1
|
Hara N, Onoguchi M, Kawaguchi H, Matsushima N, Houjou O, Murai M, Nakano K, Makino W. Study of Attenuation Correction Using a Cardiac Dynamic Phantom: Synchronized Time-Phase-Gated Attenuation Correction Method. J Nucl Med Technol 2024; 52:121-131. [PMID: 38627013 DOI: 10.2967/jnmt.123.266785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Indexed: 06/07/2024] Open
Abstract
In cardiac nuclear medicine examinations, absorption in the body is the main factor in the degradation of the image quality. The Chang and external source methods were used to correct for absorption in the body. However, fundamental studies on attenuation correction for electrocardiogram (ECG)-synchronized CT imaging have not been performed. Therefore, we developed and improved an ECG-synchronized cardiac dynamic phantom and investigated the synchronized time-phase-gated attenuation correction (STPGAC) method using ECG-synchronized SPECT and CT images of the same time phase. Methods: As a basic study, SPECT was performed using synchronized time-phase-gated (STPG) SPECT and non-phase-gated (NPG) SPECT. The attenuation-corrected images were, first, CT images with the same time phase as the ECG waveform of the gated SPECT acquisition (with CT images with the ECG waveform of the CT acquisition as the reference); second, CT images with asynchronous ECG; third, CT images of the 75% region; and fourth, CT images of the 40% region. Results: In the analysis of cardiac function in the phantom experiment, left ventricle ejection fraction (heart rate, 11.5%-13.4%; myocardial wall, 49.8%-55.7%) in the CT images was compared with that in the STPGAC method (heart rate, 11.5%-13.3%; myocardial wall, 49.6%-55.5%), which was closer in value to that of the STPGAC method. In the phantom polar map segment analyses, none of the images showed variability (F (10,10) < 0.5, P = 0.05). All images were correlated (r = 0.824-1.00). Conclusion: In this study, we investigated the STPGAC method using a SPECT/CT system. The STPGAC method showed similar values of cardiac function analysis to the CT images, suggesting that the STPGAC method accurately reconstructed the distribution of blood flow in the myocardial region. However, the target area for attenuation correction of the heart region was smaller than that of the whole body, and changing the gated SPECT conditions and attenuation-corrected images did not affect myocardial blood flow analysis.
Collapse
Affiliation(s)
- Narihiro Hara
- Radiological Technology, Sumitomo Hospital, Osaka, Japan;
| | - Masahisa Onoguchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan; and
| | | | | | - Osamu Houjou
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Masakazu Murai
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Kohei Nakano
- Radiological Technology, Sumitomo Hospital, Osaka, Japan
| | - Wakana Makino
- Department of Cardiology, Sumitomo Hospital, Osaka, Japan
| |
Collapse
|
2
|
Wells RG, Small GR, Ruddy TD. Myocardial blood flow quantification with SPECT. J Med Imaging Radiat Sci 2024; 55:S51-S58. [PMID: 38553299 DOI: 10.1016/j.jmir.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The addition of absolute myocardial blood flow (MBF) data improves the diagnostic and prognostic accuracy of relative perfusion imaging with nuclear medicine. Cardiac-specific gamma cameras allow measurement of MBF with SPECT. METHODS This paper reviews the evidence supporting the use of SPECT to measure myocardial blood flow (MBF). Studies have evaluated SPECT MBF in large animal models and compared it in humans with invasive angiographic measurements and against the clinical standard of PET MBF. The repeatability of SPECT MBF has been determined in both single-site and multi-center trials. RESULTS SPECT MBF has excellent correlation with microspheres in an animal model, with the number of stenoses and fractional flow reserve, and with PET-derived MBF. The inter-user coefficient of variability is ∼20% while the COV of test-retest MBF is ∼30%. SPECT MBF improves the sensitivity and specificity of the detection of multi-vessel disease over relative perfusion imaging and provides incremental value in predicting adverse cardiac events. CONCLUSION SPECT MBF is a promising technique for providing clinically valuable information in the assessment of coronary artery disease.
