1
|
Yao L, Cong R, Zhou X, Zhou X, Ji C, Wei X, Meng X, Song N. Lacosamide alleviates bilateral cavernous nerve injury-induced erectile dysfunction in the rat model by ameliorating pathological changes in the corpus cavernosum. Int J Impot Res 2024; 36:283-290. [PMID: 36922697 DOI: 10.1038/s41443-023-00674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/18/2023]
Abstract
Bilateral cavernous nerve injury-related erectile dysfunction (BCNI-ED) shows a limited response to type 5 phosphodiesterase inhibitors. Furthermore, lacosamide (LCM) can alleviate peripheral neuropathy. To explore whether LCM can improve the erectile response after BCNI, we randomly divided 30 young Sprague-Dawley rats into three groups (n = 10 per group), namely, the sham operation, 0.9% normal saline-treated (BCNI + 0.9% NS), and LCM-treated BCNI (BCNI + LCM) groups. LCM was injected intraperitoneally at a dose of 90 mg/kg/day for 7 consecutive days. Erectile function was assessed by measuring the ratio of peak intracavernous pressure (ICP) to mean arterial pressure (MAP), and tissues were harvested for transmission electron microscopy, immunofluorescence, Masson's trichrome staining, TUNEL staining, and Western blot analysis. The BCNI + 0.9% NS group showed reduced ICP/MAP ratio (0.93 ± 0.04 vs. 0.44 ± 0.05, P < 0.0001). An increased proportion of TUNEL-positive cells (0.04 ± 0.01 vs 0.87 ± 0.03, P < 0.0001) and a decreased smooth muscle/collagen ratio (0.44 ± 0.01 vs. 0.33 ± 0.01, P < 0.001) were observed in the BCNI + 0.9% NS compared with the sham group. Administration of LCM significantly restored the ICP/MAP ratio (0.44 ± 0.05 vs. 0.74 ± 0.05, P < 0.001) and decreased the proportion of TUNEL positive cells (0.87 ± 0.03 vs. 0.60 ± 0.04, P < 0.0001) in the corpus cavernosum following BCNI. The ratio of smooth muscle to collagen (0.43 ± 0.01vs. 0.33 ± 0.01, P < 0.01) and expression of α-SMA (P < 0.0001) in the BCNI + LCM group significantly increased compared with BCNI + 0.9% NS group, indicating alleviation of fibrosis. Apoptotic markers, including Bax/Bcl-2 (P < 0.01) and Caspase-3 (P < 0.0001) in the BCNI + LCM group was significantly lower than that in the BCNI + 0.9% NS group. LCM treatment partially upregulated the expression of vWF and eNOS in cavernous tissue in rats subjected to BCNI (P < 0.05). Increases in S100-β and nNOS expression in the major pelvic ganglion (MPG) were observed after LCM administration. In summary, LCM can recover erectile function in BCNI-ED rat model by suppressing corporal apoptosis and fibrosis, and protecting the cavernous nerve.
Collapse
Affiliation(s)
- Liangyu Yao
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Rong Cong
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xuan Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chengjian Ji
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiyi Wei
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xianghu Meng
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Ninghong Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Department of Urology, The Affiliated Kezhou People's Hospital of Nanjing Medical University, Kezhou, Xinjiang, 845350, China.
| |
Collapse
|
2
|
Lotfi MS, Kalalinia F. Flavonoids in Combination with Stem Cells for the Treatment of Neurological Disorders. Neurochem Res 2023; 48:3270-3282. [PMID: 37462837 DOI: 10.1007/s11064-023-03986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 09/22/2023]
Abstract
Neurological disorders are the leading cause of disability and the world's second leading cause of death. Despite the availability of significant knowledge to reduce the burden of some neurological disorders, various studies are exploring more effective treatment options. While the human body can repair and regenerate damaged tissue through stem cell recruitment, nerve regeneration in case of injury is minimal due to the restriction on the location of nerve stem cells. Recently, different types of stem cells extracted from various tissues have been used in combination with natural stimuli to treat neurologic disorders in neuronal tissue engineering. Flavonoids are polyphenolic compounds that can induce the differentiation of stem cells into neurons and stimulate stem cell proliferation, migration, and survival. They can also increase the secretion of nutritional factors from stem cells. In addition to the effects that flavonoids can have on stem cells, they can also have beneficial therapeutic effects on the nervous system alone. Therefore, the simultaneous use of these compounds and stem cells can multiply the therapeutic effect. In this review, we first introduce flavonoid compounds and provide background information on stem cells. We then compile available reports on the effects of flavonoids on stem cells for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Mohammad Sadegh Lotfi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kalalinia
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Vakilabad Blvd, Pardis University Campus, Mashhad, 91886 17871, Iran.
| |
Collapse
|
3
|
Zhang X, Tang B, Wen S, Wang Y, Pan C, Qu L, Yin Y, Wei Y. Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium. Molecules 2023; 28:7173. [PMID: 37894651 PMCID: PMC10609448 DOI: 10.3390/molecules28207173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids.
