1
|
Mohamed HEA, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Khan MA, Ullah I, Maaza M. Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria. Microsc Res Tech 2024; 87:2829-2841. [PMID: 39007412 DOI: 10.1002/jemt.24654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/03/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024]
Abstract
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC50 value of 1081 μg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.
Collapse
Affiliation(s)
- Hamza Elsayed Ahmad Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif Khan
- Department of Pharmacy, Faculty of biological sciences, University of Malakand, Dir, Khyber Pakhtunkhwa, Pakistan
| | - Ikram Ullah
- Department of Biotechnology and Genetic Engineering, Hazara University, Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa, Pretoria, South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, Cape Town, South Africa
| |
Collapse
|
2
|
Ahmed Mohamed HE, Khalil AT, Hkiri K, Ayaz M, Usman A, Sadiq A, Ullah F, Hussain I, Maaza M. Phyto-fabrication of ultrafine nanoscale holmium oxide HT-Ho 2O 3 NPs and their biomedical potential. RSC Adv 2023; 13:27912-27922. [PMID: 37736569 PMCID: PMC10510458 DOI: 10.1039/d3ra05047e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
In this study holmium oxide nanoparticles (Ho2O3 NPs) are fabricated using Hyphaene thebaica extracts as a bioreductant. The XRD pattern of HT-Ho2O3 NPs (product from phyto-reduction) suggested that the nanoparticles are crystalline with no impurities. Scherrer approximation revealed grain sizes of ∼10 nm. The HR-TEM revealed HT-Ho2O3 NPs possessed a quasi-spherical morphology complemented by SEM and the particle sizes were in the range of 6-12 nm. The infrared spectra revealed characteristic Ho-O bonding at ∼603 cm-1. Raman spectra indicated five main peaks positioned at 156 cm-1, 214 cm-1, 328 cm-1, 379 cm-1 and 607 cm-1. Eg (optical bandgap) was found to be 5.1 eV. PL spectra indicated two major peaks at 415 nm and 607 nm. EDS spectra confirmed the elemental presence of holmium (Ho). Spotty rings were obtained during the SAED measurement which indicated crystallinity of HT-Ho2O3 NPs. The HT-Ho2O3 NPs were further analyzed for their antioxidant, anti-angiogenic and cytotoxic properties. The antioxidant potential was moderate i.e., 43.40 ± 0.96% at 1000 μg mL-1 which decreased in a dose dependent manner. Brine shrimp lethality was highest at 1000 μg mL-1 with the LC50 320.4 μg mL-1. Moderate anti-angiogenic potential was observed using in ova CAM assay. MTT bioassay revealed that the HT-Ho2O3 NPs inhibited the 3T3 cells (IC50 67.9 μg mL-1), however, no significant inhibition was observed against MCF-7 cells. α-Amylase and β-glucosidase inhibition revealed that the HT-Ho2O3 NPs can be of use in controlling blood glucose levels. Overall, it can be concluded that biosynthesis using aqueous extracts can be a suitable alternative in finding ecofriendly paradigms for the synthesis of nanoparticles. We suggest extended research into the bioreduced Ho2O3 NPs for establishing their biomedical potential and toxicity.
Collapse
Affiliation(s)
- Hamze Elsayed Ahmed Mohamed
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| | - Ali Talha Khalil
- Department of Pathology, Lady Reading Hospital Medical Teaching Institution Peshawar 25000 KP Pakistan
| | - Khaoula Hkiri
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Assad Usman
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of biological sciences, University of Malakand Chakdara 18000 Dir (L), KPK Pakistan
| | - Ishtiaq Hussain
- Department of Pharmaceutical sciences Pak Austria fachhachole Mang haripur Pakistan
| | - Malik Maaza
- UNESCO UNISA Africa Chair in Nanoscience and Nanotechnology, College of Graduate Studies, University of South Africa Pretoria South Africa
- Nanoscience African Network (NANOAFNET), Materials Research Department, iThemba LABS Cape Town South Africa
| |
Collapse
|
3
|
Majnooni MB, Fakhri S, Ghanadian SM, Bahrami G, Mansouri K, Iranpanah A, Farzaei MH, Mojarrab M. Inhibiting Angiogenesis by Anti-Cancer Saponins: From Phytochemistry to Cellular Signaling Pathways. Metabolites 2023; 13:metabo13030323. [PMID: 36984763 PMCID: PMC10052344 DOI: 10.3390/metabo13030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Saponins are one of the broadest classes of high-molecular-weight natural compounds, consisting mainly of a non-polar moiety with 27 to 30 carbons and a polar moiety containing sugars attached to the sapogenin structure. Saponins are found in more than 100 plant families as well as found in marine organisms. Saponins have several therapeutic effects, including their administration in the treatment of various cancers. These compounds also reveal noteworthy anti-angiogenesis effects as one of the critical strategies for inhibiting cancer growth and metastasis. In this study, a comprehensive review is performed on electronic databases, including PubMed, Scopus, ScienceDirect, and ProQuest. Accordingly, the structural characteristics of triterpenoid/steroid saponins and their anti-cancer effects were highlighted, focusing on their anti-angiogenic effects and related mechanisms. Consequently, the anti-angiogenic effects of saponins, inhibiting the expression of genes related to vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1-α (HIF-1α) are two main anti-angiogenic mechanisms of triterpenoid and steroidal saponins. The inhibition of inflammatory signaling pathways that stimulate angiogenesis, such as pro-inflammatory cytokines, mitogen-activated protein kinase (MAPKs), and phosphoinositide 3-kinases/protein kinase B (PI3K/Akt), are other anti-angiogenic mechanisms of saponins. Furthermore, the anti-angiogenic and anti-cancer activity of saponins was closely related to the binding site of the sugar moiety, the type and number of their monosaccharide units, as well as the presence of some functional groups in their aglycone structure. Therefore, saponins are suitable candidates for cancer treatment by inhibiting angiogenesis, for which extensive pre-clinical and comprehensive clinical trial studies are recommended.
Collapse
Affiliation(s)
- Mohammad Bagher Majnooni
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Syed Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Gholamreza Bahrami
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| | - Mahdi Mojarrab
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Correspondence: or (M.H.F.); (M.M.); Tel.: +98-08334266780 (M.M.)
| |
Collapse
|
4
|
Alshehri OM, Alshamrani S, Mahnashi MH, Alshahrani MM, Khan JA, Shah M, Alshehri MA, Zafar R, Zahoor M, Jan MS, Hassan SSU, Sadiq A. Phytochemical Analysis, Total Phenolic, Flavonoid Contents, and Anticancer Evaluations of Solvent Extracts and Saponins of H. digitata. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9051678. [PMID: 36246962 PMCID: PMC9553491 DOI: 10.1155/2022/9051678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022]
Abstract
Cancer is one of the most challenging diseases in the modern era for the researchers and investigators. Extensive research worldwide is underway to find novel therapeutics for prevention and treatment of diseases. The extracted natural sources have shown to be one of the best and effective treatments for cell proliferation and angiogenesis. Different approaches including disc potato model, brine shrimp, and chorioallantoic membrane (CAM) assay were adopted to analyze the anticancer effects. Habenaria digitata was also evaluated for MTT activity against NIH/3T3 cell line. The dexamethasone, etoposide, and vincristine sulfate were used as a positive control in these assays. All of the extracts including crude extracts (Hd.Cr), saponin (Hd.Sp), n-hexane (Hd.Hx), chloroform (Hd.Chf), ethyl acetate (Hd.EA), and aqueous fraction (Hd.Aq) were shown excellent results by using various assays. For example, saponin and chloroform have displayed decent antitumor and angiogenic activity by using potato tumor assay. The saponin fraction and chloroform were shown to be the most efficient in potato tumor experiment, demonstrating 87.5 and 93.7% tumor suppression at concentration of 1000 μg/ml, respectively, with IC50 values of 25.5 and 18.3 μg/ml. Additionally, the two samples, chloroform and saponins, outperformed the rest of the test samples in terms of antiangiogenic activity, with IC50 28.63 μg/ml and 16.20 μg/ml, respectively. In characterizing all solvent fractions, the chloroform (Hd.Chf) and saponin (Hd.Sp) appeared to display good effectiveness against tumor and angiogenesis but very minimal activity against A. tumefaciens. The Hd.Chf and Hd.Sp have been prospective candidates in the isolation of natural products with antineoplastic properties.
