1
|
Kolokythas O, Yaman Akcicek E, Akcicek H, Briller N, Rajamohan N, Yokoo T, Peeters HM, Revels JW, Moura Cunha G, Sahani DV, Mileto A. T1-weighted Motion Mitigation in Abdominal MRI: Technical Principles, Clinical Applications, Current Limitations, and Future Prospects. Radiographics 2024; 44:e230173. [PMID: 38990776 DOI: 10.1148/rg.230173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
T1-weighted (T1W) pulse sequences are an indispensable component of clinical protocols in abdominal MRI but usually require multiple breath holds (BHs) during the examination, which not all patients can sustain. Patient motion can affect the quality of T1W imaging so that key diagnostic information, such as intrinsic signal intensity and contrast enhancement image patterns, cannot be determined. Patient motion also has a negative impact on examination efficiency, as multiple acquisition attempts prolong the duration of the examination and often remain noncontributory. Techniques for mitigation of motion-related artifacts at T1W imaging include multiple arterial acquisitions within one BH; free breathing with respiratory gating or respiratory triggering; and radial imaging acquisition techniques, such as golden-angle radial k-space acquisition (stack-of-stars). While each of these techniques has inherent strengths and limitations, the selection of a specific motion-mitigation technique is based on several factors, including the clinical task under investigation, downstream technical ramifications, patient condition, and user preference. The authors review the technical principles of free-breathing motion mitigation techniques in abdominal MRI with T1W sequences, offer an overview of the established clinical applications, and outline the existing limitations of these techniques. In addition, practical guidance for abdominal MRI protocol strategies commonly encountered in clinical scenarios involving patients with limited BH abilities is rendered. Future prospects of free-breathing T1W imaging in abdominal MRI are also discussed. ©RSNA, 2024 See the invited commentary by Fraum and An in this issue.
Collapse
Affiliation(s)
- Orpheus Kolokythas
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Ebru Yaman Akcicek
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Halit Akcicek
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Noah Briller
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Naveen Rajamohan
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Takeshi Yokoo
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Hans M Peeters
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Jonathan W Revels
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Guilherme Moura Cunha
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Dushyant V Sahani
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| | - Achille Mileto
- From the Department of Radiology, University of Washington, 1959 NE Pacific St, Box 357115, Seattle, WA 98195 (O.K., N.B., G.M.C., D.V.S., A.M.); Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah (E.Y.A., H.A.); Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (N.R., T.Y.); Department of MRI Development, Philips Healthcare, Best, the Netherlands (H.M.P.); Department of Radiology, New York University Langone Health-Long Island Division, New York, NY (J.W.R.)
| |
Collapse
|
2
|
Bartlett DJ, Takahashi H, Bach CR, Lunn B, Thorpe MP, Broski SM, Packard AT, Fletcher JG, Navin PJ. Potential applications of PET/MRI in non-oncologic conditions within the abdomen and pelvis. Abdom Radiol (NY) 2023; 48:3624-3633. [PMID: 37145312 DOI: 10.1007/s00261-023-03922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023]
Abstract
PET/MRI is a relatively new imaging modality with several advantages over PET/CT that promise to improve imaging of the abdomen and pelvis for specific diagnostic tasks by combining the superior soft tissue characterization of MRI with the functional information acquired from PET. PET/MRI has an established role in staging and response assessment of multiple abdominopelvic malignancies, but the modality is not yet established for non-oncologic conditions of the abdomen and pelvis. In this review, potential applications of PET/MRI for non-oncologic conditions of abdomen and pelvis are outlined, and the available literature is reviewed to highlight promising areas for further research and translation into clinical practice.
Collapse
Affiliation(s)
| | | | - Corrie R Bach
- Department of Radiology, Mayo Clinic, Rochester, USA
| | - Brendan Lunn
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | | | - Ann T Packard
- Department of Radiology, Mayo Clinic, Rochester, USA
| | | | | |
Collapse
|
3
|
Borhani A, Afyouni S, Attari MMA, Mohseni A, Catalano O, Kamel IR. PET/MR enterography in inflammatory bowel disease: A review of applications and technical considerations. Eur J Radiol 2023; 163:110846. [PMID: 37121100 DOI: 10.1016/j.ejrad.2023.110846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Positron emission tomography (PET) magnetic resonance (MR) enterography is a novel hybrid imaging technique that is gaining popularity in the study of complex inflammatory disorders of the gastrointestinal system, such as inflammatory bowel disease (IBD). This imaging technique combines the metabolic information of PET imaging with the spatial resolution and soft tissue contrast of MR imaging. Several studies have suggested potential roles for PET/MR imaging in determining the activity status of IBD, evaluating treatment response, stratifying risk, and predicting long-term clinical outcomes. However, there are challenges in generalizing findings due to limited studies, technical aspects of hybrid MR/PET imaging, and clinical indications of this imaging modality. This review aims to further elucidate the possible role of PET/MR in IBD, highlight important technical aspects of imaging, and address potential pitfalls and prospects of this modality in IBDs.