Collapse
Affiliation(s)
- R Glenn Wells
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Gary R Small
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Terrence D Ruddy
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Chauvie S, Mazzoni LN, O’Doherty J. A Review on the Use of Imaging Biomarkers in Oncology Clinical Trials: Quality Assurance Strategies for Technical Validation. Tomography 2023; 9:1876-1902. [PMID: 37888741 PMCID: PMC10610870 DOI: 10.3390/tomography9050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Imaging biomarkers (IBs) have been proposed in medical literature that exploit images in a quantitative way, going beyond the visual assessment by an imaging physician. These IBs can be used in the diagnosis, prognosis, and response assessment of several pathologies and are very often used for patient management pathways. In this respect, IBs to be used in clinical practice and clinical trials have a requirement to be precise, accurate, and reproducible. Due to limitations in imaging technology, an error can be associated with their value when considering the entire imaging chain, from data acquisition to data reconstruction and subsequent analysis. From this point of view, the use of IBs in clinical trials requires a broadening of the concept of quality assurance and this can be a challenge for the responsible medical physics experts (MPEs). Within this manuscript, we describe the concept of an IB, examine some examples of IBs currently employed in clinical practice/clinical trials and analyze the procedure that should be carried out to achieve better accuracy and reproducibility in their use. We anticipate that this narrative review, written by the components of the EFOMP working group on "the role of the MPEs in clinical trials"-imaging sub-group, can represent a valid reference material for MPEs approaching the subject.
Collapse
Affiliation(s)
- Stephane Chauvie
- Medical Physics Division, Santa Croce e Carle Hospital, 12100 Cuneo, Italy;
| | | | - Jim O’Doherty
- Siemens Medical Solutions, Malvern, PA 19355, USA;
- Department of Radiology & Radiological Sciences, Medical University of South Carolina, Charleston, SC 20455, USA
- Radiography & Diagnostic Imaging, University College Dublin, D04 C7X2 Dublin, Ireland
| |
Collapse
|
4
|
Bober RM, Milani RV, Kachur SM, Morin DP. Assessment of resting myocardial blood flow in regions of known transmural scar to confirm accuracy and precision of 3D cardiac positron emission tomography. EJNMMI Res 2023; 13:87. [PMID: 37752344 PMCID: PMC10522549 DOI: 10.1186/s13550-023-01037-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Composite invasive and non-invasive data consistently demonstrate that resting myocardial blood flow (rMBF) in regions of known transmural myocardial scar (TMS) converge on a value of ~ 0.30 mL/min/g or lower. This value has been confirmed using the 3 most common myocardial perfusion agents (13N, 15O-H2O and 82Rb) incorporating various kinetic models on older 2D positron emission tomography (PET) systems. Thus, rMBF in regions of TMS can serve as a reference "truth" to evaluate low-end accuracy of various PET systems and software packages (SWPs). Using 82Rb on a contemporary 3D-PET-CT system, we sought to determine whether currently available SWP can accurately and precisely measure rMBF in regions of known TMS. RESULTS Median rMBF (in mL/min/g) and COV in regions of TMS were 0.71 [IQR 0.52-1.02] and 0.16 with 4DM; 0.41 [0.34-0.54] and 0.10 with 4DM-FVD; 0.66 [0.51-0.85] and 0.11 with Cedars; 0.51 [0.43-0.61] and 0.08 with Emory-Votaw; 0.37 [0.30-0.42], 0.07 with Emory-Ottawa, and 0.26 [0.23-0.32], COV 0.07 with HeartSee. CONCLUSIONS SWPs varied widely in low end accuracy based on measurement of rMBF in regions of known TMS. 3D PET using 82Rb and HeartSee software accurately (0.26 mL/min/g, consistent with established values) and precisely (COV = 0.07) quantified rMBF in regions of TMS. The Emory-Ottawa software yielded the next-best accuracy (0.37 mL/min/g), though rMBF was higher than established gold-standard values in ~ 5% of the resting scans. 4DM, 4DM-FDV, Cedars and Emory-Votaw SWP consistently resulted values higher than the established gold standard (0.71, 0.41, 0.66, 0.51 mL/min/g, respectively), with higher interscan variability (0.16, 0.11, 0.11, and 0.09, respectively). TRIAL REGISTRATION clinicaltrial.gov, NCT05286593, Registered December 28, 2021, https://clinicaltrials.gov/ct2/show/NCT05286593 .