Collapse
Affiliation(s)
- Osama M. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran 55461, Saudi Arabia
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, 1988, Najran 61441, Saudi Arabia
| | - Jalwa Ali Khan
- Department of Pharmacy, University of Swabi, KP, Pakistan
| | - Muhammad Shah
- COMSATS University Islamabad, Abbottabad Campus, Pakistan
| | - Mohammed Ali Alshehri
- Department of Medical Genetics, Collage of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Rehman Zafar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| | | | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KP, Pakistan
| |
Collapse
|
5
|
Underlying Anticancer Mechanisms and Synergistic Combinations of Phytochemicals with Cancer Chemotherapeutics: Potential Benefits and Risks. J FOOD QUALITY 2022. [DOI: 10.1155/2022/1189034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer therapies are associated with various challenges including the emergence of multidrug resistant tumors, toxicological issues, severe side effects, and economic burden. To counteract these effects, natural products as substitutes and adjuvant therapies have received considerable attention owing to their safety, efficacy, and economic aspects. Various preclinical and clinical studies revealed that natural products and their combinations with chemotherapeutics mediate their anticancer effects via modulation of various signaling pathways implicated in promoting apoptosis, inhibiting excessive cellular proliferation, and mobilizing the immune system. Several lead phytochemicals including curcumin, resveratrol, quercetin, and cannabinoids synergistically act with cancer chemotherapeutics reducing cell proliferation and inducing apoptosis and cell cycle arrest. However, clinical studies on the subject matter are limited and need further extensive studies. It has been observed that patients undergoing chemotherapy use alternative therapies to ameliorate the symptoms associated with the use of chemotherapeutic agents. Nevertheless, some of the patients inform their physicians regarding herbal medicine during chemotherapy while others do not, and even most of the patients do not know the composition of herbal medicine they consume during chemotherapy. Herbal interactions with chemotherapeutics are associated with both beneficial and harmful aspects, but the beneficial aspect overweighs the harmful ones in terms of controlling the symptoms associated with the chemotherapy. Nonetheless, a large number of herbal medicines have been demonstrated to have synergistic effect with chemotherapy and alleviate the side effects of chemotherapeutic agents. The concomitant use of the majority of herbal medicines with chemotherapy has been demonstrated to be beneficial in multiple malignant tumors like cancer of blood, lungs, kidneys, liver, skin, and gastrointestinal tract. However, herbal medicines which possess positive interaction and improve the quality of life of patients should be sorted out and integrated with the chemotherapy. There should be a quality control system for the appraisal of herbal medicine, and there should also be an appropriate system of patient-doctor communication to counsel the patients regarding the beneficial and deleterious effects of the herbal medicine in combination with chemotherapy.
Collapse
|
6
|
Khan W, Khan N, Jamila N, Masood R, Minhaz A, Amin F, Atlas A, Nishan U. Antioxidant, antibacterial, and catalytic performance of biosynthesized silver nanoparticles of Rhus javanica, Rumex hastatus, and Callistemon viminalis. Saudi J Biol Sci 2022; 29:894-904. [PMID: 35197757 PMCID: PMC8848139 DOI: 10.1016/j.sjbs.2021.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Rhus javanica (Anacardiaceae) containing abundant glucopyranosidal constituents, is traditionally used to treat gastric and duodenal ulcer, dysentery, and diarrhea. Rumex hastatus (Polygonaceae) widely distributed in Pakistan, has traditional importance in treating wound healing, jaundice, rheumatism, and skin diseases. Callistemon viminalis (Myrtaceae), a rich source of essential oils, saponins, triterpenoids, phloroglucinols, and flavonoids is used in industries, perfumes, nutrition, and cosmetics. Taking the importance of the subject plants, this study is designed to synthesize silver nanoparticles via aqueous extracts of R. javanica (RJAgNPs), R. hastatus (RHAgNPs), and C. viminalis (CVAgNPs). Synthesis, surface, and sizes of silver nanoparticles (AgNPs) were confirmed using spectroscopic techniques including ultraviolet-visible (UV-Vis), Fourier transform-infrared (FT-IR), and scanning electron microscopy (SEM). AgNPs were produced in ratios 1:15, 1:16, and 1:9 and inferred via appearance of a sharp surface plasmon resonance (SPR) absorption peak (400-435 nm), which represented well-defined, stable, and spherical AgNPs. From SEM analysis, the sizes of RJAgNPs, RHAgNPs, and CVAgNPs were found to be 67 nm, 61 nm, and 55 nm, respectively. The synthesized AgNPs exhibited potential free radical scavenging, antibacterial, and catalytic properties in degradation of dyes including Congo red, methylene blue, methyl orange, rhodamine B, ortho and para-nitrophenols, and several food colours. Hence, the subject AgNPs in the current study might display promising role in drug development and remediation of environmental/industrial effluents.
Collapse
Affiliation(s)
- Wajheeba Khan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| | - Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Rehana Masood
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Aaliya Minhaz
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Amin
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Amir Atlas
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science and Technology, Kohat 26000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Kennedy DC, Coen B, Wheatley AM, McCullagh KJA. Microvascular Experimentation in the Chick Chorioallantoic Membrane as a Model for Screening Angiogenic Agents including from Gene-Modified Cells. Int J Mol Sci 2021; 23:452. [PMID: 35008876 PMCID: PMC8745510 DOI: 10.3390/ijms23010452] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
The chick chorioallantoic membrane (CAM) assay model of angiogenesis has been highlighted as a relatively quick, low cost and effective model for the study of pro-angiogenic and anti-angiogenic factors. The chick CAM is a highly vascularised extraembryonic membrane which functions for gas exchange, nutrient exchange and waste removal for the growing chick embryo. It is beneficial as it can function as a treatment screening tool, which bridges the gap between cell based in vitro studies and in vivo animal experimentation. In this review, we explore the benefits and drawbacks of the CAM assay to study microcirculation, by the investigation of each distinct stage of the CAM assay procedure, including cultivation techniques, treatment applications and methods of determining an angiogenic response using this assay. We detail the angiogenic effect of treatments, including drugs, metabolites, genes and cells used in conjunction with the CAM assay, while also highlighting the testing of genetically modified cells. We also present a detailed exploration of the advantages and limitations of different CAM analysis techniques, including visual assessment, histological and molecular analysis along with vascular casting methods and live blood flow observations.
Collapse
Affiliation(s)
| | | | - Antony M. Wheatley
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| | - Karl J. A. McCullagh
- Department of Physiology, School of Medicine, Human Biology Building, National University of Ireland, H91 W5P7 Galway, Ireland; (D.C.K.); (B.C.)
| |
Collapse
|
8
|
Li R, Song X, Guo Y, Song P, Duan D, Chen ZS. Natural Products: A Promising Therapeutics for Targeting Tumor Angiogenesis. Front Oncol 2021; 11:772915. [PMID: 34746014 PMCID: PMC8570131 DOI: 10.3389/fonc.2021.772915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor-associated angiogenesis is a key target for anti-cancer therapy. The imbalance between pro-angiogenic and anti-angiogenic signals elicited by tumor cells or tumor microenvironment always results in activating "angiogenic switch". Tumor angiogenesis functions in multi-aspects of tumor biology, including endothelial cell apoptosis, tumor metastasis, and cancer stem cell proliferation. Numerous studies have indicated the important roles of inexpensive and less toxic natural products in targeting tumor angiogenesis-associated cytokines and apoptotic signaling pathways. Our current knowledge of tumor angiogenesis is based mainly on experiments performed on cells and animals, so we summarized the well-established models for angiogenesis both in vitro and in vivo. In this review, we classified and summarized the anti-angiogenic natural agents (Polyphenols, Polysaccharides, Alkaloids, Terpenoids, Saponins) in targeting various tumor types according to their chemical structures at present, and discussed the mechanistic principles of these natural products on regulating angiogenesis-associated cytokines and apoptotic signaling pathways. This review is to help understanding the recent progress of natural product research for drug development on anti-tumor angiogenesis.