Collapse
Affiliation(s)
- Ali Borhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Mohammad Mirza Aghazadeh Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
4
|
Gülbahar Ateş S, Aydos U, Akdemir ÜÖ, Yüksel O, Üner A, Dursun A, Atay LÖ. Respiratory-gated 18F Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging in Evaluation of Primary Gastric Lesions and Gastric Lymph Nodes in Patients with Gastric Cancer. Clin Oncol (R Coll Radiol) 2022; 34:810-818. [PMID: 36192283 DOI: 10.1016/j.clon.2022.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 01/31/2023]
Abstract
AIMS To evaluate the added value of respiratory-gated positron emission tomography (PET) in 18F fluorodeoxyglucose (FDG) PET/magnetic resonance imaging (MRI) in the visual and semi-quantitative assessment of primary gastric lesions and gastric lymph nodes for patients with gastric cancer. MATERIALS AND METHODS In total, 102 upper abdominal respiratory-gated and whole-body 18F FDG PET/MRI of 88 patients with gastric cancer were evaluated visually and semi-quantitatively. For 41 patients who underwent surgery, histopathological and PET findings were compared. Three PET images were obtained from upper abdominal PET data: non-Q static (non-QS) PET from all counts, respiratory-gated Q static (QS) PET from counts in the end-expiration phase of breathing, shortened 4 min (S4min) PET that was reconstructed to obtain similar counts to QS PET. The semi-quantitative parameters (standardised uptake values, metabolic tumour volume, total lesion glycolysis) of primary lesions for each PET image, the sizes of primary lesions and the patient's body mass index were recorded. According to lymph node stations, the presence and numbers of positive lymph nodes and visual scores of lymph nodes for each PET image were recorded. RESULTS The patients with smaller gastric lesions (≤30 mm) or higher body mass index (>30) had significantly higher standardised uptake value percentage changes in QS PET compared with non-QS PET (all P < 0.05). The third (lesser curvature), fourth (greater curvature) and sixth (infra-pyloric) lymph node stations had significantly higher visual scores in the QS PET than in the others. The fourth lymph node station had a significantly higher number of FDG-positive lymph node in the QS PET than in the non-QS and the whole-body PET images. In the fourth station, sensitivity, positive predictive value, negative predictive value and accuracy increased in the QS PET compared with the others. CONCLUSION Respiratory-gated PET/MRI was found to be significantly superior in the evaluation of especially the fourth lymph node station, smaller gastric lesions and in the patients with a higher BMI compared with the non-respiratory-gated PET images.
Collapse
Affiliation(s)
- S Gülbahar Ateş
- Department of Nuclear Medicine, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - U Aydos
- Department of Nuclear Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | - Ü Ö Akdemir
- Department of Nuclear Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| | - O Yüksel
- Department of General Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - A Üner
- Department of Internal Medicine, Division of Medical Oncology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - A Dursun
- Department of Pathology, Gazi University Faculty of Medicine, Ankara, Turkey
| | - L Ö Atay
- Department of Nuclear Medicine, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
5
|
Meier JG, Diab RH, Connor TM, Mawlawi OR. Impact of low injected activity on data driven respiratory gating for PET/CT imaging with continuous bed motion. J Appl Clin Med Phys 2022; 23:e13619. [PMID: 35481961 PMCID: PMC9121057 DOI: 10.1002/acm2.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/25/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Data driven respiratory gating (DDG) in positron emission tomography (PET) imaging extracts respiratory waveforms from the acquired PET data obviating the need for dedicated external devices. DDG performance, however, degrades with decreasing detected number of coincidence counts. In this paper, we assess the clinical impact of reducing injected activity on a new DDG algorithm designed for PET data acquired with continuous bed motion (CBM_DDG) by evaluating CBM_DDG waveforms, tumor quantification, and physician's perception of motion blur in resultant images. Forty patients were imaged on a Siemens mCT scanner in CBM mode. Reduced injected activity was simulated by generating list mode datasets with 50% and 25% of the original data (100%). CBM_DDG waveforms were compared to that of the original data over the range between the aortic arch and the center of the right kidney using the Pearson correlation coefficient (PCC). Tumor quantification was assessed by comparing the maximum standardized uptake value (SUVmax) and peak SUV (SUVpeak) of reconstructed images from the various list mode datasets using elastic motion deblurring (EMDB) reconstruction. Perceived motion blur was assessed by three radiologists of one lesion per patient on a continuous scale from no motion blur (0) to significant motion blur (3). The mean PCC of the 50% and 25% dataset waveforms was 0.74 ± 0.18 and 0.59 ± 0.25, respectively. In comparison to the 100% datasets, the mean SUVmax increased by 2.25% (p = 0.11) for the 50% datasets and by 3.91% (p = 0.16) for the 25% datasets, while SUVpeak changes were within ±0.25%. Radiologist evaluations of motion blur showed negligible changes with average values of 0.21, 0.3, and 0.28 for the 100%, 50%, and 25% datasets. Decreased injected activities degrades the resultant CBM_DDG respiratory waveforms; however this decrease has minimal impact on quantification and perceived image motion blur.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA.,MD Anderson Cancer Center UTHealth Science Center, Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Radwan H Diab
- Department of Internal Medicine, Kansas University School of Medicine, Wichita, Kansas, USA
| | - Trevor M Connor
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA
| | - Osama R Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, USA.,MD Anderson Cancer Center UTHealth Science Center, Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
6
|
Ruan W, Liu F, Sun X, Hu F, Wu T, Zhang Y, Lan X. Evaluating two respiratory correction methods for abdominal PET/MRI imaging. EJNMMI Phys 2022; 9:5. [PMID: 35099646 PMCID: PMC8804027 DOI: 10.1186/s40658-022-00430-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background To evaluate two respiratory correction methods for abdominal PET/MRI images and further to analyse the effects on standard uptake values (SUVs) of respiratory motion correction, 17 patients with 25 abdominal lesions on 18F-FDG PET/CT were scanned with PET/MRI. PET images were reconstructed using end-expiratory respiratory gating and multi-bin respiratory gating. Meanwhile, full data and the first 3 min and 20 s of data acquired both without respiratory gating were reconstructed for evaluation. Five parameters, including the SUVmax and SUVmean in the lesions, the SUVmean and standard deviation (SD) in the background, and the signal-to-noise ratio (SNR), were calculated and used for statistical comparisons. The differences in multi-bin respiratory gating and reconstruction of full data, relative to the reconstruction of the first 3 min and 20 s of data acquired, were calculated. Results Compared with PET/CT, the longer scanning time of abdominal PET/MRI makes respiratory motion correction necessary. The multi-bin respiratory gating correction could reduce the PET image blur and increase the SUVmax (11.98%) and SUVmean (13.12%) of the lesions significantly (p = 0.00), which was much more effective than end-expiratory respiratory gating for abdominal PET/MRI. The added value of SUVmax caused by respiratory motion correction has no significant difference compared with that caused by count loss with the correction (p = 0.39), which was rarely reported by previous studies. Conclusion Based on the current parameters, the method of multi-bin respiratory gating was more effective for respiratory motion correction in abdominal PET/MRI in comparisons with the method of end-respiratory gating. However, the increased noise in gated images, due to the fact that PET data get discarded, is partly responsible for the increase in SUVmax.
