1
|
Gutierrez CD, Aranzábal RL, Lechuga AM, Serrano CA, Meza F, Elvira C, Gallardo A, Ludeña MA. A pH-Responsive Hydrogel for the Oral Delivery of Ursolic Acid: A Pentacyclic Triterpenoid Phytochemical. Gels 2024; 10:602. [PMID: 39330204 PMCID: PMC11431203 DOI: 10.3390/gels10090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
In this study, poly(HEMA-PEGxMEM-IA) hydrogels were prepared by radical copolymerization of poly(ethylene glycol) methyl ether methacrylate (PEGxMEM), 2-hydroxyethyl methacrylate (HEMA), and itaconic acid (IA). The reaction was carried out in ethanolic solution using N,N'-methylenebisacrylamide (MBA) as a crosslinking agent and 1-hydroxycyclohexyl phenyl ketone (HCPK) as a photo-initiator. The poly(HEMA-PEGxMEM-IA) hydrogels (HGx) were evaluated as a delivery system for ursolic acid (UA), a phytochemical extracted from the plant Clinopodium revolutum, "flor de arena". The hydrogels were characterized by Fourier-transform infrared spectroscopy (FTIR-ATR), Raman spectroscopy, X-Ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The swelling behavior was studied in buffer solutions from pH 2 to 10, specifically at pH 2.2 (gastric environment) and 7.4 (intestinal environment). It was found that the hydrogels studied showed sensitivity to pH. At pH 2.2, the degree of swelling for HG5 and HG9 hydrogels was 0.45 and 0.93 (g water/g hydrogel), respectively. At pH 7.4, the degree of swelling for HG5 and HG9 hydrogels was 1.97 and 2.64 (g water/g hydrogel), respectively. The SEM images show the variation in pore size as a function of pH, and the UA crystals in the pores of the hydrogels can also be observed. The in vitro UA release data best fit the Korsmeyer-Peppas kinetic model and the diffusion exponent indicates that the release mechanism is governed by Fickian diffusion.
Collapse
Affiliation(s)
- Carlos D. Gutierrez
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Rosana L. Aranzábal
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Ana M. Lechuga
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Carlos A. Serrano
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| | - Flor Meza
- Technology of Materials for Environmental Remediation Group (TecMARA), Faculty of Sciences, National University of Engineering, Av. Tupac Amaru 210, Rimac 15333, Peru;
| | - Carlos Elvira
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (C.E.); (A.G.)
| | - Alberto Gallardo
- Institute of Polymer Science and Technology (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (C.E.); (A.G.)
| | - Michael A. Ludeña
- Department of Chemistry, Faculty of Chemical, Physical and Mathematical Sciences, National University of San Antonio Abad del Cusco (UNSAAC), Av. De la Cultura 733, Cusco 921, Peru; (C.D.G.); (R.L.A.); (A.M.L.); (C.A.S.)
| |
Collapse
|
2
|
Alsaikhan F, Farhood B. Recent advances on chitosan/hyaluronic acid-based stimuli-responsive hydrogels and composites for cancer treatment: A comprehensive review. Int J Biol Macromol 2024; 280:135893. [PMID: 39317275 DOI: 10.1016/j.ijbiomac.2024.135893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Cancer, as leading cause of death, has a high rate of mortality worldwide. Although there is a wide variety of conventional approaches for the treatment of cancer (such as surgery and chemotherapy), they have considerable drawbacks in terms of practicality, treatment efficiency, and cost-effectiveness. Therefore, there is a fundamental requirement for the development of safe and efficient treatment modalities based on breakthrough technologies to suppress cancer. Chitosan (CS) and hyaluronic acid (HA) polysaccharides, as FDA-approved biomaterials for some biomedical applications, are potential biopolymers for the efficient treatment of cancer. CS and HA have high biocompatibility, bioavailability, biodegradability, and immunomodulatory function which guarantee their safety and non-toxicity. CS-/HA-based hydrogels (HGs)/composites stand out for their potential anticancer function, versatile preparation and modification, ease of administration, controlled/sustained drug release, and active and passive drug internalization into target cells which is crucial for efficient treatment of cancer compared with conventional treatment approaches. These HGs/composites can respond to external (magnetic, ultrasound, light, and thermal) and internal (pH, enzyme, redox, and ROS) stimuli as well which further paves the way to their manipulation, targeted drug delivery, practicality, and efficient treatment. The above-mentioned properties of CS-/HA-based HGs/composites are unique and practical in cancer treatment which can ignore the deficiencies of conventional approaches. The present manuscript comprehensively highlights the advances in the practical application of stimuli-responsive HGs/composites based on CS/HA polysaccharides.