Collapse
Affiliation(s)
- Ruyi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Song
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yanan Guo
- Research Center of Traditional Chinese Medicine in Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine in Gansu Province, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Peng Song
- Research Center of Traditional Chinese Medicine in Gansu Province, Gansu University of Chinese Medicine, Lanzhou, China.,Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine in Gansu Province, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry & Chemical Engineering, Baoji University of Arts and Sciences, Baoji, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
9
|
Mahnashi MH, Alyami BA, Alqahtani YS, Alqarni AO, Jan MS, Ayaz M, Ullah F, Shahid M, Rashid U, Sadiq A. Neuroprotective potentials of selected natural edible oils using enzyme inhibitory, kinetic and simulation approaches. BMC Complement Med Ther 2021; 21:248. [PMID: 34600509 PMCID: PMC8487577 DOI: 10.1186/s12906-021-03420-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/22/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Edible oils have proven health benefits in the prevention and treatment of various disorders since the establishment of human era. This study was aimed to appraise neuropharmacological studies on the commonly used edible oils including Cinnamomum verum (CV), Zingiber officinale (ZO) and Cuminum cyminum (CC). METHODS The oils were analyzed via GC-MS for identifications of bioactive compounds. Anti-radicals capacity of the oils were evaluated via 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals scavenging assays. The samples were also tested against two important acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) which are among the important drug targets in Alzheimer's disease. Lineweaver-Burk plots were constructed for enzyme inhibition studies which correspond to velocity of enzymes (Vmax) against the reciprocal of substrate concentration (Km) in the presence of test samples and control drugs following Michaelis-Menten kinetics. Docking studies on AChE target were also carried out using Molecular Operating Environment (MOE 2016.0802) software. RESULTS (Gas chromatography-mass spectrometry GC-MS) analysis revealed the presence of thirty-four compounds in Cinnamon oil (Cv.Eo), fourteen in ginger oil (Zo.Eo) and fifty-six in cumin oil (Cc.Eo). In the antioxidant assays, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 85, 121, 280 μg/ml sequentially against DPPH radicals. Whereas, in ABTS assay, Cv.Eo, Zo.Eo and Cc.Eo showed considerable anti-radicals potentials with IC50 values of 93, 77 and 271 μg/ml respectively. Furthermore, Cv.Eo was highly active against AChE enzyme with IC50 of 21 μg/ml. Zo.Eo and Cc.Eo exhibited considerable inhibitory activities against AChE with IC50 values of 88 and 198 μg/ml respectively. In BChE assay, Cv.Eo, Zo.Eo and Cc.Eo exhibited IC50 values of 106, 101 and 37 μg/ml respectively. Our results revealed that these oils possess considerable antioxidant and cholinesterase inhibitory potentials. As functional foods these oils can be effective remedy for the prevention and management of neurological disorders including AD. Synergistic effect of all the identified compounds was determined via binding energy values computed through docking simulations. Binding orientations showed that all the compounds interact with amino acid residues present in the peripheral anionic site (PAS) and catalytic anionic site (CAS) amino acid residues, oxyanion hole and acyl pocket via π-π stacking interactions and hydrogen bond interactions.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| | - Muhammad Shahid
- Department of Pharmacy, Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa 25000 Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, KP 18000 Dir (L) Pakistan
| |
Collapse
|
10
|
Mahnashi MH, Alqahtani YS, Alyami BA, Alqarni AO, Ullah F, Wadood A, Sadiq A, Shareef A, Ayaz M. Cytotoxicity, anti-angiogenic, anti-tumor and molecular docking studies on phytochemicals isolated from Polygonum hydropiper L. BMC Complement Med Ther 2021; 21:239. [PMID: 34560864 PMCID: PMC8464109 DOI: 10.1186/s12906-021-03411-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND According to the recent global cancer statistics, breast cancer is the leading cause of deaths among women with 2.3 million new cases globally. Likewise, cervical cancer is also among the leading causes of mortality among women. Polygonum hydropiper is traditionally known for its cytotoxic effects and several bioactive cytotoxic compounds were isolated from it. This study was aimed to isolate potential anticancer compounds from its most potent fractions and evaluate their anticancer potentials. METHODS Based on our earlier studies, active fractions including chloroform and ethyl acetate were subjected to column chromatography for isolation of compounds. Chemical structures of isolated compounds were confirmed via 1H NMR, 13C NMR, mass spectrometry. Purified compounds were tested for cytotoxicity against breast cancer cells (MCF-7), cervical cancer cells (HeLA) and NIH/3T3 fibroblasts cells cultures using MTT assy. Anti-angiogenic potentials of isolated compounds were evaluated via chorioallantoic membrane assay. Anti-tumor studies were done using Agrobacterium tumefaciens induced potato tumor assay. Furthermore, to understand the binding modes of Isolated compounds, molecular docking was performed against EGFR, HER2 and VEGFR using MOE as docking software. RESULTS Two bioactive compounds PH-1 (4-methyl-5-oxo-tetrahydrofuran-3-yl acetate) and PH-2 (methyl 4-hydroxy-3-methoxybenzoate) were purified from the active fractions. In cytotoxicity studies, PH-1 exhibited highest cytotoxicity against HeLA cells with 87.50% lethality at 1 mgmL-1 concentration and LD50 of 60 µgmL-1. Likewise, PH-2 showed 82.33% cytotoxicity against HeLA cells with LD50 of 160 µgmL-1. Similarly, PH-1 and PH-2 exhibited LD50 of 170 and 380 µgmL-1 respectively. Moreover, PH-1 and PH-2 were also very potent cytotoxic compounds against NIH/3T3 cells with 81.45 and 85.55% cytotoxicity at 1 mgL-1 concentration and LD50 of 140 and 58 µgL-1 respectively. Isolated compounds exhibited considerable anti-angiogenic potentials with IC50 of 340 and 500 µgL-1 respectively for PH-1 and PH-2. In anti-tumor assay, PH-1 and PH-2 exhibited 81.15 and 76.09% inhibitions with LD50 of 340 and 550 µgL-1 respectively. Both compounds selectively binds with EGFR and HER2 receptors with low binding energies. Both compounds exhibited stronger interactions with VEGFR through binding pocket residues Lys868, Val916 and Asp1046. CONCLUSIONS Both compounds cause considerable cytotoxicity against cancer cells. The anti-angiogenic and anti-tumor results suggests additional tumor suppressive properties. Docking analysis suggests that these compound not only has the ability to bind to EGFR and HER2 but also equally binds to VEGFR and may act as potential anti-angiogenic agents.
Collapse
Affiliation(s)
- Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Yahya S. Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Bandar A. Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Ali O. Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Kingdom of Saudi Arabia
| | - Farhat Ullah
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L) KP Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali khan University, Mardan, KP 23200 Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L) KP Pakistan
| | - Azam Shareef
- Department of Biochemistry, Abdul Wali khan University, Mardan, KP 23200 Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara, 18000 Dir (L) KP Pakistan
| |
Collapse
|
11
|
Mehreen Sadaf H, Bibi Y, Arshad M, Razzaq A, Ahmad S, Iriti M, Qayyum A. Analysis of Peganum harmala, Melia azedarach and Morus alba extracts against six lethal human cancer cells and oxidative stress along with chemical characterization through advance Fourier Transform and Nuclear Magnetic Resonance spectroscopic methods towards green chemotherapeutic agents. Saudi Pharm J 2021; 29:552-565. [PMID: 34194262 PMCID: PMC8233526 DOI: 10.1016/j.jsps.2021.04.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Traditional medicines implicate consumption of plant crude extracts, which may consist of extensive phytochemical diversity. Overall, the most biologically active extract of Peganum harmala (seeds) exhibited significant cytotoxic activity on Artemia salina with LC50 value of 61.547 µg/mL, while P. harmala (roots) [LC50 = 124.229 µg/mL] and M. azedarach (fruits) [LC50 = 147.813 µg/mL] showed moderate cytotoxic potential. P. harmala (seeds) extract also showed the maximum antitumor potential with 52.278 µg/mL LC50. Branches of P. harmala and Morus alba were not active in both bioassays. These outcomes were further reinforced by the levels of phenolics and flavonoids checked against gallic acid and quercetin equivalents, respectively, by standard curves. Current study aims to isolate, structurally characterize and analyze the bioactive compound from plant extracts by using chromatographic and spectrophotometric techniques. Bioactivity guided isolation of extracts led to the isolation of PH-HM-16 from ethyl acetate fraction P. harmala seeds. Chemical structure of PH-HM-16 was elucidated by ESI-MS, 1H NMR, 13C NMR, HSQC and IR spectrum. The results demonstrated significant positive anticancer activities against six human cancer cell lines assessed through MTT cancer cell growth inhibition assay. PH-HM-16 was most effective against prostate cancer cell lines [IC50 = 17.63 µg/mL] followed by breast cancer cell line MCF7 [IC50 value of 41.81 µg/mL]. IC50 value of PH-HM-16 against human myeloid leukemia cell line HL-60 and human colorectal tumor cells HCT-116 was observed as 68.77 µg/mL and 71.54 µg/mL respectively. The IC 50 value of PH-HM-16 compound was not significant against human gastric cancer SGC-7901 (111.89 µg/mL) and human lung adenocarcinoma epithelial cell line A549 (176.04 µg/mL). Isolated bioactive metabolite PH-HM-16 possesses significant antitumor potential so this could be the first step to develop an effective anticancer agent. Hence, this compound represents a promising potential to be chemically standardized or developed into pharmaceuticals for the chemoprevention and/or the treatment of certain types of cancer, especially as adjuvant phytotherapeutics in conventional chemotherapy.