Collapse
Affiliation(s)
- Weiwei Ruan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fang Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xun Sun
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Hu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | | | - Yongxue Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
7
|
Madore B, Belsley G, Cheng CC, Preiswerk F, Foley Kijewski M, Wu PH, Martell LB, Pluim JPW, Di Carli M, Moore SC. Ultrasound-based sensors for respiratory motion assessment in multimodality PET imaging. Phys Med Biol 2021; 67. [PMID: 34891142 DOI: 10.1088/1361-6560/ac4213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
Breathing motion can displace internal organs by up to several cm; as such, it is a primary factor limiting image quality in medical imaging. Motion can also complicate matters when trying to fuse images from different modalities, acquired at different locations and/or on different days. Currently available devices for monitoring breathing motion often do so indirectly, by detecting changes in the outline of the torso rather than the internal motion itself, and these devices are often fixed to floors, ceilings or walls, and thus cannot accompany patients from one location to another. We have developed small ultrasound-based sensors, referred to as 'organ configuration motion' (OCM) sensors, that attach to the skin and provide rich motion-sensitive information. In the present work we tested the ability of OCM sensors to enable respiratory gating during in vivo PET imaging. A motion phantom involving an FDG solution was assembled, and two cancer patients scheduled for a clinical PET/CT exam were recruited for this study. OCM signals were used to help reconstruct phantom and in vivo data into time series of motion-resolved images. As expected, the motion-resolved images captured the underlying motion. In Patient #1, a single large lesion proved to be mostly stationary through the breathing cycle. However, in Patient #2, several small lesions were mobile during breathing, and our proposed new approach captured their breathing-related displacements. In summary, a relatively inexpensive hardware solution was developed here for respiration monitoring. Because the proposed sensors attach to the skin, as opposed to walls or ceilings, they can accompany patients from one procedure to the next, potentially allowing data gathered in different places and at different times to be combined and compared in ways that account for breathing motion.
Collapse
Affiliation(s)
- Bruno Madore
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Gabriela Belsley
- Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, OX3 9DU, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Cheng-Chieh Cheng
- Computer Science and Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Frank Preiswerk
- Amazon Robotics, Westborough, MA, USA, Amazon Robotics, 50 Otis St, Westborough, Massachusetts, 01581, UNITED STATES
| | - Marie Foley Kijewski
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Pei-Hsin Wu
- Electrical Engineering, National Sun Yat-sen University, 70 Lianhai Road, Kaohsiung, 804, TAIWAN
| | - Laurel B Martell
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Josien P W Pluim
- Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, Eindhoven, PO Box 513, NETHERLANDS
| | - Marcelo Di Carli
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts, 02115, UNITED STATES
| | - Stephen C Moore
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Philadelphia, Pennsylvania, 19104, UNITED STATES
| |
Collapse
|
8
|
Galgano SJ, Calderone CE, Xie C, Smith EN, Porter KK, McConathy JE. Applications of PET/MRI in Abdominopelvic Oncology. Radiographics 2021; 41:1750-1765. [PMID: 34597228 DOI: 10.1148/rg.2021210035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With PET/MRI, the strengths of PET and MRI are combined to allow simultaneous image acquisition and near-perfect image coregistration. MRI is increasingly being used for staging and restaging of abdominopelvic oncologic lesions, including prostate, hepatobiliary, pancreatic, neuroendocrine, cervical, and rectal cancers. Fluorine 18-fluorodeoxyglucose PET/CT has long been considered a cornerstone of oncologic imaging, and the development of multiple targeted radiotracers has led to increased research on and use of these agents in clinical practice. Thus, simultaneously performed PET/MRI enables the acquisition of complementary imaging information, with distinct advantages over PET/CT and MR image acquisitions. The authors provide an overview of PET/MRI, including descriptions of the major differences between PET/MRI and PET/CT, as well as case examples and treatment protocols for patients with commonly encountered malignancies in the abdomen and pelvis. Online supplemental material is available for this article. ©RSNA, 2021.