Collapse
Affiliation(s)
- Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Can A, Kızılbey K. Green Synthesis of ZnO Nanoparticles via Ganoderma Lucidum Extract: Structural and Functional Analysis in Polymer Composites. Gels 2024; 10:576. [PMID: 39330178 PMCID: PMC11431147 DOI: 10.3390/gels10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Metallic nanoparticles are of growing interest due to their broad applications. This study presents the green synthesis of zinc oxide (ZnO) nanoparticles (ZnNPs) using Ganoderma Lucidum mushroom extract, characterized by DLS, SEM, XRD, and FTIR spectroscopy analyses. The synthesis parameters, including extract/salt ratio and mixing time, significantly influenced nanoparticle yield, size, and polydispersity, with longer mixing times leading to larger, more varied particles. Specifically, the sizes of ZnNPs synthesized at a 1:1 extract/ZnCl2 ratio after 3 h and 24 h were 90.0 nm and 243.3 nm, with PDI values of 48.69% and 51.91%, respectively. At a 1:2 ratio, the sizes were 242.3 nm at 3 h (PDI: 43.19%) and a mixture of 1.5 nm, 117.4 nm, and 647.9 nm at 24 h (PDI: 2.72%, 10.97%, and 12.43%). Polymer films incorporating PVA, chitosan, and ZnNPs were analyzed for their morphological, spectroscopic, and mechanical properties. Chitosan reduced tensile strength and elongation due to its brittleness, while ZnNPs further increased film brittleness and structural degradation. A comparison of the tensile strength of films A and C revealed that the addition of chitosan to the PVA film resulted in an approximately 10.71% decrease in tensile strength. Similarly, the analysis of films B1 and B2 showed that the tensile strength of the B2 film decreased by 10.53%. Swelling tests showed that ZnNPs initially enhanced swelling, but excessive amounts led to reduced capacity due to aggregation. This pioneering study demonstrates the potential of Ganoderma Lucidum extract in nanoparticle synthesis and provides foundational insights for future research, especially in wound dressing applications.
Collapse
Affiliation(s)
- Ayça Can
- Biomedical Engineering Department, Graduate School of Natural and Applied Sciences, Acıbadem University, İstanbul 34752, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, İstanbul 34752, Türkiye
| |
Collapse
|
4
|
Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, Zhu Y, Hou R. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem 2024; 12:1376799. [PMID: 38435666 PMCID: PMC10905748 DOI: 10.3389/fchem.2024.1376799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good biocompatibility, high mechanical strength, low friction coefficient, and suitable water content. The widely distributed hydroxyl side chains on the PVA molecule allow the hydrogels to be branched with various functional groups. By improving the synthesis method and changing the hydrogel structure, PVA-based hydrogels can obtain excellent cytocompatibility, flexibility, electrical conductivity, viscoelasticity, and antimicrobial properties, representing a good candidate for articular cartilage restoration, electronic skin, wound dressing, and other fields. This review introduces various preparation methods of PVA-based hydrogels and their wide applications in the biomedical field.
Collapse
Affiliation(s)
- Yi Zhong
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Qi Lin
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Han Yu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
| | - Xiang Cui
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qian Pang
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Yabin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Ruixia Hou
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Mohanty S, Swarup J, Priya S, Jain R, Singhvi G. Exploring the potential of polysaccharide-based hybrid hydrogel systems for their biomedical and therapeutic applications: A review. Int J Biol Macromol 2024; 256:128348. [PMID: 38007021 DOI: 10.1016/j.ijbiomac.2023.128348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Hydrogels are a versatile category of biomaterials that have been widely applied in the fields of biomedicine for the last several decades. The three-dimensional polymeric crosslinked hydrophilic structures of the hydrogel can proficiently hold drugs, nanoparticles, and cells, making them a potential delivery system. However, disadvantages like low mechanical strength, poor biocompatibility, and unusual in-vivo biodegradation are associated with conventional hydrogels. To overcome these hurdles, hybrid hydrogels are designed using two or more structurally different polymeric units. Polysaccharides, characterized by their innate biocompatibility, biodegradability, and abundance, establish an ideal foundation for the development of these hybrid hydrogels. This review aims to discuss the studies that have utilized naturally occurring polysaccharides to prepare hybrid systems, which were aimed for various biomedical applications such as tissue engineering, bone and cartilage regeneration, wound healing, skin cancer treatment, antimicrobial therapy, osteoarthritis treatment, and drug delivery. Furthermore, this review extensively examines the properties of the employed polysaccharides within hydrogel matrices, emphasizing the advantageous characteristics that make them a preferred choice. Furthermore, the challenges associated with the commercial implementation of these systems are explored alongside an assessment of the current patent landscape.