Collapse
Affiliation(s)
- Huma Mehreen Sadaf
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Yamin Bibi
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Muhammad Arshad
- Department of Botany, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Abdul Razzaq
- Department of Agronomy, Pir Mehr Ali Shah-Arid Agriculture University Rawalpindi, 46300, Pakistan
| | - Shakil Ahmad
- Central Library, Prince Sultan University, Riyadh, Saudi Arabia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, via G. Celoria 2, 20133 Milan, Italy
| | - Abdul Qayyum
- Department of Agronomy, The University of Haripur, 22620, Pakistan
| |
Collapse
|
12
|
Khan MF, Mashwani ZUR, Mehmood A, Qureshi R, Sarwar R, Ahmad KS, Quave CL. An ethnopharmacological survey and comparative analysis of plants from the Sudhnoti District, Azad Jammu and Kashmir, Pakistan. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2021; 17:14. [PMID: 33743778 PMCID: PMC7980561 DOI: 10.1186/s13002-021-00435-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/26/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND This is the first comprehensive report on the traditional and novel uses of medicinal plants practiced by the indigenous communities of the Sudhnoti district of Azad Jammu and Kashmir (AJK), Pakistan. The area is rich in folklore and indigenous medicinal knowledge due to a unique tribal composition and socioeconomic conditions. This study aimed to document traditional knowledge of native plant use by the local communities, particularly those used for therapeutic purposes. METHODS Field surveys were conducted from September 2015 to March 2017. Interviews with 125 local inhabitants of different tribes, age groups, genders, and occupations were conducted using structured and semi-structured questions along with group discussions. Data gathered on plant uses, local names, and modes of application of each plant species were organized in tables. Ethnobotanical indices such as use value (UV) and cultural significance index (CSI) were used to produce quantitative information on the plant use category, frequency, and cultural preference of species. Reports on therapeutic uses of medicinal plants were compared with previous studies. RESULTS In all, 88 plant species from 45 families were reported, out of which 67 (77%) were used in ethnomedical applications. Asteraceae, Rosaceae, Fabaceae, and Lamiaceae were the dominant families. Berberis lycium was the most valued plant species, followed by Zanthoxylum armatum and Taraxacum officinale. Mentha arvensis had the highest cultural significance, followed by Mentha longifolia, Punica granatum, and Zanthoxylum armatum. Leaves were the most preferred plant parts in the preparation of medicine exclusively or mixed with other parts. The most frequently used process of crude preparation of medicinal plants was cooking. Oral intake was the predominant route of administration. CONCLUSIONS Our comparative analysis confirmed that most of the plants documented have uses that match those previously reported for the region and other parts of the world, with the exception of novel medicinal uses for 11 plant species, including Verbascum thapsus for earache, Elaeagnus umbellata for hepatitis, Achillea millefolium for oral care, Dicliptera roxburghiana to prevent sunstroke in cattle, Rumex hastatus for allergy antidote, Pyrus pashia for hepatitis, and Nerium oleander for diabetes.
Collapse
Affiliation(s)
- Muhammad Faraz Khan
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | | | - Ansar Mehmood
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | - Rehmatullah Qureshi
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Rizwan Sarwar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Khawaja Shafique Ahmad
- Department of Botany, Faculty of Basic and Applied Sciences, University of Poonch Rawalakot, Rawalakot, 12350, Pakistan
| | - Cassandra L Quave
- Center for the Study of Human Health, Emory University, 550 Asbury Circle, Atlanta, GA, 30322, USA.
| |
Collapse
|
13
|
Nazir N, Nisar M, Ahmad S, Wadood SF, Jan T, Zahoor M, Ahmad M, Ullah A. Characterization of phenolic compounds in two novel lines of Pisum sativum L. along with their in vitro antioxidant potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7639-7646. [PMID: 31889276 DOI: 10.1007/s11356-019-07065-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Like other vegetables, Pisum sativum L. also faces storage and degradation problems. To enhance their resistance and make them enable to cope with the deterioration problems during storage, the current study was designed to develop two resistant lines of P. sativum in terms of phenolic contents and genotypes. The phenolic compounds generally have antioxidant properties and deterioration during storage which are usually due to oxidation caused by free radicals. Thus, if a variety has high phenolic contents these problems will be coped in a better way. The genotype of a plant is also important in this regard, and the best adopted species would survive in unfavorable conditions. First, the phenolic and flavonoid contents were determined in the crude extract using the Folin-Ciocalteu method. Then, the identification and quantification of phenolic compounds were carried out in the developed lines of selected plants PL-04 and PL-05, as well as in the parental varieties [Climax (female) and Falan (male)] via HPLC. DPPH assay was used to determine the free radical scavenging capabilities of the extracts of the developed verities. The genotypic differences were confirmed by DNA fingerprinting using advanced simple sequence repeat (SSR) markers. The HPLC analysis of PL-04 confirmed the presence of three phenolic compounds in an appreciable amount which exhibited a higher antioxidant activity against DPPH radicals, while in the parental varieties, two phenolic compounds were identified and exhibited lower antioxidant activities. PL-04 was found rich in phenolic compounds and affectively scavenge-free radicals which would therefore be resistant to oxidation and degradation caused by free radicals. Comparing the present findings with our previous one, P-04 was found to be resistant to powdery mildew; it was concluded that the most probable reason of the resistance was the high phenolic contents and thus long shelf life.
Collapse
Affiliation(s)
- Nausheen Nazir
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan.
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- Department of Phamacy, Sarhad University of Science and Technology, Peshawar, Pakistan
| | - Syed Fazal Wadood
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Tour Jan
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Manzoor Ahmad
- Department of Biochemistry, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
| | - Abid Ullah
- Department of Botany, University of Malakand, Chakdara, Dir (L), Khyber Pakhtunkhwa, 18000, Pakistan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
14
|
Wan L, Zhao Y, Zhang Q, Gao G, Zhang S, Gao Y, Chen X, Qian X. Alkaloid extract of Corydalis yanhusuo inhibits angiogenesis via targeting vascular endothelial growth factor receptor signaling. Altern Ther Health Med 2019; 19:359. [PMID: 31823762 PMCID: PMC6905101 DOI: 10.1186/s12906-019-2739-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Background Corydalis yanhusuo W.T. Wang (YHS) is a well-known Chinese flowering herbal plant commonly used for centuries in functional food and traditional Chinese medicine. In the present study, we have identified and characterized a novel inhibitor of vascular endothelial growth factor receptor 2 (VEGFR2) with low toxicity, alkaloid extract of YHS, which suppressed angiogenesis that plays a fundamental role in a wide spectrum of physiological functions and pathological processes. Methods Proliferative ability of human umbilical vascular endothelial cells (HUVECs) was assessed using MTT assay and Ki67 immunofluorescence staining. Migration ability of HUVECs was evaluated by wound healing and transwell assays. In vitro angiogenesis was tested by spheroid sprouting and tube formation assays. In vivo vascularization was examined using Matrigel plug and chick chorioallantoic membrane (CAM) models. Protein expression and phosphorylation levels of VEGFR2, AKT, ERK and STAT3 were determined by Western blot assay. Results We demonstrated that alkaloid extract of YHS significantly inhibited a variety of VEGF-induced angiogenesis processes including proliferation, migration, sprouting, and tube formation of HUVECs. Moreover, alkaloid extract of YHS contributed to reduced in vivo neo-vessel formation in Matrigel plugs of mice and CAM models. Further mechanistic studies revealed that alkaloid extract of YHS suppressed VEGF-induced signaling pathway as evaluated by diminished phosphorylation of VEGFR2 and subsequently attenuated its downstream regulators including phospho-ERK1/2, phospho-AKT and phospho-STAT3 levels in HUVECs. Conclusion Collectively, these preclinical findings indicate that alkaloid extract of YHS remarkably limits angiogenesis and may serve as a promising anti-angiogenic drug candidate.