Collapse
Affiliation(s)
- Samuel J Galgano
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Carli E Calderone
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Charlies Xie
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Elainea N Smith
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Kristin K Porter
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| | - Jonathan E McConathy
- From the Department of Radiology, University of Alabama at Birmingham, 619 19th St S, JT N325, Birmingham, AL 35249
| |
Collapse
|
9
|
Polycarpou I, Soultanidis G, Tsoumpas C. Synergistic motion compensation strategies for positron emission tomography when acquired simultaneously with magnetic resonance imaging. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200207. [PMID: 34218675 PMCID: PMC8255946 DOI: 10.1098/rsta.2020.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 05/04/2023]
Abstract
Subject motion in positron emission tomography (PET) is a key factor that degrades image resolution and quality, limiting its potential capabilities. Correcting for it is complicated due to the lack of sufficient measured PET data from each position. This poses a significant barrier in calculating the amount of motion occurring during a scan. Motion correction can be implemented at different stages of data processing either during or after image reconstruction, and once applied accurately can substantially improve image quality and information accuracy. With the development of integrated PET-MRI (magnetic resonance imaging) scanners, internal organ motion can be measured concurrently with both PET and MRI. In this review paper, we explore the synergistic use of PET and MRI data to correct for any motion that affects the PET images. Different types of motion that can occur during PET-MRI acquisitions are presented and the associated motion detection, estimation and correction methods are reviewed. Finally, some highlights from recent literature in selected human and animal imaging applications are presented and the importance of motion correction for accurate kinetic modelling in dynamic PET-MRI is emphasized. This article is part of the theme issue 'Synergistic tomographic image reconstruction: part 2'.
Collapse
Affiliation(s)
- Irene Polycarpou
- Department of Health Sciences, European University of Cyprus, Nicosia, Cyprus
| | - Georgios Soultanidis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Biomedical Imaging Science Department, University of Leeds, West Yorkshire, UK
- Invicro, London, UK
| |
Collapse
|
10
|
Kim DH, Yoo EH, Hong US, Kim JH, Ko YH, Moon SC, Cheon M, Yoo J. Image Registration of 18F-FDG PET/CT Using the MotionFree Algorithm and CT Protocols through Phantom Study and Clinical Evaluation. Healthcare (Basel) 2021; 9:669. [PMID: 34199705 PMCID: PMC8229608 DOI: 10.3390/healthcare9060669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
We evaluated the benefits of the MotionFree algorithm through phantom and patient studies. The various sizes of phantom and vacuum vials were linked to RPM moving with or without MotionFree application. A total of 600 patients were divided into six groups by breathing protocols and CT scanning time. Breathing protocols were applied as follows: (a) patients who underwent scanning without any breathing instructions; (b) patients who were instructed to hold their breath after expiration during CT scan; and (c) patients who were instructed to breathe naturally. The length of PET/CT misregistration was measured and we defined the misregistration when it exceeded 10 mm. In the phantom tests, the images produced by the MotionFree algorithm were observed to have excellent agreement with static images. There were significant differences in PET/CT misregistration according to CT scanning time and each breathing protocol. When applying the type (c) protocol, decreasing the CT scanning time significantly reduced the frequency and length of misregistrations (p < 0.05). The MotionFree application is able to correct respiratory motion artifacts and to accurately quantify lesions. The shorter time of CT scan can reduce the frequency, and the natural breathing protocol also decreases the lengths of misregistrations.
Collapse
Affiliation(s)
- Deok-Hwan Kim
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Eun-Hye Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Ui-Seong Hong
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Jun-Hyeok Kim
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Young-Heon Ko
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | | | - Miju Cheon
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| | - Jang Yoo
- Department of Nuclear Medicine, Veterans Health Service Medical Center, Seoul 05368, Korea; (D.-H.K.); (E.-H.Y.); (U.-S.H.); (J.-H.K.); (Y.-H.K.); (M.C.)