Collapse
Affiliation(s)
- Robert M Bober
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Health, 1514 Jefferson Highway, New Orleans, LA, 70121-2483, USA.
- Ochsner Clinical School, Queensland University School of Medicine, New Orleans, LA, USA.
| | - Richard V Milani
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Health, 1514 Jefferson Highway, New Orleans, LA, 70121-2483, USA
- Ochsner Clinical School, Queensland University School of Medicine, New Orleans, LA, USA
| | - Sergey M Kachur
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Health, 1514 Jefferson Highway, New Orleans, LA, 70121-2483, USA
| | - Daniel P Morin
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Health, 1514 Jefferson Highway, New Orleans, LA, 70121-2483, USA
- Ochsner Clinical School, Queensland University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
5
|
D'Antonio A, Assante R, Zampella E, Mannarino T, Buongiorno P, Cuocolo A, Acampa W. Myocardial blood flow evaluation with dynamic cadmium-zinc-telluride single-photon emission computed tomography: Bright and dark sides. Diagn Interv Imaging 2023; 104:323-329. [PMID: 36797156 DOI: 10.1016/j.diii.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) assessment with non-invasive techniques represent an important tool to evaluate both coronary artery disease severity and extent. Currently, cardiac positron emission tomography-computed tomography (PET-CT) is the "gold standard" for the assessment of coronary function and provides accurate estimations of baseline and hyperemic MBF and MFR. Nevertheless, due to the high cost and complexity, PET-CT is not widely used in clinical practice. The introduction of cardiac-dedicated cadmium-zinc-telluride (CZT) cameras has renewed researchers' interest on MBF quantitation by single-photon emission computed tomography (SPECT). Indeed, many studies evaluated MPR and MBF measurements by dynamic CZT-SPECT in different cohorts of patients with suspected or overt coronary artery disease. As well, many others have compared the values obtained by CZT-SPECT to the ones by PET-CT, showing good correlations in detecting significant stenosis, although with different and non-standardized cut-off values. Nevertheless, the lack of standardized protocol for acquisition, reconstruction and elaboration makes more difficult to compare different studies and to further assess the real advantages of MBF quantitation by dynamic CZT-SPECT in clinical routine. Many are the issues involved in the bright and dark sides of dynamic CZT-SPECT. They include different type of CZT cameras, different execution protocols, different tracers with different myocardial extraction fraction and distribution, different software packages with different tools and algorithms, often requiring manual post-processing elaboration. This review article provides a clear summary of the state of the art on MBF and MPR evaluation by dynamic CZT-SPECT and outlines the major issues to solve to optimize this technique.
Collapse
Affiliation(s)
- Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
6
|
A Multimodality Myocardial Perfusion Phantom: Initial Quantitative Imaging Results. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090436. [PMID: 36134982 PMCID: PMC9495397 DOI: 10.3390/bioengineering9090436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/28/2022]
Abstract
This proof-of-concept study explores the multimodal application of a dedicated cardiac flow phantom for ground truth contrast measurements in dynamic myocardial perfusion imaging with CT, PET/CT, and MRI. A 3D-printed cardiac flow phantom and flow circuit mimics the shape of the left ventricular cavity (LVC) and three myocardial regions. The regions are filled with tissue-mimicking materials and the flow circuit regulates and measures contrast flow through LVC and myocardial regions. Normal tissue perfusion and perfusion deficits were simulated. Phantom measurements in PET/CT, CT, and MRI were evaluated with clinically used hardware and software. The reference arterial input flow was 4.0 L/min and myocardial flow 80 mL/min, corresponding to myocardial blood flow (MBF) of 1.6 mL/g/min. The phantom demonstrated successful completion of all processes involved in quantitative, multimodal myocardial perfusion imaging (MPI) applications. Contrast kinetics in time intensity curves were in line with expectations for a mimicked perfusion deficit (38 s vs. 32 s in normal tissue). Derived MBF in PET/CT and CT led to under- and overestimation of reference flow of 0.9 mL/g/min and 4.5 mL/g/min, respectively. Simulated perfusion deficit (0.8 mL/g/min) in CT resulted in MBF of 2.8 mL/g/min. We successfully performed initial, quantitative perfusion measurements with a dedicated phantom setup utilizing clinical hardware and software. These results showcase the multimodal phantom’s potential.
Collapse
|