Collapse
|
15
|
Hussain S, Ullah F, Ayaz M, Ali Shah SA, Ali Shah AUH, Shah SM, Wadood A, Aman W, Ullah R, Shahat AA, Nasr FA. In Silico, Cytotoxic and Antioxidant Potential of Novel Ester, 3-hydroxyoctyl -5 - trans-docosenoate Isolated from Anchusa arvensis (L.) M.Bieb. Against HepG-2 Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:4195-4205. [PMID: 31849451 PMCID: PMC6911335 DOI: 10.2147/dddt.s228971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022]
Abstract
Background Cancer is one of the chronic health conditions worldwide. Various therapeutically active compounds from medicinal plants were the current focus of this research in order to uncover a treatment regimen for cancer. Anchusa arvensis (A. anchusa) (L.) M.Bieb. contains many biologically active compounds. Methods In the current study, new ester 3-hydroxyoctyl -5- trans-docosenoate (compound-1) was isolated from the chloroform soluble fraction of A. anchusa using column chromatography. Using MTT assay, the anticancer effect of the compound was determined in human hepatocellular carcinoma cells (HepG-2) compared with normal epithelial cell line (Vero). DPPH and ABTS radical scavenging assays were performed to assess the antioxidant potential. The Molecular Operating Environment (MOE-2016) tool was used against tyrosine kinase. Results The structure of the compound was elucidated based on IR, EI, and NMR spectroscopy technique. It exhibited a considerable cytotoxic effect against HepG-2 cell lines with IC50 value of 6.50 ± 0.70 µg/mL in comparison to positive control (doxorubicin) which showed IC50 value of 1.3±0.21 µg/mL. The compound did not show a cytotoxic effect against normal epithelial cell line (Vero). The compound also exhibited significant DPHH scavenging ability with IC50 value of 12 ± 0.80 µg/mL, whereas ascorbic acid, used as positive control, demonstrated activity with IC50 = 05 ± 0.15 µg/mL. Similarly, it showed ABTS radical scavenging ability (IC50 = 130 ± 0.20 µg/mL) compared with the value obtained for ascorbic acid (06 ± 0.85 µg/mL). In docking studies using MOE-2016 tool, it was observed that compound-1 was highly bound to tyrosine kinase by having two hydrogen bonds at the hinge region. This good bonding network by the compound might be one of the reasons for showing significant activity against this enzyme. Conclusion Our findings led to the isolation of a new compound from A. anchusa which has significant cytotoxic activity against HepG-2 cell lines with marked antioxidant potential.
Collapse
Affiliation(s)
- Sajid Hussain
- Department of Pharmacy, University of Malakand, Malakand, Pakistan.,Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Malakand, Pakistan
| | - Syed Adnan Ali Shah
- Research Institute of Natural Products for Drug Discovery (RiND), Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Shah Alam, Malaysia
| | | | - Syed Majid Shah
- Department of Pharmacy, University of Malakand, Malakand, Pakistan.,Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waqar Aman
- Department of Pharmacy, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (Medicinal Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy (Medicinal Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.,Chemistry of Medicinal Plants Department, National Research Centre, Dokki, Giza, Egypt
| | - Fahd A Nasr
- Department of Pharmacognosy (Medicinal Aromatic and Poisonous Plants Research Center), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Kumar V, Bhatti SS, Kaur S, Katnoria JK, Nagpal AK. Assessment of tumor inducing potential of lead using crown gall tumor disc bioassay. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00283-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
17
|
Nasar MQ, Khalil AT, Ali M, Shah M, Ayaz M, Shinwari ZK. Phytochemical Analysis, Ephedra Procera C. A. Mey. Mediated Green Synthesis of Silver Nanoparticles, Their Cytotoxic and Antimicrobial Potentials. ACTA ACUST UNITED AC 2019; 55:medicina55070369. [PMID: 31336944 PMCID: PMC6681234 DOI: 10.3390/medicina55070369] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/10/2023]
Abstract
Background and Objectives: The current study focuses on an eco-friendly and cost-effective method of Ephedra procera C. A. Mey. mediated green synthesis of silver nanoparticles as potential cytotoxic, antimicrobial and anti-oxidant agents. Materials and Methods: Plant aqueous extracts were screened for Total Phenolic (TPC), Total Flavonoid contents (TFC), Total Antioxidant Capacity (TAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging potentials. Total reducing power estimated by potassium ferricyanide colorimetric assay. The biosynthesized E. procera nanoparticles (EpNPs) were characterized by UV-spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction and Scanning electron microscopy. EpNPs were evaluated for their antimicrobial, bio-compatibility and cytotoxic potentials. Results: Initial phytocheimcal analysis of plant aqueous extract revealed TFC of 20.7 ± 0.21 µg/mg extract and TPC of 117.01 ± 0.78 µg/mg extract. TAC, DPPH free radical scavenging and reducing power were 73.8 ± 0.32 µg/mg extract, 71.8 ± 0.73% and 105.4 ± 0.65 µg/mg extract respectively. The synthesized EpNPs were observed to possess high cytotoxicity against HepG2 cancer cell lines with IC50 (61.3 µg/mL) as compared aqueous extract with IC50 of (247 µg/mL). EpNPs were found to be biocompatible and have less effect on human erythrocytes. EpNPs exhibited significant antioxidant potentials and exhibited considerable activity against Escherichia coli and Bacillus subtilis with Minimum Inhibitory Concentration (MICs) of 11.12 μg/mL and 11.33 μg/mL respectively. Fungal species Aspergillus niger and Aspergillus flavus were found susceptible to EpNPs. Conclusions: Results of the current study revealed that EpNPs exhibited considerable antibacterial, antifungal and cytotoxic potentials. Aqueous extract possesses significant anti-radical properties and thus can be useful in free radicals induced degenerative disorders.