| |
Collapse
|
11
|
Panda A, Goenka AH, Hope TA, Veit-Haibach P. PET/Magnetic Resonance Imaging Applications in Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:369-380. [DOI: 10.1016/j.mric.2020.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Meier JG, Erasmus JJ, Gladish GW, Peterson CB, Diab RH, Mawlawi OR. Characterization of continuous bed motion effects on patient breathing and respiratory motion correction in PET/CT imaging. J Appl Clin Med Phys 2019; 21:158-165. [PMID: 31816183 PMCID: PMC6964757 DOI: 10.1002/acm2.12785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/29/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023] Open
Abstract
Continuous bed motion (CBM) was recently introduced as an alternative to step‐and‐shoot (SS) mode for PET/CT data acquisition. In CBM, the patient is continuously advanced into the scanner at a preset speed, whereas in SS, the patient is imaged in overlapping bed positions. Previous investigations have shown that patients preferred CBM over SS for PET data acquisition. In this study, we investigated the effect of CBM versus SS on patient breathing and respiratory motion correction. One hundred patients referred for PET/CT were scanned using a Siemens mCT scanner. Patient respiratory waveforms were recorded using an Anzai system and analyzed using four methods: Methods 1 and 2 measured the coefficient of variation (COV) of the respiratory cycle duration (RCD) and amplitude (RCA). Method 3 measured the respiratory frequency signal prominence (RSP) and method 4 measured the width of the HDChest optimal gate (OG) window when using a 35% duty cycle. Waveform analysis was performed over the abdominothoracic region which exhibited the greatest respiratory motion and the results were compared between CBM and SS. Respiratory motion correction was assessed by comparing the ratios of SUVmax, SUVpeak, and CNR of focal FDG uptake, as well as Radiologists’ visual assessment of corresponding image quality of motion corrected and uncorrected images for both acquisition modes. The respiratory waveforms analysis showed that the RCD and RCA COV were 3.7% and 33.3% lower for CBM compared to SS, respectively, while the RSP and OG were 30.5% and 2.0% higher, respectively. Image analysis on the other hand showed that SUVmax, SUVpeak, and CNR were 8.5%, 4.5%, and 3.4% higher for SS compared to CBM, respectively, while the Radiologists’ visual comparison showed similar image quality between acquisition modes. However, none of the results showed statistically significant differences between SS and CBM, suggesting that motion correction is not impacted by acquisition mode.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Imaging Physics - Unit 1352, MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jeremy J Erasmus
- Thoracic Imaging Department - Unit 1478, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory W Gladish
- Thoracic Imaging Department - Unit 1478, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christine B Peterson
- Biostatistics Department - Unit 1411, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Radwan H Diab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Osama R Mawlawi
- Department of Imaging Physics - Unit 1352, MD Anderson Cancer Center, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
13
|
Ferrone C, Goyal L, Qadan M, Gervais D, Sahani DV, Zhu AX, Hong TS, Blaszkowsky LS, Tanabe KK, Vangel M, Amorim BJ, Wo JY, Mahmood U, Pandharipande PV, Catana C, Duenas VP, Collazo YQ, Canamaque LG, Domachevsky L, Bernstine HH, Groshar D, Shih TTF, Li Y, Herrmann K, Umutlu L, Rosen BR, Catalano OA. Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 2019; 47:1871-1884. [PMID: 31705172 DOI: 10.1007/s00259-019-04558-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/25/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (ICC) is associated with a poor prognosis with surgical resection offering the best chance for long-term survival and potential cure. However, in up to 36% of patients who undergo surgery, more extensive disease is found at time of operation requiring cancellation of surgery. PET/MR is a novel hybrid technology that might improve local and whole-body staging in ICC patients, potentially influencing clinical management. This study was aimed to investigate the possible management implications of PET/MR, relative to conventional imaging, in patients affected by untreated intrahepatic cholangiocarcinoma. METHODS Retrospective review of the clinicopathologic features of 37 patients with iCCC, who underwent PET/MR between September 2015 and August 2018, was performed to investigate the management implications that PET/MR had exerted on the affected patients, relative to conventional imaging. RESULTS Of the 37 patients enrolled, median age 63.5 years, 20 (54%) were female. The same day PET/CT was performed in 26 patients. All patients were iCCC-treatment-naïve. Conventional imaging obtained as part of routine clinical care demonstrated early-stage resectable disease for 15 patients and advanced stage disease beyond the scope of surgical resection for 22. PET/MR modified the clinical management of 11/37 (29.7%) patients: for 5 patients (13.5%), the operation was cancelled due to identification of additional disease, while 4 "inoperable" patients (10.8%) underwent an operation. An additional 2 patients (5.4%) had a significant change in their operative plan based on PET/MR. CONCLUSIONS When compared with standard imaging, PET/MR significantly influenced the treatment plan in 29.7% of patients with iCCC. TRIAL REGISTRATION 2018P001334.
Collapse
Affiliation(s)
- Cristina Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Lipika Goyal
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Debra Gervais
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Dushyant V Sahani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Andrew X Zhu
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Lawrence S Blaszkowsky
- Department of Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA.,Department of Oncology, Newton-Wellesley Hospital, 2114 Washington St., Newton, MA, 02462, USA
| | - Kenneth K Tanabe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Mark Vangel
- Department of Biostatics, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Barbara J Amorim
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA.,Division of Nuclear Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, 02114, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Pari V Pandharipande
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Virginia P Duenas
- Department of Nuclear Medicine and Radiology, Hospital HM Puerta del Sur, Avda Carlos V 70, 28938, Madrid, Spain
| | - Yolanda Q Collazo
- Department of Surgery, Hospital HM Sanchinarro, Avda Carlos V 70, 28938, Madrid, Spain
| | - Lina G Canamaque
- Department of Nuclear Medicine and Radiology, Hospital HM Puerta del Sur, Avda Carlos V 70, 28938, Madrid, Spain
| | - Liran Domachevsky
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - Hanna H Bernstine
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - David Groshar
- Department of Radiology and Nuclear Medicine, Assuta Medical Center, HaBarzel St. 20, Tel Aviv-Yafo, Israel
| | - Tiffany Tsing-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University College of Medicine and Hospital, No. 7, Chung-Shan South Rd., Taipei, 10016, Taiwan
| | - Yan Li
- Department of Radiology, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Lale Umutlu
- Department of Radiology, Universitatsklinikum, Essen University, Hufelandstraße 55, 45147, Essen, Germany
| | - Bruce R Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, WHT 270, 55 Fruit St., Boston, MA, 02114, USA. .,Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 149 13th, Charlestown, MA, 02129, USA. .,Department of Radiology, University of Naples "Parthenope", Via Acton 38, 80131, Naples, Italy.