Collapse
Affiliation(s)
- Xiaoling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Food Safety Quick Testing and Smart Supervision Technology for State Market Regulation, Zhengzhou 450003, China
| | - Bingling Tang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Sijie Wen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yitong Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chengxue Pan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410081, China
| | - Yongjun Wei
- Laboratory of Synthetic Biology, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
4
|
Song J, Wang J, Liu K, Xu W, Sun T, Liu J. The role of microRNAs in erectile dysfunction: From pathogenesis to therapeutic potential. Front Endocrinol (Lausanne) 2022; 13:1034043. [PMID: 36387873 PMCID: PMC9640492 DOI: 10.3389/fendo.2022.1034043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Erectile dysfunction (ED) is a common male sexual dysfunction disease, and it was predicted that the number of ED patients worldwide will reach 322 million by 2025. However, the pathogenesis of ED is complex and the current treatment options are still limited, so it is urgent to explore new treatment strategies. Recent studies have shown that microRNAs (miRNAs) play an important role in ED, and these single-stranded non-coding small RNA molecules are involved in key pathophysiological processes in the occurrence and development of ED. Therefore, miRNAs have remarkable potential as therapeutic targets in ED. Here, this review introduces the physiological basis of erectile function and the pathophysiological changes in ED and summarizes the current knowledge on the expression, biological functions, and molecular mechanisms of miRNAs in ED, especially the potential of miRNA-targeted therapies to improve ED. This review will provide a comprehensive view of the role of miRNAs in the pathogenesis of ED and the potential value of miRNAs in the treatment of ED.
Collapse
Affiliation(s)
- Jingyu Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
6
|
Liu Y, Hu X, Hu L, Xu C, Liang X. Let-7i-5p enhances cell proliferation, migration and invasion of ccRCC by targeting HABP4. BMC Urol 2021; 21:49. [PMID: 33775245 PMCID: PMC8005230 DOI: 10.1186/s12894-021-00820-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is one of the best-characterized and most pervasive renal cancers. The present study aimed to explore the effects and potential mechanisms of let-7i-5p in ccRCC cells. METHODS Using bioinformatics analyses, we investigated the expression of let-7i-5p in The Cancer Genome Atlas (TCGA) database and predicted biological functions and possible target genes of let-7i-5p in ccRCC cells. Cell proliferation assay, wound healing assay and transwell invasion assay were conducted to characterize the effects of let-7i-5p in ccRCC cells. To verify the interactions between let-7i-5p and HABP4, dual-luciferase reporter assay, quantitative real-time polymerase chain reaction, and western blotting were conducted. Rescue experiments were used to investigate the relationship between let-7i-5p and HABP4. RESULTS TCGA data analysis revealed that ccRCC tissues had significantly increased let-7i-5p expression, which was robustly associated with poor overall survival. Further verification showed that ccRCC cell proliferation, migration and invasion were inhibited by let-7i-5p inhibitor but enhanced by let-7i-5p mimics. Subsequently, HABP4 was predicted to be the target gene of let-7i-5p. TCGA data showed that ccRCC tissues had decreased expression of HABP4 and that HABP4 expression was negatively correlated with let-7i-5p. Further verification showed that downregulation of HABP4 expression promoted cell proliferation, migration and invasion. The dual-luciferase reporter gene assay suggested that the let-7i-5p/HABP4 axis was responsible for the development of ccRCC. CONCLUSION Our results provide evidence that let-7i-5p functions as a tumor promoter in ccRCC and facilitates cell proliferation, migration and invasion by targeting HABP4. These results clarify the pathogenesis of ccRCC and offer a potential target for its treatment.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xing Hu
- Department of General Practice, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Liang Hu
- Department of Cardiovascular Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Changjing Xu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xuemei Liang
- Department of Geriatric Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|