Collapse
Affiliation(s)
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore 54000, Pakistan
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mehwish Shah
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Collage of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Muhammad Ayaz
- Departant of Pharmacy, University of Malakand, Khyber Pakhtunkhwa 18800, Pakistan.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Lahore campus, Qarshi University, Lahore 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad 44000, Pakistan
| |
Collapse
|
18
|
Isolation of dihydrobenzofuran derivatives from ethnomedicinal species Polygonum barbatum as anticancer compounds. Biol Res 2019; 52:1. [PMID: 30612577 PMCID: PMC6322347 DOI: 10.1186/s40659-018-0209-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/20/2018] [Indexed: 02/02/2023] Open
Abstract
Background Ethnomedicinally, the family Polygonaceae is famous for the management of cancer. Various species of this family have been reported with anticancer potentials. This study was designed to isolate anticancer compounds from ethnomedicinally important species Polygonum barbatum. Methods The column chromatography was used for the isolation of compounds from the solvent fraction of P. barbatum. The characterization of isolated compounds was performed by various spectroscopic techniques like UV, IR, mass spectrometry and 1D-2D NMR spectroscopy. Keeping in view the ethnomedicinal importance of the family, genus and species of P. barbatum, the isolated compounds (1–3) were screened for anticancer potentials against oral cancer (CAL-27) and lungs cancer (NCI H460) cell lines using MTT assay. Active compound was further investigated for apoptosis by using morphological changes and flow cytometry analysis. In vivo anti-angiogenic study of the isolated compounds was also carried using chorioallantoic membrane assay. Docking studies were carried out to explore the mechanism of anticancer activity. Results Three dihydrobenzofuran derivatives (1–3) have been isolated from the ethyl acetate fraction of P. barbatum. The structures of isolated compounds were elucidated as methyl (2S,3S)-2-(3,4-dimethoxyphenyl)-4-((E)-3-ethoxy-3-oxoprop-1-en-1-yl)-7-methoxy-2,3-dihydrobenzo-furan-3-carboxylate (1), (E)-3-((2S,3S)-2-(3,4-dimethoxyphenyl)-7-methoxy-3-(methoxy carbonyl)-2,3-dihydrobenzofuran-4-yl)acrylic acid (2) and (2S,3S)-4-((E)-2-carboxyvinyl)-2-(3,4-dimethoxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carboxylic acid (3). The compound 1 was found to be more potent with IC50 of 48.52 ± 0.95 and 53.24 ± 1.49 against oral cancer cells as compared to standard drug (IC50 = 97.76 ± 3.44 μM). Both compound also inhibited lung cancer cells but at higher concentrations. Morphological and flow cytometry analysis further confirms that compound 1 induces apoptosis after 24 to 48 h treatment. In antiangiogenesis assay, compounds 1, 2 and 3 exhibited IC50 values of 8.2 ± 1.1, 13.4 ± 1.1 and 57.7 ± 0.3 μM respectively. The docking studies revealed that the compounds under study have the potential to target the DNA and thymidylate synthase (TS). Conclusion Based on its overwhelming potency against the tested cell lines and in angiogenesis assay, compound 1 can be further evaluated mechanistically and can be developed as anticancer drug candidate. Electronic supplementary material The online version of this article (10.1186/s40659-018-0209-0) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Zohra T, Ovais M, Khalil AT, Qasim M, Ayaz M, Shinwari ZK, Ahmad S, Zahoor M. Bio-guided profiling and HPLC-DAD finger printing of Atriplex lasiantha Boiss. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:4. [PMID: 30606171 PMCID: PMC6318930 DOI: 10.1186/s12906-018-2416-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 12/19/2018] [Indexed: 01/21/2023]
Abstract
BACKGROUND Plants represent an intricate and innovative source for the discovery of novel therapeutic remedies for the management of various ailments. The current study has been aimed to validate the therapeutic potential of ethnomedicinally significant plant Atriplex lasiantha Boiss. METHODS The polarity based extraction process was carried out using fourteen solvents to figure out best extraction solvent and bioactive fractions. Total phenolic-flavonoids contents were quantified colorimetrically and polyphenolics were measured using HPLC-DAD analysis. Moreover, the test samples were tested against several diseases targets following various assays including free radicals scavenging, antibacterial, antifungal, cytotoxic and antileishmanial assay. RESULTS Among the solvent fractions, maximum yield was obtained with methanol-water extract i.e., 11 ± 0.49%. Maximum quantity of gallic acid equivalent phenolic content and quercetin equivalent flavonoid content were quantified in methanol-ethyl acetate extract of A. lasiantha. Significant quantity of rutin i.e., 0.3 μg/mg was quantified by HPLC analysis. The methanol-ethyl acetate extract of A. lasiantha exhibited maximum total antioxidant and total reducing power with 64.8 ± 1.16 AAE/mg extract respectively, while showing 59.8 ± 1.07% free radical scavenging potential. A significant antibacterial potential was exhibited by acetone-distilled water extract of A. lasiantha with 11 ± 0.65 mm zone of inhibition against B. subtilis. Considerable antifungal activity was exhibited by ethyl acetate-n-hexane extract of aerial part of A. lasiantha with 14 ± 1.94 mm zone of inhibition against A. fumigatus. Highest percentage of α-amylase inhibition (41.8 ± 1.09%) was observed in ethyl acetate-n-hexane extract. Methanol-acetone extract of A. lasiantha demonstrated significant inhibition of hyphae formation with 11 ± 0.49 mm bald zone of inhibition. Significant in-vitro cytotoxicity against Hep G2 cell line has been exhibited by methanol-chloroforms extract of A. lasiantha. CONCLUSION The current study reveals the prospective potential of Atriplex lasiantha Boiss. for the discovery of biologically active compounds through bioassay guided isolation against various diseases.
Collapse
Affiliation(s)
- Tanzeel Zohra
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
- Department of Virology, National Institute of Health, Islamabad, Pakistan
| | - Muhammad Ovais
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore, Punjab -56000 Pakistan
| | - Muhammad Qasim
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa, 18000 Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 44000 Pakistan
- Department of Biotechnology, Pakistan Academy of Sciences, Islamabad, 44000 Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, Abasyn University Islamabad Campus, Islamabad, 44000 Pakistan
| | - Mohammad Zahoor
- Department of Chemistry, University of Malakand, Khyber Pakhtunkhwa, 18000 Pakistan
| |
Collapse
|
20
|
Ayaz M, Sadiq A, Wadood A, Junaid M, Ullah F, Zaman Khan N. Cytotoxicity and molecular docking studies on phytosterols isolated from Polygonum hydropiper L. Steroids 2019; 141:30-35. [PMID: 30444979 DOI: 10.1016/j.steroids.2018.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 01/10/2023]
Abstract
Based on our previous studies on cytotoxic potentials of Polygonum hydropiper L, two steroidal compounds beta-sitosterol and stigmasterol were isolated from the most active fraction and were subjected to cell lines cytotoxicity. Isolated compounds were tested against HeLa, MCF-7 and NIH/3T3 cell lines following MTT assay. Furthermore, the compounds were also docked against tyrosine kinase enzyme to predict the binding mode of phytosterols in the active sites of the enzyme. Beta-sitosterol exhibited considerable cytotoxicity against NIH/3T3, HeLa and MCF-7 cell with 67.05 ± 2.08, 79.63 ± 2.34 and 71.50 ± 1.57% lethality respectively at 1 mg/ml concentration. Median inhibitory concentrations calculated from dose response curve against NIH/3T3, HeLa and MCF-7 cells were 440, 170 and 200 µg/ml respectively. Stigmasterol was more effective against MCF-7 and NIH/3T3 cells by killing 87.50 and 81.45% cancerous cells respectively at 1 mg/ml concentration. Stigmasterol showed 77.25% cyctotoxicity against HeLA cells at 1 mg/ml concentration in MTT assay. The IC50 values for HeLA, MCF-7 and NIH/3T3 cells were 170, 60 and 140 µg/ml respectively. In docking studies, the docking score for beta-sitosterol and stigmasterol were -7.266 and -4.89 respectively. The binding energies for beta-sitosterol and stigmasterol were -41.21 and -41.04 respectively. Such lower binding energies indicate that the compounds fit into the active site more strongly. Binding affinities for both compounds were -7.76 and -7.68 respectively. Both phytosterols possess significant anticancer potentials and can be effective in the prevention and treatment of several malignancies.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan.
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan; Department of Life Sciences & Chemistry, Faculty of Health, Jacobs University Bremen, Germany
| | - Abdul Wadood
- Department of Biochemistry, UCS, Shankar Abdul Wali Khan University, Mardan, Mardan 23200, Pakistan.
| | - Muhammad Junaid
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, 18000 Dir (L), KPK, Pakistan
| | - Nadir Zaman Khan
- Department of Biotechnology, University of Malakand, Chakdara 18000, Dir (L), KPK, Pakistan.
| |
Collapse
|
21
|
Iftikhar F, Yaqoob F, Tabassum N, Jan MS, Sadiq A, Tahir S, Batool T, Niaz B, Ansari FL, Choudhary MI, Rashid U. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg Chem 2018; 80:99-111. [PMID: 29894893 DOI: 10.1016/j.bioorg.2018.05.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 01/15/2023]
Abstract
Thymidine phosphorylase (TP) is an angiogenic enzyme. It plays an important role in angiogenesis, tumour growth, invasion and metastasis. In current research work, we study the effect of structural modification of dihydropyrimidine-2-ones (DHPM-2-ones) on TP inhibition. A series of eighteen new derivatives of 3,4-dihydropyrimidone-2-one were designed and synthesized through the structural modification at C-6 position. All these new derivatives were then assessed for in-vitro inhibition of thymidine phosphorylase (TP) from E. coli. Oxadiazole derivatives 4a-e exhibited excellent TP-inhibition at low micromolar concentration levels better than standard drug 7-deazaxanthine (7-DX). Among all these compounds, 4b was found to be the most potent with IC50 = 1.09 ± 0.004 μM. Anti-angiogenesis potential of representative compounds were also studied in a chorioallantoic membrane (CAM) assay. Here again, compound 4b was found to be the potent anti-angiogenesis compound in a CAM assay. Docking studies were also performed with Molecular Operating Environment (MOE) to further analyse the mode of inhibition of these compounds. Binding mode analysis of the most active inhibitors showed that these are well accommodated into the binding site of enzyme though stable hydrogen bonding and hydrophobic interactions.
