained in 71.0% and 80.5% yields, > 99% ee, and 5.19 g/L d and 4.42 g/L d productivity, respectively. The salient features of this biocatalytic cascade system are good yields, excellent ee, mild reaction condition and no need for additional cofactor (NADH/NAD+), provide a practical biocatalytic method for sustainable synthesis of (S)-phenylglycinol and (R)-phenylglycinol from bio-based L-phenylalanine.
Collapse
Affiliation(s)
- Jiandong Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China.
| | - Ning Qi
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Lili Gao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, China
| | - Jing Li
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Chaofeng Zhang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| | - Honghong Chang
- Department of Biological and Pharmaceutical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, No. 79 West Yingze Street, Taiyuan, 030024, Shanxi, China
| |
Collapse
|