| |
Collapse
|
14
|
Meier JG, Einstein SA, Diab RH, Erasmus LJ, Xu G, Mawlawi OR. Impact of free-breathing CT on quantitative measurements of static and quiescent period-gated PET Images. Phys Med Biol 2019; 64:105013. [PMID: 31026840 DOI: 10.1088/1361-6560/ab1cdd] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Measurements of standardized uptake values (SUV) can vary due to many causes, including respiratory motion. Various methodologies have been introduced to correct for motion in PET, with quiescent-period-gated (QPG) PET being the most popular approach. QPG has been shown to improve PET image quantification compared to static-whole-body (SWB) PET. However, to achieve this improvement, QPG PET requires CT attenuation correction data that matches the QPG PET data. In this paper we investigated the effect of using free-breathing CT for attenuation correction of QPG PET on SUVmax and SUVpeak and compared the results to those of SWB PET. 34 lesions in 27 patients were included. All patients were injected with F-18 FDG. 4D-CT datasets representing all possible phases of respiration that could result from a free-breathing CT were acquired. The 4D-CT datasets were used for attenuation correction of the QPG and SWB PET data. Percentage change in the SUVmax and SUVpeak range was calculated for the reconstructions and compared between QPG and SWB PET. The mean percentage change in the lesion SUVmax and SUVpeak ranges were 19.1% (p = 0.0178) and 25.2% (p = 0.0002) higher for QPG compared to SWB, respectively. The maximum percent change in SUVmax and SUVpeak ranges were 58.5% and 59.0% for QPG, respectively compared to 46.1% and 45.3% for SWB, respectively. The highest SUVmax and SUVpeak measurements corresponded to the CT phase that matched the QPG phase. Utilizing free-breathing CT for attenuation correction can lead to large changes in quantification due to misalignment with PET data. This misalignment has a large quantitative impact on QPG PET as compared to SWB PET. When interpreting quantitative changes in lesions, it is critical to consider the influences of free-breathing CT-based attenuation correction.
Collapse
Affiliation(s)
- Joseph G Meier
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, United States of America. MD Anderson Cancer Center UTHealth Science Center at Houston Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030, United States of America
| | | | | | | | | | | |
Collapse
|
15
|
PET/MRI for Gastrointestinal Imaging: Current Clinical Status and Future Prospects. Gastroenterol Clin North Am 2018; 47:691-714. [PMID: 30115444 DOI: 10.1016/j.gtc.2018.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Positron emission tomography (PET)/computed tomography (CT) with 2-deoxy-2-[18F]fluoro-d-glucose (FDG) has become the standard of care for the initial staging and subsequent treatment response assessment for numerous gastrointestinal malignancies. However, it is often supplemented by magnetic resonance imaging (MRI) for local tumor staging. Hybrid PET/MRI scanners, which acquire PET data and MRI data simultaneously, have the potential to provide accurate whole-body staging in a single examination. Furthermore, to address certain limitations of FDG, many new PET tracers have been developed to probe distinctive aspects of tumor biology.
Collapse
|
16
|
Meier JG, Wu CC, Betancourt Cuellar SL, Truong MT, Erasmus JR, Einstein S, Mawlawi O. Evaluation of a novel elastic respiratory motion correction algorithm on quantification and image quality in abdomino-thoracic PET/CT. J Nucl Med 2018; 60:279-284. [PMID: 30115689 DOI: 10.2967/jnumed.118.213884] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
Our aim is to evaluate in phantom and patient studies a recently developed elastic motion debluring (EMDB) technique which makes use of all the acquired PET data and compare its performance to other conventional techniques such as phase based gating (PBG) and HDChest (HDC) both of which use fractions of the acquired data. Comparisons were made with respect to static whole-body (SWB) images with no motion correction. Methods: A phantom simulating respiratory motion of the thorax with lung lesions (5 spheres with ID=10- 28 mm) was scanned with 0, 1, 2, and 3 cm motion. Four reconstructions were performed: SWB, PBG, HDC, and EMDB. For PBG, the average (PBGave) and maximum bin (PBGmax) were used. To compare the reconstructions, the ratios of SUVmax (RSmax), SUVpeak (RSpeak), and CNR (RCNR) were calculated with respect to SWB. Additionally, 46 patients with lung or liver tumors < 3 cm diameter were also studied. Measurements of SUVmax, SUVpeak, and contrast-to-noise ratio (CNR) were made for 46 lung and 19 liver lesions. To evaluate image noise, the SUV standard deviation was measured in healthy lung and liver tissue and in the phantom background. Finally, subjective image quality of patient exams was scored on a 5 point scale by four radiologists. Results: In the phantom, EMDB increased SUVmax/SUVpeak over SWB but to a lesser extent than the other reconstruction methodologies. The RCNR for EMDB however was higher than all other reconstructions (0.68 EMDB > 0.54 HDC > 0.41 PBGmax > 0.31 PBGave). Similar results were seen in patient studies. The SUVmax/SUVpeak were higher by 19.3/11.1% EMDB, 21.6/13.9% HDC, 22.8/12.8% PBGave, and 45.6/26.8% PBGmax compared to SWB. Lung/liver noise increased EMDB (3/15%), HDC (35/56%), PBGave (100/170%), and PBGmax (146/219%). CNR increased in lung/liver tumors only for EMDB (18/13%), and decreased for HDC (-14/-23%), PBGave (-39/-63%), and PBGmax (-18/-46%). Average radiologist scores of image quality were SWB (4.0 ± 0.8) > EMDB (3.7 ± 1.0) > HDC (3.1 ± 1.0) > PBG (1.5 ± 0.7). Conclusion: The EMDB algorithm had the least increase in image noise, improved lesion CNR, and had the highest overall image quality score.