Collapse
Affiliation(s)
- Fatima Iftikhar
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Farhana Yaqoob
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Nida Tabassum
- Department of Pharmacology, Rawalpindi Medical University, Rawalpindi 463000, Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Malakand, Chakdara 18000, Dir (L), Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18000, Dir (L), Pakistan
| | - Saba Tahir
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan
| | - Tahira Batool
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biotechnology, University of Azad Jammu & Kashmir Bagh, Pakistan
| | - Basit Niaz
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | | | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus 22060, Pakistan.
| |
Collapse
|
22
|
Yuan C, Li Y, Li Q, Jin R, Ren L. Purification of Tea Saponins and Evaluation of its Effect on Alcohol Dehydrogenase Activity. Open Life Sci 2018; 13:56-63. [PMID: 33817068 PMCID: PMC7874680 DOI: 10.1515/biol-2018-0008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022] Open
Abstract
Tea saponins, extracted from a Camellia oleifera cake, were found to have a potent effect on de-alcoholic activity. To obtain highly pure tea saponins, which can better maintain the activity of alcohol dehydrogenase (ADH), this paper presents an extraction method for tea saponins using deionized water as the extraction agent and a two-stage precipitation method, including ethanol precipitation and CaO precipitation. The optimum conditions for ethanol precipitation were 95% alcohol, a duration of 1.5h and a solid/liquid ratio of 1:4; while the optimum conditions for CaO precipitation were a duration of 2h and an NH4HCO3/CaO ratio of 2:1. Under the optimum conditions, the content of saponins was 87.58%. The results showed that the greater the amount of tea saponins and the higher its purity, the more significant its activating effect on ADH. When the purity of tea saponins was above 75%, it activated ADH. It indicated that the de-alcoholic mechanism of tea saponins is associated with the activity of ADH. Furthermore, the study characterized the structure of tea saponins by UV absorption and Fourier Transform Infrared (FTIR) spectrometry and LC-MS.
Collapse
Affiliation(s)
- Chuanxun Yuan
- Engineering Research Center of Bio-process (Hefei University of Technology), Ministry of Education, Hefei, Anhui 230009, P.R, China
| | - Yan Li
- Engineering Research Center of Bio-process (Hefei University of Technology), Ministry of Education, Hefei, Anhui 230009, P.R, China
| | - Qingchuan Li
- Engineering Research Center of Bio-process (Hefei University of Technology), Ministry of Education, Hefei, Anhui 230009, P.R, China
| | - Risheng Jin
- Engineering Research Center of Bio-process (Hefei University of Technology), Ministry of Education, Hefei, Anhui 230009, P.R, China
| | - Lili Ren
- Engineering Research Center of Bio-process (Hefei University of Technology), Ministry of Education, Hefei, Anhui 230009, P.R, China
| |
Collapse
|
23
|
Mahmood F, Jan MS, Ahmad S, Rashid U, Ayaz M, Ullah F, Hussain F, Ahmad A, Khan AU, Aasim M, Sadiq A. Ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoate Derivatives: Anthelmintic and Cytotoxic Potentials, Antimicrobial, and Docking Studies. Front Chem 2017; 5:119. [PMID: 29312926 PMCID: PMC5733081 DOI: 10.3389/fchem.2017.00119] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022] Open
Abstract
Development of multidrug resistance (MDR) to antimicrobial, antiparasitic and chemotherapeutic agents is a global challenge for the scientific community. Despite of the emergence of MDR pathogens, the development of novel and more effective drugs is slow and scientist even speculate that we are going back the pre-antibiotic era. This work aims to study and evaluate the preliminary antibacterial, anthelmintic and cytotoxic potentials of ethyl 3-oxo-2-(2,5-dioxopyrrolidin-3-yl)butanoates. Among all of the four compounds, compound 2 has displayed remarkable potency with MIC values of 0.125, 0.083, 0.073, and 0.109 mg/ml against E. sakazakii, E. coli. S. aureus, and K. pneumonia, respectively. Compared to etoposide (LC50 9.8 μg/ml), the compounds demonstrated LC50 values from 280 to 765 μg/ml. For anthelmintic assay, three concentrations of each compound and standard drug were studied in determination of time of death of the two species. Excellent anthelmintic activity was observed by all four compounds against P. posthuma and A. galli better than standard albendazole. High GOLD fitness score data from docking analysis toward the targets represent better protein-ligand binding affinity and thus indicate a high propensity for all the active compounds to bind to the active site. The promising in-vitro antimicrobial, anthelmintic activity, and cytotoxicity data conclusively revealed that these compounds may serve as viable lead compounds for the treatment of bacterial and parasitic infections, and therefore, could help the medicinal chemists to design future chemotherapeutic agents to avoid rapid drug resistance.
Collapse
Affiliation(s)
- Fawad Mahmood
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, Pakistan
| | - Muhammad S. Jan
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| | - Fida Hussain
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Ashfaq Ahmad
- Department of Pharmacy, Sarhad University of Science & Technology, Peshawar, Pakistan
| | - Arif-ullah Khan
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Muhammad Aasim
- Department of Biotechnology, University of Malakand, Chakdara, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara, Pakistan
| |
Collapse
|
24
|
El-Kashak WA, Elshamy AI, Mohamed TA, El Gendy AENG, Saleh IA, Umeyama A. Rumpictuside A: Unusual 9,10-anthraquinone glucoside from Rumex pictus Forssk. Carbohydr Res 2017. [DOI: 10.1016/j.carres.2017.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Zeb A, Ullah F, Ayaz M, Ahmad S, Sadiq A. Demonstration of biological activities of extracts from Isodon rugosus Wall. Ex Benth: Separation and identification of bioactive phytoconstituents by GC-MS analysis in the ethyl acetate extract. Altern Ther Health Med 2017; 17:284. [PMID: 28558679 PMCID: PMC5450350 DOI: 10.1186/s12906-017-1798-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 05/17/2017] [Indexed: 12/02/2022]
Abstract
Background Since long, natural sources have been explored for possible managements of various diseases. In this context, the study is designed to evaluate Isodon rugosus Wall. ex Benth for biological potentials including antibacterial, anthelmintic, insecticidal, anti-termites and anti-Pharaoh activities followed by GC-MS analysis of active fraction to identify various bioactive compounds. Methods I. rugosus was investigated against eight bacterial strains using well diffusion method and microdilution method with ceftriaxone as positive control. Similarly, the insecticidal activity was carried out against Tribolium castaneum, Rhyzopertha dominica, Monomorium pharaonis and Heterotermis indicola following contact toxicity method. Likewise, anthelmintic activity was performed against Ascaridia galli and Pherethima posthuma using albendazole as positive control, in which the paralysis and death times of the worms were observed. The GC-MS analysis of the most active solvent fraction was performed for identifications of various bioactive compounds. Results Among the tested samples of I. rugosus, flavonoids and ethyl acetate fraction exhibited high antibacterial activities. The crude saponins showed highest anthelmintic activity against Pherethima posthuma and Ascaridia galli with death times of 27.67 and 29.22 min respectively at concentrations of 40 mg/ml. In insecticidal activity, chloroform fraction and saponins exhibited notable results against R. dominica (60 and 70%) and T. castaneum (70 and 76%) at concentration of 200 mg/ml. In anti-termite assay, all the plant samples showed overwhelming results, i.e. all the 25 termites were killed on the 3rd day. Similarly, in anti-Pharaoh activity, the chloroform, ethyl acetate and saponins fractions were most potent, each exhibiting LD50 of <0.1 mg/ml. In GC-MS analysis, total of 57 compounds were identified. Some of the bioactive compounds identified in GC-MS analysis are palmitic acid, hinokiol, α-amyrin, phytol, ethyl linolate, cyclohexanone, hinokione, methyl palmitate, ethyl palmitate and stigmasterol acetate. Conclusions Based on our current results, it can be concluded that I. rugosus possess strong antibacterial, insecticidal and anthelmintic potentials having crude saponins and ethyl acetate as the most active fractions. The GC-MS analysis and biological assays reveal that ethyl acetate fraction is a suitable target for the isolation of diverse array of bioactive compounds.