Collapse
Affiliation(s)
- Shambo Mohanty
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Jayanti Swarup
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Rupesh Jain
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
6
|
Taokaew S, Kaewkong W, Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023; 9:277. [PMID: 37102889 PMCID: PMC10138304 DOI: 10.3390/gels9040277] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade. The recent progress in the applications of drug delivery, tissue engineering, disease treatments, and biosensors are reviewed. Current challenges and future development direction of the chitosan-based hydrogels for pharmaceutical and biomedical applications are prospected.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
7
|
Haloi P, Chawla S, Konkimalla VB. Thermosensitive smart hydrogel of PEITC ameliorates the therapeutic efficacy in rheumatoid arthritis. Eur J Pharm Sci 2023; 181:106367. [PMID: 36572358 DOI: 10.1016/j.ejps.2022.106367] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that accompanies chronic inflammation of joints with limited therapeutic options. Phenethyl isothiocyanate (PEITC), a bioactive phytochemical, exerts its chemopreventive, anti-oxidant, and anti-inflammatory activity via the Nrf-2 pathway. However, limited water solubility, short half-life, and instability are reasons for the low bioavailability of PEITC that hampers clinical application. From studies in healthy rats, the performance of PEITC-loaded chitosan/pluronic F-127 smart hydrogel (PH) as a thermosensitive injectable demonstrated adequate thermosensitivity (gel formation), injectability (ease of administration), biocompatibility (with prolonged contact), pharmacokinetics (sustained drug release), and biosafety (nontoxic to major organs). In the adjuvant-induced arthritis (AIA) rat model, PEITC-hydrogel (PH50) injected into the knee joint lowered RA-related symptoms significantly (paw edema and arthritis score). Further, a marked reduction in bone erosion and inflammation-specific biomarkers was observed. Finally, this study demonstrates a smart injectable hydrogel optimally loaded with PEITC which is safe, biocompatible and exhibits significant therapeutic efficacy in RA conditions.
Collapse
Affiliation(s)
- Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Jatni, Odisha 752050, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
8
|
Putro JN, Edi Soetaredjo F, Irawaty W, Budi Hartono S, Santoso SP, Lie J, Yuliana M, Widyarani, Shuwanto H, Wijaya CJ, Gunarto C, Puspitasari N, Ismadji S. Cellulose Nanocrystals (CNCs) and Its Modified Form from Durian Rind as Dexamethasone Carrier. Polymers (Basel) 2022; 14:5197. [PMID: 36501594 PMCID: PMC9740128 DOI: 10.3390/polym14235197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
In this study, CNCs were extracted from durian rind. Modification to CNCs with saponin was conducted at 50 °C for one h. CNCs and CNCs-saponin were employed as dexamethasone carriers. Modification to CNCs using saponin did not change the relative crystallinity of CNCs. CNCs' molecular structure and surface chemistry did not alter significantly after modification. Both nanoparticles have surface charges independently of pH. Dexamethasone-released kinetics were studied at two different pH (7.4 and 5.8). Higuchi, Ritger-Peppas, first-order kinetic and sigmoidal equations were used to represent the released kinetic data. The sigmoidal equation was found to be superior to other models. The CNCs and CNCs-saponin showed burst release at 30 min. The study indicated that cell viability decreased by 30% after modification with saponin.
Collapse
Affiliation(s)
- Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Wenny Irawaty
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Sandy Budi Hartono
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Jenni Lie
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Widyarani
- Research Center for Environmental and Clean Technology, National Research and Innovation Agency, Samaun Samadikun Science and Technology Center, Sangkuriang, Bandung 40135, Indonesia
| | - Hardy Shuwanto
- Department of Industrial Engineering, Universitas Prima Indonesia, Medan 20117, Indonesia
| | - Christian Julius Wijaya
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Chintya Gunarto
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Nathania Puspitasari
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia
- Collaborative Research Center for Zero Waste and Sustainability, Jl. Kalijudan 37, Surabaya 60114, East Java, Indonesia
| |
Collapse
|