Collapse
Affiliation(s)
| | - Carol C Wu
- MD Anderson Cancer Center, United States
| | | | | | | | | | | |
Collapse
|
17
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. PET Clin 2018; 13:97-112. [PMID: 29157390 DOI: 10.1016/j.cpet.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinical PET/MR imaging is currently performed at a number of centers around the world as part of routine standard of care. This article focuses on issues and considerations for a clinical PET/MR imaging program, focusing on routine standard-of-care studies. Although local factors influence how clinical PET/MR imaging is implemented, the approaches and considerations described here intend to apply to most clinical programs. PET/MR imaging provides many more options than PET/computed tomography with diagnostic advantages for certain clinical applications but with added complexity. A recurring theme is matching the PET/MR imaging protocol to the clinical application to balance diagnostic accuracy with efficiency.
Collapse
Affiliation(s)
- Samuel Galgano
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Zachary Viets
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Kathryn Fowler
- Department of Radiology, Washington University in St Louis, 510 South Kingshighway Boulevard, St. Louis, MO 63110, USA
| | - Lael Gore
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - John V Thomas
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Michelle McNamara
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham (UAB), 619 19th Street South, Birmingham, AL 35249, USA.
| |
Collapse
|
18
|
Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). Eur J Nucl Med Mol Imaging 2018; 45:2147-2154. [PMID: 29998420 DOI: 10.1007/s00259-018-4084-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE To compare the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo). METHODS MoCo PET/DCE-MRI of the upper abdomen was acquired in 44 consecutive oncologic patients and compared with non-MoCo PET/MRI. SUVmax and MTV of FDG-avid upper abdominal malignant lesions were assessed on MoCo and non-MoCo PET images. Image quality was compared between MoCo DCE-MRI and non-MoCo CE-MRI, and between fused MoCo PET/MRI and fused non-MoCo PET/MRI images. RESULTS MoCo PET resulted in higher SUVmax (10.8 ± 5.45) than non-MoCo PET (9.62 ± 5.42) and lower MTV (35.55 ± 141.95 cm3) than non-MoCo PET (38.11 ± 198.14 cm3; p < 0.005 for both). The quality of MoCo DCE-MRI images (4.73 ± 0.5) was higher than that of non-MoCo CE-MRI images (4.53±0.71; p = 0.037). The quality of fused MoCo-PET/MRI images (4.96 ± 0.16) was higher than that of fused non-MoCo PET/MRI images (4.39 ± 0.66; p < 0.005). CONCLUSION MoCo PET/MRI provided qualitatively better images than non-MoCo PET/MRI, and upper abdominal malignant lesions demonstrated higher SUVmax and lower MTV on MoCo PET/MRI.
Collapse
|
19
|
Variable refocusing flip angle single-shot fast spin echo imaging of liver lesions: increased speed and lesion contrast. Abdom Radiol (NY) 2018; 43:593-599. [PMID: 28689221 DOI: 10.1007/s00261-017-1252-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To evaluate acquisition time and clinical image quality of a variable refocusing flip angle (vrf) single-shot fast spin echo (SSFSE) sequence in comparison with a conventional SSFSE sequence for imaging of liver lesions in patients undergoing whole-body PET/MRI for oncologic staging. METHODS A vrfSSFSE sequence was acquired in 43 patients with known pancreatic neuroendocrine tumors undergoing 68Ga-DOTA-TOC PET on a simultaneous time-of-flight 3.0T PET/MRI. Liver lesions ≥1.5 cm with radionucleotide uptake were analyzed. Contrast-to-noise ratios (CNRs) were measured, and four blinded radiologists assessed overall image quality. Differences in repetition time and CNR were assessed using a paired Student's t test with p < 0.05 considered statistically significant. Inter-reader variability was assessed with Fleiss' kappa statistic. RESULTS 53 eligible lesions in 27 patients were included for analysis. vrfSSFSE demonstrated higher mean lesion CNR compared to SSFSE (9.9 ± 4.1 vs. 6.7 ± 4.1, p < 0.001). Mean repetition time (TR) was 679 ± 97 ms for the vrfSSFSE sequence compared to 1139 ± 106 ms for SSFSE (p < 0.0001), corresponding to a 1.7-fold decrease in acquisition time. Overall quality of liver lesion and common bile duct images with the vrfSSFSE sequence was graded as superior than or equivalent to the SSFSE sequence for 59% and 67% of patients, respectively. CONCLUSIONS Compared to conventional SSFSE, vrfSSFSE resulted in improved lesion contrast on simultaneous PET/MRI in patients with liver metastases. Due to decreased SAR demands, vrfSSFSE significantly decreased TR, allowing coverage of the entire liver in a single twenty-second breath hold. This may have important clinical implications in the setting of PET/MRI, where scan time is limited by the necessity of whole-body image acquisition in addition to bed specific imaging.