Collapse
|
26
|
Ahmad S, Ullah F, Zeb A, Ayaz M, Ullah F, Sadiq A. Evaluation of Rumex hastatus D. Don for cytotoxic potential against HeLa and NIH/3T3 cell lines: chemical characterization of chloroform fraction and identification of bioactive compounds. Altern Ther Health Med 2016; 16:308. [PMID: 27552817 PMCID: PMC4995757 DOI: 10.1186/s12906-016-1302-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 08/18/2016] [Indexed: 01/06/2023]
Abstract
Background The importance of Rumex genus and the renowned ethnopharmacological and biological potentials of Rumex hastatus is evident from the previous reports. Recently the R. hastatus has been evaluated for anticancer potential against HepG2, MCF7 or LNCaP cell lines with considerable cytotoxicity. We also reported the anti-tumor and anti-angiogenic potentials of R. hastatus. The current study has been arranged to evaluate cytotoxic potential of this plant against HeLa and NIH/3T3 cell lines and sort out the most active fraction of R. hastatus along with the identification of bioactive compounds responsible for cytotoxicity. Methods The cytotoxic potential of methanolic extract and sub-fractions of R. hastatus was performed following (3-[4, 5-dimethylthiazole-2-yl]-2, 5-diphenyl-tetrazolium bromide) MTT calorimetric assay. Four concentrations (500, 250, 125 and 62.5 μg/ml) of each sample were used against both cell lines. Two cell lines i.e. HeLa and NIH/3T3 were used in the assay. Furthermore, chemical characterization of chloroform fraction was performed by GC-MS analysis. Results The current investigational study demonstrates that all the solvent fractions of R. hastatus were active against HeLa and NIH/3T3 cell lines. Among all the fractions, chloroform fraction was dominant in activity against both cell lines. The observed IC50 values of chloroform fraction were 151.52 and 53.37 μg/ml against HeLa and NIH/3T3 respectively. The GC-MS analysis of chloroform fraction revealed the identification of 78 compounds with the identification of bioactive ones like ar-tumerone, phytol, dihydrojasmone, sitostenone etc. Conclusion It can be concluded from our results that Rumex hastatus D. Don possess strong cytotoxic potential. Moreover, the observed IC50 values and GC-MS analysis of chloroform fraction reveal that most of the bioactive compounds are in chloroform fraction. It can be further deduce that the chloroform fraction is a suitable target for the isolation of compounds having potential role in cancer therapy.
Collapse
|
27
|
Zeb A, Ahmad S, Ullah F, Ayaz M, Sadiq A. Anti-nociceptive Activity of Ethnomedicinally Important Analgesic Plant Isodon rugosus Wall. ex Benth: Mechanistic Study and Identifications of Bioactive Compounds. Front Pharmacol 2016; 7:200. [PMID: 27458379 PMCID: PMC4933699 DOI: 10.3389/fphar.2016.00200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/22/2016] [Indexed: 01/02/2023] Open
Abstract
Isodon rugosus Wall. ex Benth. is extensively used as traditional medicine for the management of various types of pain including tooth ache, gastric pain, abdominal pain, ear ache, and generalized body pain. The current study is designed to scientifically verify the purported uses of I. rugosus as analgesic agent and to figure out its possible mechanism of action. Bioactive compounds responsible for analgesic activity were identified using GC and GC-MS analysis. Analgesic potentials were evaluated using acetic acid induced writhing, hot plate test, and formalin induced paw licking test. In acetic acid induced writhing chloroform fraction (Ir.Chf) exhibited 53% analgesia while formalin test displayed 61% inhibition at phase-I and 45% at phase-II respectively at a dose of 100 mg/kg. Similarly, in hot plate test Ir.Chf displayed average reaction time of 7 min at 15, 30, 45, and 60 min intervals. The possible mechanism of action was found to be the central pathway via opioidergic receptors as the mice showed morphine like analgesic activity at pre-administration of naloxone (opioid antagonist) in hot plate and formalin tests. In GC-MS analysis, 83 compounds were identified among which eight compounds including benzyl alcohol, sebacic acid, myristic acid, phytol, sugiol, Tocopherol, α-Amyrin, and stigmasterol were sorted out as previously reported analgesic compounds. Current study revealed that analgesic potential of I. rugosus can attributed to the presence of analgesic compounds. It may also be concluded that opioids receptors are involved in the analgesic mechanism of I. rugosus due to effective antagonism of nalaxone.
Collapse
Affiliation(s)
| | | | | | | | - Abdul Sadiq
- Department of Pharmacy, University of MalakandChakdara, Pakistan
| |
Collapse
|
28
|
Ayaz M, Junaid M, Ullah F, Sadiq A, Subhan F, Khan MA, Ahmad W, Ali G, Imran M, Ahmad S. Molecularly Characterized Solvent Extracts and Saponins from Polygonum hydropiper L. Show High Anti-Angiogenic, Anti-Tumor, Brine Shrimp, and Fibroblast NIH/3T3 Cell Line Cytotoxicity. Front Pharmacol 2016; 7:74. [PMID: 27065865 PMCID: PMC4814464 DOI: 10.3389/fphar.2016.00074] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/10/2016] [Indexed: 11/13/2022] Open
Abstract
Polygonum hydropiper is used as anti-cancer and anti-rheumatic agent in folk medicine. This study was designed to investigate the anti-angiogenic, anti-tumor, and cytotoxic potentials of different solvent extracts and isolated saponins. Samples were analyzed using GC, Gas Chromatography-Mass Spectrometry (GC-MS) to identify major and bioactive compounds. Quantitation of antiangiogenesis for the plant's samples including methanolic extract (Ph.Cr), its subsequent fractions; n-hexane (Ph.Hex), chloroform (Ph.Chf), ethyl acetate (Ph.EtAc), n-Butanol (Ph.Bt), aqueous (Ph.Aq), saponins (Ph.Sp) were performed using the chick embryo chorioallantoic membrane (CAM) assay. Potato disc anti-tumor assay was performed on Agrobacterium tumefaciens containing tumor inducing plasmid. Cytotoxicity was performed against Artemia salina and mouse embryonic fibroblast NIH/3T3 cell line following contact toxicity and MTT cells viability assays, respectively. The GC-MS analysis of Ph.Cr, Ph.Hex, Ph.Chf, Ph.Bt, and Ph.EtAc identified 126, 124, 153, 131, and 164 compounds, respectively. In anti-angiogenic assay, Ph.Chf, Ph.Sp, Ph.EtAc, and Ph.Cr exhibited highest activity with IC50 of 28.65, 19.21, 88.75, and 461.53 μg/ml, respectively. In anti-tumor assay, Ph.Sp, Ph.Chf, Ph.EtAc, and Ph.Cr were most potent with IC50 of 18.39, 73.81, 217.19, and 342.53 μg/ml, respectively. In MTT cells viability assay, Ph.Chf, Ph.EtAc, Ph.Sp were most active causing 79.00, 72.50, and 71.50% cytotoxicity, respectively, at 1000 μg/ml with the LD50 of 140, 160, and 175 μg/ml, respectively. In overall study, Ph.Chf and Ph.Sp have shown overwhelming results which signifies their potentials as sources of therapeutic agents against cancer.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Muhammad Junaid
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Fazal Subhan
- Department of Pharmacy, University of PeshawarPeshawar, Pakistan
| | - Mir Azam Khan
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Waqar Ahmad
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| | - Gowhar Ali
- Department of Pharmacy, University of PeshawarPeshawar, Pakistan
| | - Muhammad Imran
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
- H.E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of KarachiKarachi, Pakistan
| | - Sajjad Ahmad
- Department of Pharmacy, University of MalakandKhyber Pakhtoonkhwa, Pakistan
| |
Collapse
|