Collapse
|
20
|
Baxa J, Ferdova E, Ferda J. PET/MRI of the thorax, abdomen and retroperitoneum: Benefits of the breathing-synchronized scanning. Eur J Radiol 2017; 94:A35-A43. [PMID: 28274619 DOI: 10.1016/j.ejrad.2017.02.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023]
Abstract
Hybrid imaging using various radiopharmaceuticals is currently essential not only in detection and therapy response monitoring of tumors, but also in assessment of inflammatory or systemic diseases. Combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is still relatively new method with great prospects of comprehensive assessment using anatomical and multiple functional information. However, benefits of PET/MRI in thorax, abdomen and retroperitoneum are not completely defined. Breathing movements affect imaging of thoracic, abdominal and retroperitoneal organs and pathological structures using PET and MRI. Fast MRI sequences are performed using breath-hold technique; however, acquisition of longer sequences and PET scanning need to be breathing-synchronized. Review article summarizes concrete PET/MRI protocols and importance of concrete MRI sequences and radiopharmaceuticals in different pathological lesions with focus on benefit of breathing-synchronized techniques.
Collapse
Affiliation(s)
- Jan Baxa
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic.
| | - Eva Ferdova
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic
| | - Jiří Ferda
- Department of Imaging Methods, University Hospital Pilsen,Czech Republic; Faculty of Medicine in Pilsen, Charles University, Czech Republic
| |
Collapse
|
21
|
Ohliger MA, Hope TA, Chapman JS, Chen LM, Behr SC, Poder L. PET/MR Imaging in Gynecologic Oncology. Magn Reson Imaging Clin N Am 2017; 25:667-684. [DOI: 10.1016/j.mric.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Brady SL, Shulkin BL. Dose optimization: a review of CT imaging for PET attenuation correction. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0232-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Kolbitsch C, Neji R, Fenchel M, Mallia A, Marsden P, Schaeffter T. Fully integrated 3D high-resolution multicontrast abdominal PET-MR with high scan efficiency. Magn Reson Med 2017; 79:900-911. [DOI: 10.1002/mrm.26757] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 04/22/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Christoph Kolbitsch
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Radhouene Neji
- MR Research Collaborations, Siemens Healthcare; Frimley UK
| | - Matthias Fenchel
- MR Oncology Application Development, Siemens Healthcare; Erlangen Germany
| | - Andrew Mallia
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Paul Marsden
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| | - Tobias Schaeffter
- Physikalisch-Technische Bundesanstalt (PTB); Braunschweig and Berlin Germany
- King's College London, Division of Imaging Sciences and Biomedical Engineering; London UK
| |
Collapse
|
24
|
Galgano S, Viets Z, Fowler K, Gore L, Thomas JV, McNamara M, McConathy J. Practical Considerations for Clinical PET/MR Imaging. Magn Reson Imaging Clin N Am 2017; 25:281-296. [DOI: 10.1016/j.mric.2016.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Yang J, Khalighi M, Hope TA, Ordovas K, Seo Y. Technical Note: Fast respiratory motion estimation using sorted singles without unlist processing: A feasibility study. Med Phys 2017; 44:1632-1637. [PMID: 28099995 DOI: 10.1002/mp.12115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The study aims to demonstrate the feasibility of fast respiratory motion estimation using singles data available as a sorted format in list-mode files acquired in an integrated positron emission tomography/magnetic resonance imaging (PET/MRI) system for a proof-of-concept. METHODS The derivation of singles-driven respiratory motion (SDRM) is enabled by singles recorded and binned by second for each detector crystal in PET list-mode data acquired in a SIGNA PET/MR. The proposed method is to derive a SDRM trace by summing up all singles from all detectors through the PET data acquisition. To assess the feasibility of SDRM for data-driven gating (DDG), SDRM traces were derived from the list-mode data acquired in five liver-focused 68 Ga-DOTA-TOC PET/MRI scans, and compared with the traces derived from bellows (pressure belt). Pearson's correlation coefficients and trigger time differences at peak-inhalation phases between SDRM and bellows traces were measured for quantitative evaluation. RESULTS The method presented the average processing time of 4.2 ± 0.42 s (range: 3.9 ~ 4.7 s) for the derivation of SDRM traces. The majority of the time was spent for reading singles data from a list-mode file (3.1 ± 0.40 s, range: 2.7 ~ 3.7s). On average, the correlation coefficient of SDRM and bellows traces was 0.69 ± 0.16 (range: 0.41 ~ 0.80) and the time offset of SDRM-driven triggers from bellows-driven triggers was 0.25 ± 0.39 s (range: -0.85 ~ 2.69 s later than bellows triggers), demonstrating the similar patterns and phases of SDRM and bellows traces. CONCLUSIONS We introduced PET singles-driven respiratory motion (SDRM) estimation as a proof-of-principle, using sorted singles ready for immediate processing in list-mode data. The results demonstrated the feasibility of SDRM and its potential use for gated PET with fast processing time.
Collapse
Affiliation(s)
- Jaewon Yang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | | | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Department of Radiology, San Francisco VA Medical Center, San Francisco, CA, USA
| | - Karen Ordovas
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA.,Joint Graduate Group in Bioengineering, University of California, San Francisco and Berkeley, CA, USA.,Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Hope TA, Pampaloni MH, Flavell RR, Nakakura EK, Bergsland EK. Somatostatin receptor PET/MRI for the evaluation of neuroendocrine tumors. Clin Transl Imaging 2016. [DOI: 10.1007/s40336-016-0193-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|